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| ntroduction

Analysis 3-4 is a generalization of usual, one-dimensional analysis to the case of
arbitrary finite dimensions.

More precisely, instead of functionsR — R we consider functionsR" — R™,

Infact elements of finite-dimensional analysiswere developed aready in 18" century,
but an appropriateframefor thisanalysisare normed spaces. These spaceswereintroduced
(independently and almost simultaneously (1916—-1922)) by A. Bennett, F. Riesz, H. Hahn,
S. Banach, N. Wiener. The differentiation operator for mappings between normed spaces
was defined in 1925 by M. Fréchet. (More “weak” notion of differentiability was defined
early (1913) by R. Géteaux, but for thiskind of differentiability the chainruleisnot valid.)
This date can be consider as the birthdate of modern analysis.

* * %

Our course contains 12 Chapters. In Chapter 1 we study normed spaces (up to Chapter 5
these spaces are alowed to be infinite-dimensional). In Chapter 2 we consider Fréchet
(and Géteaux) derivative. Chapter 3 is devoted to the most important theorem of analysis,
Inverse Function Theorem (which can be equivalently reformulated as Implicit Function
Theorem). As a tool for proving this theorem we prove at first so called Contraction
Lemma (this is the main tool also in the final Chapter 12). In Chapter 4 we study higher
derivatives, up to Taylor formula. In Chapter 5 we give some applications of the theory to
optimization problems.

Starting from Chapter 6 we restrict ourselfs just by FINITE-dimensional case.

In Chapter 6 we construct Riemann integral in R". Chapter 7 is devoted to two im-
portant technical results. In Chapter 8 we consider differential forms, which are in fact
generalizations of “length element”, “area element” and “volume element” of classical
“old” analysis. Chapters 9 and 10 are devoted to the crown theorem of the theory, Stokes
Theorem, which is a generalization of different known results of “old” analysis (Eu-
ler (1771), Green (1828), Ostrogradskij (1834), Stokes (1854)). For this end we define
manifoldsin R",

The last two chapters are facultative and written in more compressed style. In Chap-
ter 11 we apply Stokes Theorem for study of analytic complex function, and in Chapter 12
we apply Contraction Lemma for proving of Existence and Uniqueness Theorem for
ordinary differential equations.

Some remarks on notations.

. A . .
If wewrite, eg., a < b, thismeans“using A we concludethat a < b”.

Symbols < and > denote, resp., the beginning and the end of the proof. If we prove
some “small” assertion inside the proof of a“great” one, we use symbols <1 and >t for
this“small” proof, et-cetera.

“Exerc.” over e.g. an equation mark means that to prove this equation is an exercize
for the reader.

The reader has to remember that misprints are POSSIBLE and to use ever his common
sense.






Chapter 1

Normed spaces

1.1 Norms

Let X beavector space over R. By anormon (or in) X wemean afunction|-|| : X - R
with the following properties:

(i) Vx € X |Ix]| = O (positivity); ||| = 0 < x = 0 (non-degeneracy);
(i) Vx € X Vt € R: ||tx|| = |t] x|l (positive homogenity); in particular |—x| = |||
(symmetry);
(iii) ¥x,y € X: x4yl < X[ + [lyll (subadditivity).

If we interpret ||x|| as the LENGTH of the vector x then the
property (iii) expressesthe triangle inequality (A-in.).

A normed space X is a vector space equipped with a norm.
[ (X e NS)

X |lyll x+y
(1]

O vl Y Examples.
LR, [-D;

2. (R", [|-Ilp), where ||-||, is defined for 1 < p < oo by the
formula

1
Xl p == (1XalP + -+ xaP)YP = (xa, o))

For p = 2 we obtain the usual Euclidean length.

3. (R", ||lloo), Where
[Xlloo == max {|Xa|, - - -, [Xnl} .

NB [[Xlloo = liMp—oo X1l p.

4.¢,. Thisistheset of all sequencesx = (X1, X2, . . .) of real numberssuchthat Y2, xi2 <
o0, with the norm defined so:
o
IX[1% ==Y " x2.
i=1

9
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5. C([0, 1]). Thisisthe set of al continuousreal-valued functionson [0, 1] equipped with
the norm

X|| == max |Xx(t)|.
[I1] te[0,1]| 9]

Second Triangle Inequality. Let ||-|| beanormin X. Then

X .
VX, ye X [IXI =yl < IIx =yl
[1X]] x| < Without loss of generality we can assume that ||x|| > ||yl
(since[Ix =yl = ly — x|I). We need to verify that || x| — [ly|| <
[IX — y||. But indeed
i A-in.
0 livil y I x =y +yI < Ix =yl + Iyl >
1.2 Balls

Let X beanormed space. Putfor x € X,r >0

Br(x) == {y € X | |ly—x|l < r} (the closed ball with the center x and radius r);
é,(x) ={y e X ||y — x| < r} (theopen ball with the center x and radiusr);

For balls with center at 0 we write for short
Br = Br (0), Br = Br (O)
Propertiesof balls. It is easy to verify (please!) that?
1) Br(X) = X+ By; ér(X) =X+ ér;
2) By =r B1; B =rBy;
3) l03r ; Br;
4) ifry <, then By, S By
5 Br = U By =UBu;

O<)a<r oa<r
6) BI’ :mBa :mBa;
a>r a>r

NB Here and below we use the following notations:

A+B:={a+blae A beB} (A BcCX),
TA={ta|teT,ac A} (TcR, AcCX).

In particular

X+A=XX}+A={x+alae A} xeX),
tA:={t}A={talae A} (teR).

Notation. For ballsin R wewrite | (“interval”) instead of B. For example

I =[-1,1].

in 3) and 4) we suppose that our normed space is non-trivia: X # {0}.
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1.3 Norm topology

Let X be anormed space. We define the topology © generated by the normso: aset G is
open if for each point x € G there existsa ball B, (x) that is

contained in G:
Gert:eoVxeGIe>0:B.(x) CG.
G B,

Thefirst assertion of thefollowing theorem meansthat this
definitionis correct.

Theorem 1.3.1.
a) Sodefined 7 isatopology.
b) Openballsin X are open setsin thistopology, and closed balls are closed sets.
¢) Boththeopen ballsand the closed ballswith the center at x are bases of neighbour-
hoods of x in this topology.

<18) Gy € T = |J, Gy € 7. Indeed if x € |G, then x € Gy, for some «g, hence
B:(X) C Gq, for somee > 0; afortiori B,(x) C | Ga.

Further, G1,G2 ¢ T = G1 N G2 € 7. Indeed, if Xx € G N Gy, then x € G;
and hence B,, C Gj for some e1 > 0. Analogously B., C G for some ez > 0. Put
& = min(ey, £2). Then B, (x) C G1 N Go.

Thus 7 isatopology.

b) Let us provethat l%s(x) ert.Letye 1038(x). Then
s=|ly—X| <e.
Takeany § > 0 such that
d<e—sS. (1)

Then
zeBs(y)=llz—yl=é=lz—Xl

B A-in. @) )
() < llz—yll+lly—xl <8+s<e = zeB.(x),
e e’ N e’

<5 =s
which meansthat Bs(y) C I%S(x). Thus, I%S X) € T.
That (B, (x))® € = can be proved analogoudly.
¢) If U isan open neighbourhood of x in 7, then (by our definition of t), B.(x) c U
for somee > 0; afortiori és (X) C U. But I03€(x) is an open set (by b)) and contains x
(obviously), so ég (X) is an open neighbourhood of x, therefore B (x) is a(closed by b))
neighbourhood of x. All is proved. >

By a norm topology we mean the topology generated by a norm.
NB Any norm topology is Hausdorff. (Provel)

Convergence and continuity

Convergencein anormed space X means convergence in the topology generated by
the norm. It follows from the definitions that

Xn—— X € X & || Xqg — X|| —— 0.
n—o00 n—o00
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Continuity of amapping f : X — Y (where X, Y are normed spaces) means continuity
in topologies generated by the normsin X and Y. It follows from the definitionsthat f is
continuousat apoint X € X if and only if (iff)

Ve>038>0: [x—%|<s=|feo—f®)|=<e @)

(just asin usual analysis, only with ||-|| instead of | - |).
For short we write (2) in the form

Ix=%] = 0= | fx) - %] — 0.

or
[fo)— f TR 0

Theorem 1.3.2. Let X be a normed space. Thenthenorm ||-|| : X — R isa continuous

function

<1 Continuity of ||-|| at apoint X means that

Xl = %] ——-—— 0

[[x=%]|—
But the latter relation istrue, since, by the Second Triangle Inequality,

Xl = %[ = [x = %] =

1.4 Equivalent norms

Let ||-||1 and ||-||> betwo normson avector space X. We say that thenorm ||-||; is stronger
than the norm ||-||», and write

-l > 1I-ll2,

if the topology 71 generated by |- || is FINER than the topology t2, generated by ||-|»:

-1 > NI-ll2 & 71 D 2.

Theorem 1.4.1. The following conditions are equivalent (TFAE):
a) [I-lly > Nl-ll2;
b) 3ry,rp > 0: IOB'r‘i”l C IOB'r‘é”z;
c) Iry,r2>0: B'Ji”l C B'r‘é”z;

d) Iry,r2>0: r1|-llg =r2ll-ll2. (Whichmeansthat Vx e X:rg IX]l1 = r211X]l2.)-
<1° (@ = (b):

. Q|- def. of Ol . O O .
B2 5 0,13 Bl ¢ oy 99 3, . Bl 5 Bl Bl 5 Bl

thus, wecanputr; = ¢, ro = 1.
2° (b) = (0):

b o o
Bl 2 N gl 12 N oBJ () 2N oBll2 12 N B2 L2 plilz

r>rg a>0 a>0 r>rz
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3° (c) = (d): Let (c) istrue. We need to verify that Vx € X : ra [IX]l1 > r1[Ix]l. Without

. 1 ©
lossof generality x # 0.Wehave[[rix/|[X[l]l; = r1 = rix/IIx[l; € BLIt = rix/|x]; €

Bl,2 = Irax/IIXll1llz < r2 = r1 (X[l = r2 X1
4° (d) = (a): Let (d) istrue. We need to verify that 11 D 12. Let U € 12 and let X be an
arbitrary pointin U. By the definition of o, for somee > 0

Bl2(x) c U. 1)

Now, |IX]l1 < r1 (_i% IX]l> < r2, which means that él‘i“l C é‘rlz'”? Multiplying by ¢/r> we
obtainBll1 I%ﬂ'”z. And the trand ation by x yields (by the property 2 of balls, see 1.2)

ery/ro

- Ol. )
B 00 c B (x) CU. ThusU € o, >

Example. In ¢;

-l > Mlloo s Illoe # II-I2,
where
Xlloo := sUp |Xi] (X = (X1, X2, . ..)).
ief1,2,..}
(Prove!)

Equivalent norms
We say that two norms ||-||; and ||-||, on avector space X are equivalent and write

-l ~ 1112,

if each normisstronger than the other, that is, if they generate one and the same topol ogy:

-l ~ 12 2 (-l > N-ll2s -z > Dl 71 = 7.

Theorem 1.4.2. InR"

Mg,

-l ~ 11l ~ o
1,

B 910 Ixlly > IIXll2 > Xl (prove), hence (by
g Theorem1.4.1) |-lly > 2 = Il lloc.
2° n|lXllee = +/nlixl2 > lIX]l1 (prove!), hence
oo = 1Nl > [I+ll7- >
NB In fact ALL normsin R" are equivalent (see
1.9).

1.5 Bounded sets

A set Aiinanormed space X is called bounded if A iscontained in the ball B, for some
r > 0.
NB A set A isbounded iff the number set {||X|| | X € A} C R isbounded.

Example. Each ball (closed or open), with any center, is bounded. (Prove!)
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Theorem 1.5.1. For equivalent normsthe set of all bounded setsis one and the same, that
i, if [[-ll2 ~ lI-ll2, then

Aisboundedin ||-]l; <& Aisboundedin ||-||5.

< Thisfollows from equivalence (a) < (d) in Theorem 1.4.1. >

Remark. The theorem suggests that boundedness can be expressed in terms of the ToPO-
LOGY 1 generated by the norm. And indeed A is bounded iff for each neighbourhood U
of zeroin t thereexists§ > Osuchthat A C U.

1.6 Product

Let X1, ..., X, benormed spaces. The vector space X1 x - - - x Xp can be equipped with
the norm

||(X1, e Xn)” = ” (HXl”Xl L ||Xn||Xn) ”pa (1)

eR"

where 1 < p < oo, and ||-||, isthe normin R" defined in 1.1. Just asin Theorem 1.4.2.,
it can be verified that for p = 1, 2 and co we obtain equivalent norms. (In fact, the norms
(1) areequivalent for ALL p € [1, oo], since al normsIN R" are equivalent, see 1.9.)
Remark. Thenorm ||-|| , inR" isa special case of this construction (R" = R x - - - x R).
NB The topology generated by the norms (1) coincides with the product topology in
X1 x -+ x Xp, each X; being supplied with the topology generated by the norm.
Criterion. Let X1, ..., X, be normed spaces. Then

(X1, ooonXn) = (Re, ..., Xn) € Xax -+ x Xp & Vi [x —%i| — 0.
< Thisfollows at once from the definitions. >
Theorem 1.6.1. For each normed space the algebraical operations
X xR—=> X, (X,t) = tx (multiplication)

and
+:Xx X=X, (X,¥y)—~ x+Yy (addition)

are continuous.

< 1°

0<|tx— €| = [tx —t&] + [tx — %] = [t| [x = %] + |t — ][] ——— O,
~— || x—%]|—0
—f] [t—f|]—0

t—t
. o(tX) hence |tx — fX| — Oas (x,t) — (&, f). Thus, the multiplication is
(—> continuous.
[ ] [ ] 20
(f,ﬁ) . Ly A-in R N
05Hﬂ+y%%X+WHSIV—XWHW—VW[f[?Q
X—=X||—

ly-yll-0

hence |(x +Yy) — (R + §)| — 0as(x,y) — (X, ¥). Thus, the additionis continuous. r>
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1.7 Natural topology in R"

The topology generated by the equivalent norms [|-|l1, [I‘ll2, [I‘lls IN R" (see 1.4) is
called the natural topology.
NB We ever consider R" with the natural topology.

Theorem 1.7.1. The natural topology tnst iNIR" coincideswith the product topology tprod
(that is, the topology of the product R x --- x R (n times), where R is equipped with its
standard topology).

In particular the natural topology in R isits standard topol ogy.
< For short consider thecasen = 2.
0° Since the neighbourhoods of x are trandations by x of the neighbourhoods of 0 (by
Property 1 of balls, see 1.2), it is sufficient to verify that each neighbourhood of 0 in Tz
contains aneighbourhood of 0in tproq and vice versa. Below the notationU € Nby means
that U isaneighbourhood of x.
1° Let U e Nbo(tprod). Then by the definition of the product topology there exist £1 >
0, &2 > 0such that

UDlyxly, D I x 1, = Bll~ ¢ Nb(tna).  OK.
g:=min(e1,62) “~=———
—{Oy)lIXI<e, lyl<e)

2° Let U € Nbg(tna). Then (since g isgenerated by |- || ,) there existse > 0 such that
U 5Bl =1, x I, € Nbo(tprod). OK. >

1.8 Bounded setsand compact setsin R"

A set A c R"iscaled bounded if it is bounded in one of the norms |I-1l1, [Ill2, II'llso
(then, by Theorem 1.5.1., it it bounded also in the two others; in essenceit is boundedness
with respect to the natural topology, see Remark in 1.5).

Theorem 1.8.1. Aset K c R" iscompact (in the natural topology) iff it is bounded and
closed.

<1 For simplicity of notations consider the casen = 2.

0° We need the following important theorem of general topology:

Tichonov Theorem. The product [ [; X; of (arbitrary many) topological spa-
ces (equipped with the product topology) is a compact space iff each X; isa
compact space.

1° Let K becompact (inR?). Then K isclosed (asacompact set in aHausdorff topological
space). Now the projections K1 and K2 of K onto the axes x1
S and x> are compact (in R) as the images of a compact set by
continuous mappings. Hence, asis known from one-dimensional
K, analysis, K1 and K arebounded. So thereexistsa > 0 such that
Kk KjCla,i=1,2,...whenceit followsthat

Xy

! ‘ Kix Kz C la x Ig =Bl
X
Ky ' ThusK1 x K2 isbounded. A fortiori K ¢ Ky x K2 isbounded.
2° Vice versa, let K be a closed bounded set in R2. Then K C B!{”“’ for somea > 0.

But B!{”“’ = la x |5 iscompact by Tichonov Theorem, hence K is compact as a closed
subset of a compact set. >
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1.9 Uniqueness of the norm topology in R"

Up to equivalence there exists just one norm in R" — all norms in R"generate one and
the same topology:

Theorem 1.9.1. All the normsin R" are equivalent.
< Let ||-|| beanorminR". Show that ||-|| ~ |-]1.
1° ||-[ly > [I-l: Consider the canonical basis {ey, ..., e} of R", (& = (0,..., 0,1,
|
0,...,0)).Forany point X = (X1, ..., Xn) € R" it holds
A-in,
IXI = [Ix1€1 + - - + Xn€nll < [X1€1ll + -+ [ Xnenll
= |Xg| llewll + - - + [Xn| lenll
< M(IXal +-- -+ [xn]) = M X[l .
M:=max{le1|l,- llenll}
Hence, by Theorem 1.4.1., [I-ly > |-
2° ||-]l > lI-ll1: Consider the unit sphere Sin the norm ||-||1:

S:={x e R" [ |Ixlly = 1}.

This set is compact (in the natural topology). Indeed, S is obviously bounded, and Sis
closed as the pre-image of the closed set {1} € R by the continuous mapping ||-||; (see
Theorem 1.3.2.).

Now we claim that ||-|| is a continuous function on R" (with the natural topology).
Indeed, ||| is continuous with respect to the topology © generated by ||-|| (once again by
Theorem 1.3.2.) and tng iS FINER than ¢ by 1°.

We concludethat ||-|| attainsits MINIMAL valuemon S, that is,

Ixlly =1= x|l > m, "
IXoll = m for some xg with ||Xoll; = 1.

Thisvalue m must be greater than 0, since otherwise xo = 0 and ||Xpll; = 0. It follows
from (1) that

S
[14] Xy > 1= lIXI = [IXllg || ~——
Bn —— [l Ixlly
%o >] S——

>m

Hence
X[ =m=|Ix]l; =1,

" thet is,

B* Bl c B

Thus, by the same Theorem 1.4.1., ||-|| > ||-l;. >

1.10 Linear mappings
For alinear mapping | we usually writelx or | - x instead of [ (x):

IXx=1-x=1(X).
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The set of al linear mappings from a vector space X into a vector space Y is a vector
space with respect to operations

(I +mx:=Ix+mx, @(tHx:=tdx) (t e R),

and we denote this vector space by
L(X,Y).

The vector subspace of all CONTINUOUS linear mappings, in the case where X and Y are
normed spaces, we denote by
ZL(X,Y).

Theorem 1.10.1. Let X and Y benormed spacesandlet| € L(X, Y). Thenl iscontinuous
iff | iscontinuousat 0.
< “Only if”: obvious.

“1f": Let| be continuousat 0, that is, ||h|| — 0 = ||lh|| — 0. Then for an arbitrary
x € X it holds

IT(x 4+ h) =Ix]| = |IIh]] —> 0,
—— Ihil—
=Ix+lh

which meansthat | iscontinuousat x. >

Operator norm
Let X, Y be normed spaces. We define the norm of a mapping!| € L(X,Y) as

Il == sup flIx].
Ixl<1

Very often one says “operators’ for linear mappings, that is why this norm is usually
named operator norm. (Below we will see that thisisreally anorm.)

Example. For any k € R thelinear mapping R — R, X — kx hasthe norm |K|.
Basic Inequality (BI). VI € L(X, Y) Vx € X< I
< If x = Othen our inequality istrivially true. If x # O then

I = H (”X” X ||)H H” i H ”X”_H

Il H I o

lIx/lIx111=1
Criteria of continuity. Let| € L(X, Y). The following conditions are equivalent:

a) | iscontinuous,
b) theimagel B1 of the unit ball in X isboundedinY;

c) 3k > 0Vx € X x| < kx|l (the norm of | x admits an estimation linear in

IIx11);
d) |l < oo (the operator normisfinite).

<1 (@=(b): Sincel is continuous at 0, there exists § > 0 : | Bg( C BI. Multiplying by
5~1 we obtain (by linearity of |) | B1 c BY ,, which just means that the image | Bf S
bounded.

s~
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(b)=(c): If Bi( C BP{, then (without loss of generality x # 0)

eBy
wlog
x#£0 X
A= 1 —— [HIXI < K lIX])
[Ix]]
—~—
eBf

(©=(d): If [IIx]| < k[Ix]| for al x, thensupx <1 x| <k, thatis, [IlI]| < k.
=T ——

<k [Ix]l
——
<1
Bl
(d)=@: If [II]| < cothenO < |IIx]| < Il x| m 0, hence |1 x|| m 0, that
X|[— X||—

is, | iscontinuousat 0. But then, by Theorem 1.10.1., | is continuous everywhere. >
Remark. ||l|| = inf{k > 0| Vx € X |Ix]| < k|x]|}.

Theorem 1.10.2. Themapping £ (X,Y) — R, | — ||| isanorm.
< That ||l|| > Oisobvious. If |[I|| = 0then ||| x| = 0 for all x with ||x|| < 1 and hence,
by linearity of |, for al x, which meansthat | = 0. Further

(It = sup [(tHx|| = sup [[tdx)]l = [t] sup [IIx][ = [t][I].
lIxll<1 Ixll<1 lIxll<1
At last
e+l = sup A+ 12)xI = sup [Ilax +I2x|l < sup  lIlaxll 4+ [l12x]]
lIxlI<1 Ixll<1 Ixf<1 ~—— ——

<l XU <zl [1X]]
—— ——
<1 <1

<l + M2l . >
NB We EVER consider .Z (X, Y) as anormed space with this norm.

Thecase X = R"

Theorem 1.10.3. Any linear mapping from R" (with the natural topology) into a normed
space Y is continuous:
LR",Y)=2Z®R",Y).

<Letl e L(R™,Y). Eachelement x = (X1, ..., Xn) of R" can bewrittenasx1eq + - - - +
Xn€n, Where {e1, ..., e,} isthe canonical basis, so if we putlg =: a;, then, by linearity
of I,

IX = x1a1 + - - - + Xpan. D

In view of Theorem 1.10.1. it is sufficient to verify that | is continuous at 0, that is, that
X - 0= Ix — 0.Butx — Omeansthatall x; — 0(sincethenatural topology coincides
with the PRODUCT topology), whence it follows (by continuity of algebraical operations
in a normed space, see Theorem 1.6.1.) that

X181 + - -+ + Xpan — O.

Thus, by (1), Ix — 0.
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(ANOTHER PROOF:

x| = I1(xeer + - - )l < [xalll leg [ +--- <max|la|| (IXe| +---) < K[IX]l4,
—— —_————  ————
aj =k =[xy

so | iscontinuous by Criterium (c) of continuity.) >

Evaluation at a point
Let X, Y be vector spaces, and let h be a FIXED element of X. The evaluation at h (or
delta-function at h) is the mapping

evh =8 :LX,Y) =Y, | > |h.
This mapping is (obviously) LINEAR.

Theorem 1.10.4. Let X, Y be normed spaces. Then for each h € X the evaluation at h is
CONTINUOUS:
evh € Z(Z (X, Y),Y).
Ih
< levn]l = sup |levn! || < |Ih]l, henceby Criteria(d) of continuity, e, iscontinuous. >
<1 ~——
Bl
< Il ik
—

<1

“Lemma” from Functional Analysis
Mappings into R are usualy called functionals in the case where the “first” space is
infinite-dimensional. (The name “Functional Analysis’ originates from this word.) The
vector space of al linear (resp., continuous linear) functionals on a given vector space
(resp., normed space) X we shall denote by X’ (resp., X*):

X" :=L(X,R), X* 1= Z(X,R).
Later we at least two times shall use the following:

Theorem 1.10.5. (“Lemma’ from Functional Analysis) Let X be a normed space. Then
for each vector x € X thereexistsafunctional | € X* of the unit norm such that its value
at x isjust the normof x:
=1, Ix = [Ix]| .
<1 We give the proof for X = R" only. If x = 0 then we can take as| ANY functional of
thenorm 1. Let x # 0. Put (below ||-|| denotes ||-||5)
e: X
T IX

(where the latter point means scalar product). It isclear that ||e| = 1, so

and ly:=e-y (yeRM

M= sup |e-y| <1, llel=|e-e|=1
lyl<1 —— )
< el Nyl
prop. ~—~—"‘~~
of scal. =1 <1
prod.

Since e belongs to the unit ball, over which we take the supremum, we conclude that
Il = 1.
At last
X oxex x|

IX=e-X=— X=—=—=|X||.>
[IX]] (1| [IX]]






Chapter 2

First derivative

2.1 Fréechet and Gateaux derivatives

The classic definition of the derivative

f(x+h) — f(x)

f'(x) ;= lim
( ) h—0 h

(h#0)
can be written in the form (below we drop for short “h # 0”)
r(h)
_—
h h-o

where
rh)y = f(x+h)— f(x)— f’(xh.

So we can reformulate the definition asfollows: afunction f : R — R isdifferentiableat
apoint x if thereexistsanumber | (= f’(x)) such that f admitsthe representation

vhe X: f(x+h) = fx +Ih+r(h),

wherer isamapping R — R, that satisfies the conditionsr (0) = 0 and

r(h)
Vo 1
h h-o 0 @
Such amapping we call small.
A key point to generalize this definition is the idea that | can be considered as a
(continuous) LINEAR MAPPING R — R:

|:R—- R, h~1lh

(weidentify a number | with the linear function with the (slope) coefficient ). Thisleads
to the following definition:

A mapping f : X — Y between normed spaces X and Y is differentiable (in a given
sense) at apoint x € X (notation: f e Dif(x)) if there exists a continuous linear mapping
| : X — Y suchthat f admitsthe representation

vhe X: f(x+h) = fx +Ih+r(h), (2)

21
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wherer isamapping X — Y, that is SMALL (in this sense). There are two basic kinds of
smallness for mappings between normed spaces:
A mappingr : X — Y isFréchet-small (F-small) if r (0) = 0 and

Ir (]|
_ 3
I Thi=o ®)
r is Gatteaux-small (G-small) if r (0) = O and
vhe X: r(iﬂ—éo (t € R). (4)

NB For X =Y = R both (3) and (4) are equivalent to (1) (verify!).

Accordingly we speak about F-differentiability and G-differentiability. Very often we
drop the symbol “F”, so “differentiability” means ever “Fréchet differentiability” and
“f e Dif(x)" means“ f € F-Dif(x)".

Remark. Both our differentiabilities do not depend on the choice of EQUIVALENT norms
in X andY. (Verify!)

The mapping | in the representation (2) is called the derivative of f at x and it is
denoted by ' (x).

Examples.

1. If X = R (“time”) then we can identify a linear mapping
[ ¢------- : | : R — Y withtheelement| - 1 of Y and it is easy to see that
‘ F-differentiability is equivalent to G-differentiability, and
: / ft+AD— () o
fl'ie)-1= 1 thelimitinY).
1R R (hetimitin)
: Below we shall denote the last limit by f(t) and call f(t)
& P/ |y (whichis avector in Y) the usual derivative of f att (it is the
S velocity of apoint that movesinY by the“law” f).

2. Any CONSTANT function is differentiable everywhere, with zero derivative.
Qlf f =c,then f(x+h) = f(X)+0.h+0,and 0issmall (in any reasonablesense!) >

3. Any continuous linear mapping | is differentiable, and its derivative at each point is
equal to this mapping itself:

Y

=y (thatis, Vx € X: I'(x) =1).

Alx+h)=Ix+Ih+0. >

4. Thefunction f : R" — R, f(x) = X3 = x+---+x2 (X = (X1,...,Xn)) iS
differentiable everywhere, and

f'(x)-h=2x-h,

where the point to the right means scalar product. (Prove!)

5. Let the function f : R2 — R is equal to 1 on the right branch of the
1 parabola {(t, t2)} wiITHOUT the origin (t > 0) and is equal to O at all rest
pointsof theplane. Then f isG-differentiableat 0(= (0, 0)), with f’(0) =0

0 (e Z(R? R)), butisNor F-differentiable. (Verify!)
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Theorem 2.1.1. F-differentiability implies G-differentiability, with the same derivative.
< It is sufficient to show that if r : X — Y is F-small, thenr is G-small. Letr (0) = 0

and
ir (|
E—
Ihil  uhi—o0

Then for each fixed h € X \ 0 (for short we write X \ O instead of X \ {0})

()

r(th)
t

A

h 0,
Ifl—

_)haﬁﬂ

A

th

since ||th|| = |t] Hﬁ” — 0 and hence, by (5), Hr(tﬁ) H/Htﬁ” — 0. But thisjust means
that )
Tt -0

0.

Thus, r is G-smal. >

Theorem 2.1.2. G-derivativeis defined uniquely.
<1 We need to verify that if for agiven x € X

Vhe X: f(x)+lith+rih) = f(x) +Iz2h+rach), (6)

wherelq, 1o € Z(X,Y) andrq, ro are G-small, thenl; = I, that is, for each h € X it
holdsl1h = I;h. But indeed (for t # 0)
wick 11(th) —l2(th) (g ra(th) —ra(th) _ ra(th)  ra(th)

I1h — Ioh ' 0,
meh t t t t 10

whenceit followsthat l1h — Ih = 0. >

Corollary 2.1.3. F-derivative is defined uniquely.
< It followsfrom Theorems2.1.1. and 2.1.2. >

Theorem 2.1.4. If f isdifferentiable at x, then f is continuousat x.
< By thecondition, f (x+h) = f(xX)+lh+r(h),wherel € Z(X,Y)andr issmall. We
need to verify that if h — Othenlh + r (h) — 0. Sincel is acontinuouslinear mapping,
Ih - 0ash — 0. Now, forh #0

Ir (h)]|

r(h)| = h >
Ir (i il Ihl oo
—_———

-0

(for h = Owehaver (0) = 0), which just meansthat r (h) — Oif h — 0. >
NB G-differentiability does NOT imply continuity (see Example5).

2.2 Computation Rule and directional differentiability.
For practical computation of derivativesit is convenient to use the following

Computation Rule. Let f : X — Y be G-differentiableat agiven point x, andleth € X
begiven. Putfort e R

lo(®) = fx+th)|
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sothat ¢ : R — Y. Then ¢ is differentiableat 0, and

f'(x)h = ¢(0) = % f(x +th) |

t=0
(Asto ¢(0) see Example 1).)
Y
f ¢
/‘
$(0)=f(x) d(1)=f(x+1h)
X x+h 0 1t
<Let f'(x) =1.Wehaveo(t) = f(x +th) = f(x) +1(th) +r(th), so (fort # 0)
o) — ¢(0) _ [(th) 4+ r(th) — Ih+ r(th) o ih
t 0(0)="f(x) t leLin t
—0

ast — 0, which doesmean that ¢(0) = |h. >
The Computation Rule suggests the following definition. We say that a mapping
f : X — Y isdifferentiable at a point x in a direction h if the function

o R—=>Y, t— f(x+th)

isdifferentiableat 0. In such a case we call the vector ¢(0) € Y the differential of f at x
by the increment h, and we denote this differential by Dy, f (x). Thus

b f thy — f
D {9 1= 4(0) = - et = 19| )

—

f(x +th) = lim

Corollary 2.2.1. If f : X — Y is G-differentiable at x then f is differentiable at x in
each direction, and

vhe X' ‘th(x): ' 0oh |

Viceversa, if f isdifferentiableat x in each direction and the mapping
| :h=> Drf(x), X—=>Y

iSLINEAR and CONTINUOUS, then f is G-differentiableat x, and f'(x) =1.

Remark. The mapping | in Corollary 2.2.1. is ever HOMOGENUOUS. More precisaly, if f
isdifferentiableat x in adirection h, then for any real number c it isdifferentiableat x in
the direction ch, and

\ Den f (X) = cDp f (%) \

(Thisfollows at once from the last expression for Dy, f () in (1).) But thismapping | can
be non-linear (that is, non-additive), as the following example shows.
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Example. The function f : R? — R given (in the polar coordi-
nates) by the formula

f(0,0) = 0sin30,

the graph of which is shown on the picture (from: M. Krupka,
Matematicka Analyzalll, Opava 1999), is differentiable at EACH
point in EACH direction, but is NOT G-differentiable at the origin.
(Verify!)

The next lemmais an extension of (1).

Lemma2.2.2. (on f(x +th)). Let f : X — Y. Putfor givenx,h € X

p(t) = f(x +th) (t € R).
Then

¢(t) =Dpf(x+th)|.

(If one side is defined then the other one is also defined, and they are equal.)
o) f((x +th)+7zh) — f(x+th)

<ADpf(x+th) = lim
7—0 T
_ jim $t D e ® o). >
=0 T

2.3 Rulesof differentiation

First of al, differentiation isalinear operation:
Linearity of differentiation.(a) If f € Dif(x) then for each c € R we have also cf €
Dif(x), and

\ cf)Y(x) =cf' (x|

(b) If f1, f2 € Dif(x), then f1 + f2 € Dif(x), and

(f1+ f2)'(%) = 100 + f20) |

<1(a) We have (cf)(x +h) = c(f (X +h)) = c(f(x) + f'(X)h +r(h)) = (cfH(X) +
(cf’(x))h + (cr)(h), so we need to verify that cr issmall. But indeed (for h #£ 0)

len®ll _ fle il o lIr Chyl X
Ihl Il Ihil  1hi—o
——
r issmall 0

(b) We have analogously (in obvious notations)
(fi+ f2(x+h) = (f1 + f2)(X) + (f{() + f20)h + (r1 +r2)(h),

SO we just need to verify that r1 + ro issmall. But indeed
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Ira+r22MI _ lirah) +rall _ a1+ lir2(

IIhil B [hl B bl
_ irall - lira(IE rarz avesmal

Ihi lhl -0
Product Rule. Let X, Y1, ..., Yn benormed spaces, andlet fi : X — VY, i=1,...,m.
We denote by (f1, ..., fm) the product mapping X — Y1 x --- x Y, defined by the
formula

(f1,.0., fm)
X 2™y X% Y

f]/r (fe, ..., f) X)) = (f1(%), ..., fm(X)).

X The mapping (f1,..., fm) is differentiable (resp., G-dif-
£\ ferentiable, differentiable in a direction h) at x € X iff each
m mapping f; isdifferentiable (resp., G-differentiable, differen-
tiablein h) at x, and

(fr, ..o, ) () = (f{(%), ..., LX) (component-wise
Dn(fq,..., fm)(X) = (Dp f1(x), ..., Dn fm(x)) | differentiation).

< Consider, e.g., the case of F-differentiation. We have

(f, ..., fm)(X+h) =(fi(x+h),..., fm(X + h))
= (f1() + f0h +ra(h), ..., fm(X) + f,00h +rm(h))
= (f1(x), ..., fm()) + (f{00h, ..., fr00h) + (ra(h), ..., rm(h))
=(f1, ..., T ) + (F{(X), ..., fODh+ (1, ..., rm)(h).
Now, (f{(X),..., fn(X) € Z(X, Y1 x -+ x Ym) iff each fj € £(X,Y;) (by the
definitions of product vector space and product topology), and (rq, ..., rm) issmall iff
eachrj issmall. Indeed

(.-, rm)(h):<r1(h) rm(h)) PNV
Ihl Ihy " Ihil /) 1hi—o " hi hi—o

since convergencein a product space is just convergence of each component.
Chain Rule. Let f : X — Y bedifferentiableat apoint x € X, andletg:Y — Z be
differentiable at the point y := f (x). Thenthe compositiongo f

x &y 8 2 isdifferentiable at x, and the derivative of g o f isequal to the
composition of derivatives of f and g:
X =y
f/ !
x 2%y 9% 7 @o Y (¥) =g'(y)o F'(0) )

<1°Put f/(x) =:1, g'(y) = m, g(y) =: z. We have, by the conditions,

VAX € X: f(x+ Ax) =y+| AX+r1§(AX), (1)
VAyeY: g(y+ Ay) =z+mAy+rg(Ay), @)
where
Ire(ax)]

R 3
1AXT Taxioo ®)
rq(Ay)

Irgtay| @

IAY]  1ayl—0



2.3. RULESOF DIFFERENTIATION 27

We need to verify that
VAX e X! (go f)(X+ AX) = z+ (Mo l)AX +r(AX), (5)
where Ir (x|
r (AX
6
[AX]| fax|—0 ©
2° But
r(AX) = mr¢(AX) +rg(Ay), @)
where
Ay =1 AX + 1 (AX). (8)
Indeed
(go FY(x+ Ax) = g(f (X + AXx)) @ gy +1 AX +r(AX))
N e’
Dy
@ z+m( AX + 1 (AX)) +rg(AY) @ Z+ (Mo l)AX +r(AX).
3° Now,
Ir(AX)[| @ [mr s (AX) +rg(AY)|| - [mr ¢ (AX) || + [[rg(ay) |
|AX]| |AX]| - IAX|
trick
- [recaxy| [rgay| 1Ayl
- IAX]| Ayl lAX]
—_— trick
(©)
—)0
IIx|I—0

So all will be proved if we show that

(@ rg(Ay)/IAyll — Oas||x| — O;

(b) 1AYI|I/I1AX]| is bounded for sufficiently small || AXx]].
4° Proof of (a): rs isequal to 0 at 0 and is continuous(since f and| are). So || Ay|| — O
if |AX|| — 0, and (a) istrue by (4).
5° Proof of (b): we have

Ay @ [1ax+riax)| _ IFAxi+ Ireax)]

IAXT =~ TAxT = 1A
B (I 1AXI + [r ¢ (A%) £ (AX)
o | [ | -
IAX]] 1A
[N ——
3
4)0
Al x—0

for some ¢ > 0 and sufficiently small ||AX]|. >
Important special cases.

1) If f=1e.2(X.Y)then|(gol)(x) =gx) ol |

2 Ifg=1e 2L, 2)then|(l o f)(x) =10 f'(x)|(wecan“transfer” lo through
the brackets).
3) If X =R, then|(go f)(t) =g (f(t)- f(t)]|(recall that f(t) isan element of Y).

4) Inparticular,if X =Rand f =1 then|(go )’ (t) =d'(t)-(-1) | and
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5) if X=Randg=1then|( o f)t) =1-f(t)|

< All thisfollows from thefactsthat I’ = | and that f(t) = f'(t) - 1. >
Below we refer to Special Cases 1), 2), 4), 5) astol-Rule.
NB For G-differentiability Chain Ruleis NOT valid, as the following example shows.

Example. Let f : R — R2, t — (t, t?), and let g bethe function from
Opof 5) in (2.1) (where we used the letter f for it). Then f is G- (and even
ls— F-)differentiableat 0, g is G-differentiableat f(0) = (0,0),butgo f
isNOT G-differentiableat 0.

 m—

Lemma2.3.1. (onevauation).Let X, Y, Z benormed spaces, andletamapping f : X —
Z (Y, Z) bedifferentiable at a point x. Let k be a fixed vector in Y, andletg: X — Z
be defined by the formula

g(x) ;= f(x)-k (thevAaLUE of f(x) at k).

Then g is differentiable at x, and

vhe X: gxh=(f'xhk.

<1 Obvioudly, g = evkof (recal that evi : | — | - k, see Chapter 1), hence, by |-Rule
(evk € Z(Z(Y, 2), 2)),

g'(0h = (evk o f'(x))h = evk(f'(x)h) = (f'()h)k. >

2.4 Partial derivatives

Here we consider two related things: differentiation in a (vector) subspace and partial
differentiation.

Differentiation in a subspace

Let f : X — Y beamapping between normed spacesand let X1 beavector subspace
in X (thenotation X1 € X). Wesay that f is F- (resp., G-)differentiableat apoint x € X
inthe subspace X1 if f admitsin x 4+ X1 the representation

Vhie X1:  f(x+hy) = f(x)+11hy +ra(hy),
wherel; € Z(X1,Y)andry : X1 — Y isF- (resp., G-) smal. In such a case we write
f e Difx,(x) (resp., f € G-Difx, (x))

and we call |1 the derivative of f at x in the subspace Xj:

lp = fy, (0.

Example. A mapping f : X — Y isdifferentiable at a point x in a (non-zero) direction
hiff f isdifferentiableat x in the one-dimensiona subspace Rh (= lin{h} = span{h}),
generated by h, and in such acase

frn(X) - th = tDp f (X) (t e R).
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(Verify!)

Theorem 2.4.1. If f : X — Y is F- (resp., G-)differentiable at x, then f is F- (resp.,
G-)differentiable at x in each subspace X; € X, and the derivative in Xj is just the
restriction of the* total” derivative:

fl 00 = T/ ()[x,.

<1 This follows at once from the obvious facts, that the restriction of a continuous linear
mapping onto a vector subspace is also a continuous linear mapping, and the restriction
of asmall mappingisalso small. >

Partial differentiation
Let X1, ..., XyandY benormed spaces. We say thatamapping f : X1x...x Xy, —
Y is F- (resp., G-)differentiable at a point X = (X1, ..., Xp) in thei-th coordinateif the
mapping

f(X]_’"'in*l’ '5Xi+la"' 7Xn) : XI _)Ya )zl = f(X]_,...,Xifl,)’zi,xi+1,... 7Xn)

(that is, the mapping with al other coordinates FIXED) is F- (resp., G-)differentiable at
the point x;. We denote the corresponding derivative by

af (x)
0 Xi

(€ Z(Xi,Y))

and call it the partial derivativein X; at the point x.
Theorem 2.4.2. Amapping f : X1 x --- x X, = Y isdifferentiable (F- or G-) at x in
thei-th coordinatesiff f is differentiable (in the same sense) at x in the subspace

Ox -+ x0x Xj x0x---x0,

and
af (x)

0 X
< Thisfollowsimmediately from the definitions. >

vhi € Xi: hi = £ xi 0 - (0,..., 0,0, 0,..., 0).

Theorem 2.4.3. (on total and partial derivatives). If amapping f : X1 x -+ x Xp = Y
is G-differentiable at a point x = (X1, ..., Xpn) then f is G-differentiable at x in each
coordinate, and

n

. of
Vh = (h1,....hn) € X1 x - X X f/(x)-hzza)(:)-hi,
i=1 !

or, more short,

At afx) o~ af(x)
= B P x|

f/

i=1

Herel1 @ --- @ Iy, for l; € £ (X, Y), denotes the direct sum of the mappings|;,
defined by the formula

|1®"'@|n:X1X"'XXn—)Y, (hl,,hn)f_)llhl‘f‘"—lnhn
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n
Q) -h= 00 (h,....hp) = F'(x)- > (0,...,0,h;,0,...,0)
i=1

n
Theorem 2.4.1. > f()(0,....0,hi,0,....0)
i=1

n
Y b exixox0™®) - (0.....0.hi. 0, 0)
i=1
n

Theorem 2.4.2. Z af ) hi
B i

i=1

2.5 Finite-dimensional case
We ever denoteby ey, .. ., e, the standard basisin R":

g:=(@0...,0,, 1 ,0,...00eR"
i-th place

Foramapping f : R" =R x ... x R — Y the partial derivative in the i -th coordinate
applied to the “vector” 1 € R (that is, the “usual” partial derivativein thei-th coordinate)
istraditionally denoted by

of

— (e LR, Y)~Y).

i
By Theorem 2.4.2. (with h; = 1), and by the Examplein 2.4 (withh = g andt = 1),

af(x)
5 =D f(x) . (1)

(Emphasizethat af (x)/9x; isan element of Y.)

Jacobi matrix

Theorem 2.5.1. (onrepresentation). Let amapping f = (f1, ..., fn) : R" — R" be G-
differentiableat apoint x € R". Then f’(x) isrepresented asalinear mapping R" — R™
by the matrix of partials derivatives

af1(x) af1(x)
3X1 o aXn

Ji (X) == : .. :
fm(0) . 9fm(x)
dX1 dXn

Thismatrix is called Jacobi matrix of f at x.
<1 By linear algebra, we need to verify that the i-th column of the matrix represents the
vector f/(X) - g. But indeed

00 & T (1, 00) e = (0 -a. ..., fL.02) - &),

and 2 )
@ Ifj(x
f/(x)-& = Dg fj(x) = E)J—Xi'b
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Coroallary 2.5.2. In conditions of Chain Rule, for mappings between finite-dimensional
spaces, Jacobi matrix of the composition is equal to the matrix product of Jacobi matrices
of the composed mappings:

Jyo f (X) = Jg(F(x))JIs (X).

< Thisfollowsfrom Chain Rule and the fact that the matrix of acomposition of two linear
mappingsis equal to the product of the matrices of these mappings. >

Example. How to computethe derivativeof thefunction f (x) = x* (x > 0)?Represent f
asacomposition: f = go A, whereA : R — R2,t — (t,t), g: R%2 > R, (X, y) — xV.
By I-Rule,

)

o hemzss (90D A9(LDY (1) A9t  9g(t. b
fo=gtb-@h = ( ax ' ay )(1)_ ax oy

— yyy-1 y - t
=y + (Inx)x ‘X:y:t = (Int + Dtt.
Gradient
In the special case of scALAR functions f : R" — R Jacobi matrix is the row
af ) af (x)
0X1 IXn :

The corresponding vector in R"iscalled thegradient of f at x and isdenoted by grad f (x):
af () of (x))

e e RM.
3X1 8Xn ( )

grad f (x) := (

In this situation Theorem 2.5.1. (Theorem on representation) says.

| /00 -h=grad f(x) -

: )

where the point to the right means scalar product. Indeed

h
(8f(x) af(x)> N _anaf(X)h_
aX1  9Xn h: _i:1 ax
n

For any UNIT vector v € R" (||v]]2 = 1), the differential of amapping f : R" — R at
apoint x by theincrement v is called the derivative at x in the direction v and is denoted
traditionally by of (x)/dv:

81 () =Dy f(X).
av

Theorem 2.5.3. If afunction f : R" — R is G-differentiable at a point X, then for any

unit vector v € R" it holds
af (x)

av
(where the point means the scalar product).

=grad f(X) -V
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Q9f(x)/v=Dsf(x) = ' x) -7 2 grad f (x) - 7. 1>

Corollary 2.5.4. Thegradient vector of f at x yieldsthe direction
of the greatest growth of f at x and is orthogonal to the level line

of f passing through x.
@ . <1 The scalar product grad f (x) - v is maximal for the unit vector

v that has the SAME direction as grad f (x) and is equal to O for v
orthogonal to the gradient. >

rad f(X)
2.6 Mean Value Theorem

In classic differential calculus, the following result plays an important role:

Theorem 2.6.1. (Lagrange). If afunction f : R — R iscontinuousin the closed interval
[0, 1] and is differentiablein the openinterval (0, 1), thenthereexistsé € (0, 1) such that

f(1) — f(0) = ().

This result is NOT true for functions with vector values, as the following example

shows.
f(0) = (0, 0), but

/\t f(t) (=27 sin2rt, 2w cos2nt),
t hence || f (t) |, = 27, which is never zero.
But the following ESTIMATE of the increment is true:

Theorem 2.6.2. (Mean Vaue Theorem, (MVT)). Let afunctiong : R — Y (whereY is
a normed space) be continuouson [0, 1] and differentiablein (0, 1). Then

Example.Let f : R — R2,t — (cos2rt, sin2xt). Then f (1)—

Prod. Rule

le(D) — @Ol < sup lle®Il.
O<t<1

< 1° Puty := ¢(1) — ¢(0). By Theorem 1.10.5. (Lemmafrom FA (see Chapter 1)) there
exists| € Z (Y, R) such that

=1 ly=lyl. (1)

2° Consider the composition
REv LR
Itisdifferentiablein (0, 1) by Chain Rule.

3> Wehave [y L1y = 1(p(1) — ¢(0) = ( 0 )(1) — (I 0 ¢)(0). By Theorem 2.6.1. for
somed € (0, 1) it holds

(o)D) — (0@ = 0e)® 1 .60) = 1]l 19@)] < sup [¢®]. >
:/; O<t<1
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CAR-INTERPRETATION. If Y = R? and we consider t € R
astime, then ¢ describes amotion of a“car” in the plane, and
¢(1) isthevelocity of thiscar. Theinequality in Theorem 2.6.2.
sup||d(t)|| (MVT) meansthat our car in one hour will be INSIDE the circle
ost<t with the center at the original point, the radius of whichisequal
to the maximal value of the velocity of the car during this hour.
Remark. In fact the following much more strong result is true:
By the conditions of MVT, the increment ¢(1) — ¢(0) liesin
the closed convex hull of the set {¢(t) | 0 < t < 1} (shadowed
on the picture).

Corollary 2.6.3. Let X, Y be normed spaces, let x, h € X and
let amapping f : X — Y hasthe following properties:

a) the redtiction of f onto the closed interval [x, x + h] (:=
{x+th |t e][0,1]}) iscontinuousand

b) f is differentiable in the direction h in the open interval
X, x+h) ¢={x+th|te (0, D}). Then

B(1)-6(0) b

sup| [ )]
O<t<1

[fx+h)—fx)I< sup [IDhf(y)ll.
ye(x,x+h)

< Put p(t) ;== f(x +th),t € R. By Lemma2.2.2. (on f(x + th)), it holds ¢(t) =
Dy, f (X + th). So our assertion follows from MV T (Theorem 2.6.2.). >

Coroallary 2.6.4. In the situation of Corollary 2.6.3., let f hasthe following properties:
a) therestiction of f onto theinterval [x, X + h] is comtinuous and
b) f is G-differentiablein (x, X + h). Then

Ifx+h —feol <(hl sup  [[f'y].
ye(x,x+h)
< Thisfollows from Corollary 2.6.3. and the fact that

/ Bl /
IDhf I = £y -h| <[ fmp|ihl. >

2.7 Continuousdifferentiability

Let X,Y benormed spaces, let x € X, and let f : X — Y be G-differentiablein an open
neighbourhood U of x. We say that f is continuously G-differentiable at x and we write

f e CL(%),
if the derivative mapping
f'rU - ZXY), y— f'(y
is continuousat x. Thus

feCsm) & [F(x+h) - V(x)”mo. (1)

Theorem 2.7.1. (on Continuous Derivative). If f : X — Y is continuoudy G-differenti-
ableat apoint x € X, then f is F-differentiable at x.
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< 1° We have

f(x+h) = fXx) + f'(x)h+rh), f'(x) e Z(X,Y), r € G-small.

Putfort e R
Y(t) :=r(th) = f(x+th) — f(x) —tf’(x)h. (2)
Then
rh) =¥ (D — ¥ (0). (©)
2° Wewant to apply MV T, so computethederivativeof 1. By Lemma2.2.2. (on f (x+th)),
Y (t) = Dpf(x +th) — f'(x)h = (f'(x + th) — f/(x))h. (4
— ————
=f/(x+th)h
3° Now,
Ir(h)] @ v@ — ¢ MvT 1
T TR Ty I LALARL
4 1
@ aup [(F'(x+thy— f'oh|
||h|| O<t<1
2t oxthy - ool
= SUIO ||(f (X +th) — f (X))H WO
0<
since |th|| = [t||Ih]| m O uniformly in 0 <t < 1. Thusr is F-smal, so f is

F-differentiableat x. >

ClassC!
Let X, Y benormed spacesand let U bean opensetin X. Wesay that f : X — Y is
of classClinU an we write
f e CLU)

if fisdifferentiableat each point of U (that is, in U), and the derivative mapping
f':U > Z2XY), x— f'x)
is continuous.

Theorem 2.7.2. (C1-Theorem on Continuous Derivative). Let f : X — Y becontinuously
G-differentiable at each point of an open set U in X. Then f isof classC! inU.
< Thisisan immediate corollary of Theorem 2.7.1. (on continuous derivative) >

2.8 Continuous partial derivatives

At first we prove one result on continuous differentiability in n fixed directions.

Continuousdifferentials

Lemma 2.8.1. Let X, Y be normed spaces, and let hy, . .., hy befixed vectorsin X. Leta
mapping f : X — Y bedifferentiableinthedirectionshy, ..., hp, in some neighbourhood
U of apoint x, and let all the mappings

Dp f:X>Dpf(X), U—>Y (=1...n)
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be continuous at x. Then f is G-differentiable at x in the vector subspace H in X,
generated (spanned) by the vectorsh; (H = lin{hy, ..., hn} = span{hy, ..., hn}).
< 21°If f s G-differentiableat x in H, then

so we must haveVvcey, . . ., cheR

f'(x)-(cith1+. . .4+cahp) = c1 f/(X)h1+. . .4Ch f/(X)hn = c1Dp, f (X)+. . .+CnDh, f (X).

1)
(Since H isfinite-dimensional, the so defined linear mapping f/, (x) is CONTINUOUS.) We
have to verify that for this f/, (x) it holds

: h
VheH: fx+h=fX+ f'0Oh+rh), r(f[—)ﬁo’
that is, that
VheH: f(x—Hh)—ft(x)—tfH(x)ht 0’0

This means by (1) that we need to verify that Ve, . . ., Ch e R:

fOXt(eh+.. + cohn) = £ —t@Dn ) + ...+ Dy fX)
t t—>0, '

By homogeneity of Dp f (x) in h, it holds ¢iDp, f(X) = Dgn; f(Xx) so without loss of
generality we can assumethat ¢; = ... = ¢, = 1 (take ¢ih; as NEw h;). Further, by
induction argument, it is sufficient to consider the case n = 2. Thuswe need to verify that

f(x +t(hy+h2) — f(x)
t

- (Dh1 f (X) + Dh2 f (X)) :)) 0 (2)

2° Adding and subtracting f (x 4 ths) in the numerator, we can write the left-hand side
of (2) asthesum| 1|+ , where

: f(X+th1) - f(X) _ Dhlf(X),

_ fx+thy +thy) — ft(x +thy) — tD, f(x).

Soitissufficient to verify that[1] - 0and[2] — 0ast — 0.
3°[1]— 0ast — 0 by the definition of Dy,.
x+th+th, 40 pytting (see the picture)
x+th,+6h, 9(©) := f(x+thy +6thy) —6tDR, F(x) (B €R), (3)

X x+thy we can write in the form
1 — @
:<o<)t<o<). @
5° By Lemma2.2.2. (on f (x + th)), we obtain from (3)
@) = Din, f(X+thy+6thy) —tDp, f(X)
homog.
of Dn

=" t(Dh, f (X 4 thy + 6thy) — Dp, f (x)). (5)
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6° At last,
s 1 MVvT 1 .
2] € = e - eI =" = s 9@
It] [t] 0<p<1
© sup [|Dn, f (X + thy + 6thy) — D, f(x)] — 0,
0<6<1 t—0
since [ty + 6thal| < ti(Ihall +6 Ihel) < It + IMal) 5 Oniformly in6

and Dp, f is continuous at X. Thus — Qast — 0. >

Continuous partial derivatives

Theorem 2.8.2. Let X3, ..., Xp and Y be normed spaces and let a mapping f : X1 x
... X Xp — Y haveall the partial derivativesof/0X; inanopensetU C X1 x ... x Xp
and these partial derivatives be continuousin U. Then f isof classClinU.

< For simplicity we consider only thecase X1 = --- = Xp = Y =R (thatis, f : R" —
R), which is the most important for us. In this case continuity of the partial derivatives
af/9Xi means just continuity of the partial derivatives 9f /dx; = Dg f. By Lemmaon
Continuous Differentials we conclude that f is G-differentiable in U. By Theorem on

Representation,
F(x) = <8f(x)’m’ 8f(x)).
8X]_ 8Xn

Since each component of this vector continuously depends on x, we conclude, that f’
continuously depends on x. Hence by Theorem 2.7.2. (C1-Theorem on Continuous Deri-
vative), f isof classClinU. >

Corollary 2.83. Let f = (fy,..., f) : R" — R™M, and let all the partial derivatives
afj/oaxi (i=1,...,n; j=1,...,m) becontinuousinU C R". Then f is of class C!
inU.

<1 By the Product Rule, of /9x; = (3f1/0X;, ..., dfm/0%;), so af/dx; are continuous if
al ofj/ox are. >



Chapter 3

| nver se Function Theorem

3.1 Lipschitz functions

Let X, Y benormed spaces, andlet A C X. Wesay that amapping f : X — Y isLipschitz
on A with a constant k > 0, and we write

f e Lippk

WXy, X2 € A [[f(x) — F(x)ll < KlIx1 — Xall.

Wesay that f isLipschitzon Aandwewrite f € Lipy if f isLipschitzwith some constant
k.If A= Xorifitisclear what A we mind, we omit A and writesmply f € Lip.
Examples.

1.]-]:R— R, x> |X|,isLipschitz with the constant 1.

2. For any normed space X, the norm ||-|| is Lipschitz with the constant 1.

3.0f f € Z2(X,Y), then f e Lip| f].
<l fxy = fxell = 1 f(xe = x2) < [l Ix2 — X2l >

4. Thefunction x — 4/|X|, R — R, isNOT Lipschitz.

Ix Theorem 3.1.1. If f isLipschitzon an openset U then f iscontinuous
inU.
” <||f(X+h)—f(X)Ilikllhllmo-D

Theorem 3.1.2.If f € Cé(x), then (for any ¢ > 0), f isLipschitzin
some neighbourhood of x with the constant || f/(x) || + .

<1 By the definition of C};(x), there exists § > 0 such that for any
y € Bs(x) itholds | f'(y) — f/(x)| < & and hence

[f'D=fW =0+ ') <[ 'y -] +] | <e+]|f00]=k
N— ————

(1)

37
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Then VX1, X2 € Bs(x) it holds

<k by (D
MVT f_//—
[fx)— fell < sup || /()] X1 — xall < klIxa — Xall . >
ye[x1,%2]

3.2 Banach spaces

We say that a normed space X is a Banach space (in honour of a Polish mathematician
Stefan Banach), and we write
X e BS

if X is complete as a metric space (with the metric o(X, y) = ||[x — y||), that is, if any
Cauchy sequencein X converges.
Note that in a normed space

{Xn} € Cauchy < [IXm — Xn|| —— 0.
m,Nn—oo

Examples.
1.R,R", C([0, 1]), £ are Banach spaces.
2. The vector subspacek in £2 which consistsfrom all FINITE sequences, that is, sequences

of theformx = (X1, ..., Xn, 0,0, ...) (n dependson x), equipped with the norm form £z,
isNOT aBanach space.

3.3 Contraction Lemma

It is the name of the following

Theorem 3.3.1. Let X € BS, let Abea CLOSED subsetin X, andlet f be a mapping from
Aintoitself, f : A . If f € Lippk with k < 1 (strictly!), then the operator f has one
and just one FIXED POINT X, that is, a point such that
f(X) =X. (1)
id (Note that we can rewrite (1) as f (%) = id(X).) In this
case we write

<1 0° The idea of the proof is clear from the picture: the
XX X X broken line leads to X.
1° Take an ARBITRARY point Xg € A and put

X1 = f(Xo), X2 = f(X1),..., Xpr1 = F(Xpn),... .

We have

X1 — Xoll =: a

X2 — x1ll = | f(x0) — f(x0) |l < klIx1 — Xoll = Ka, 2

@
lIxs — Xall = I| f(x2) — f(x))ll < klixz — x1ll < K?a,
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[Xn+1 — Xnll < Kk"a. (3)

2° {xn} € Cauchy.
trick

<K [ Xm = Xnll = [ Xm — Xm—1+Xm-1 — Xm—2+ -+ + Xnt1 — Xn |
Sun?p%ﬁ ———
>

N~
< [Xm = Xm-ll + -+ + [Xn41 = Xal| < @K" 4 -+ K™ = 0. b
B N e N

<akm-1 by (3) <ak" by (3)
3° Put X := limx, (thelimit existssince X € BS). Then X € A, since Aisclosed. Further,
since f iscontinuous (by Theorem 3.1.1.) it holds

N . . br. . .
f() = lim f(xn) = lim Xnp1 = lim xp = &,
N— 00 ‘e = n—o0 n—o00

=Xn+1

hence X is afixed point for f.
4° Thisfixed point is unique. <k If X1 and x» are both fixed pointsfor f, then

[ fx)—fx2) Il < Kk lIxg =Xl = [[X1 — X2l = 0= X1 = Xo. B> >
—_—— —— ~——

=X1 =Xo <1

3.4 Isomorphisms
Let X,Y e NS, andlet] € Z(X,Y). Wesay that | isan isomorphismand we write
| € 1so(X,Y) (or simply | € Is0)

if | isabijection, and if theinverse mapping| ~1 (whichis automatically linear, verify!) is
also continuous.
We say that X and Y are isomorphic (as normed spaces) and we write

X~Y

if there exists an isomorphism from X onto Y.

Examples.

1. If ||-|l, and ||-]|» are two equivalent norms on a vector space X, thenid : (X, ||-|l1) —
(X, I-ll2) is an isomorphism.

2.R" x RM &~ RMM,

3. Z(R, X)~ X.

4, R", R) ~ R".

NB 3X € NS: Z(X,R) # X.

5. Z 2, R) ~ £7.

6.1fl € Z(R,R), thenl €lso < | £ 0.

7.1f1 € Z@®R",R"), then| € Iso & detl # 0 (asis known from linear algebra).
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3.5 Inverse Function Theorem

Here is a generalization of the classic Inverse Function Theorem:

Theorem 35.1. Let X,Y ¢ BS, f : X = VY, X e X, y = fX).If f ¢ Cé(i()
and f’(X) € Iso(X,Y), then there exists a neighbourhood U of X such that f is a
HOMEOMORPHISM of U onto f (U). Theinverse mapping f — is differentiable at ¥, and

('@ = '@t 1)

<11° Reduction to the case f(0) = 0, f’(0) = id. Without loss of generality we can
assumethat X =Y, R =9y =0, f/(0) =id. <Put f(h):= fR+h) — fR).
It is clear that f : X — Y satisfies the condition f(0) = 0 and has at 0 the same
differentiability property as f hasat X. Thus, without loss of generality X =0, ¥ = 0.
Now put | := f/(0)and f := 1710 f (recal that =1 € £ (Y, X), sincel € Is0).
By Chain Rule, f'(0) =110 f/(0) = id. If thetheorem istruefor f, thenit istrue for
—_——

f =lof (since f~1 = (f)~1ol~1). Thus, without lossof generality X = Y, f/(0) = id.

f
XT—— Ypb>

g

So, the decomposition f (X 4+ h) = f(X) + f/(X)h +r (h), ”r”(hh”)” —— 0, reduces

lIhil—0
to
f(hy=h+r(h), or f =id+r, 2
wherer satisfies the conditions
feCl(0) h
r(0) as dways 0. 1'(0) as dways o.r’ & Cont(0), w m 0. (3)

2° Reduction to the fixed point problem. Now note that to find the inverse function to f
means to solve the equation

fo=y
with respect to y. But for aFIXED y,
f(X) =y & x € Fix(id—f +y). 4
——

@_

K{d-F+y)yxX)=x& fX)=y. >
So (in view of Contraction Lemma) our goal is to find a set, where the mapping

g:—r+y . . . g =T + y (5)
f isLipschitz.

“id—f 3° By Theorem3.1.2. appliedtor, there existse > 0
/ suchthatr € Lipg, 3. Put

~~ v —
- X U:= (leg)(Be/Z) (C Be).

(Here denotes the pre-image, not the inverse mapping!)
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4° f e Bij(U,B;2). < Let y € Bgp. Consider the

X mapping
- £ ia,/]f YT X y—r(x), X — X.
1 E2- — — This mapping is Lipschitz on B, with the constant %
U X : X sincer isLipschitz. Moreover, y — r maps B, into itself;
g indeed,

- X <e=ly—rl < Iyl + Irx)l <e.
— ——

1
. =2 < 3 x|

<e

By Contraction Lemma, there exists one and just onefixed point of y —r. But by (4)
this means that there exists one and just one point X € B, suchthat f (x) =y, that is, by
the definition of U, there exists one and just one point X € U such that f(x) = 0. D>
5° Let now f~1 denotesthe (existing!) inverse mappingto f : U — B, . For conveni-
ence introduce the following notation: for x e U, y € B2,

Xoye f=yex=1fly.
6° f~1eLip2 < letxs < y1, X2 < yo. Itholds

Ixa — Xall "= 1CF (x0) —r (x0)) — (F(x2) —F ()| < lly1 — Yall + [IF (x2) — F (x0)l|
—— —— [N ——

=Yy1 =y2 3 1
< 5 lIx2 — x|

1
< llyr =yl + 5 lIXe — x|l .

Weconcludethat [|x1 — Xzl < 2|ly1 — 2|, thatis, | f ~(y1) — f~X(y2)| < 2[ly1 — yall.
>

7° f € Homeo(U, B, 2). < f =id+r T Cont; f—1 % cont. o>
8 (f~1(0) = id (= (f'(0))~1). < We need to verify that the mapping

si=f1—id

issmall (recal that f ~1(0) = 0, since f (0) = 0), that is, that

[0k
IIKII Ik —0
or h K
Ith — K] — 50 ifhsk
Ikl IkI—o0
But indeed
[h — K] Ih — Kl [hil
= —_—
[IKI| Ihil Kl 1kI—0
—_— —

r=f—id 6°
= lIrMml/Ihl——>0 <2
[h|—0

since| k|| > 0= |h|] — 0. o> >
—

60
=<2l
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Corollary 35.2. Let f = (fy,..., f,) : R" — R" be continuously G-differentiable
at x (thiswill be so, e.g., if all the partial derivatives 0f; /dx; are continuous in some
neighbourhood of x), and let Jacobi matrix Js (x) have non-zero determinant. Then there
exists a neighbourhood U of x such that f is a homeomorphism of U onto f(U), the
inverse mapping f ~isdifferentiableat y := f (x), and

Jia(y) = Gr o)L

<1 R" isaBanach space, and f’(x) is an isomorphismiiff det J; (x) £ 0. >

3.6 Implicite Function Theorem

An important corollary of the Inverse Function Theorem (3.5.1.) is:

Theorem 3.6.1. Let X,Y,Z e€BS, F: X xY — Z.Put

M := F~10).
Letm:= (X, 9) € M, thatis, F(X,9§) =0,andlet F € C};(m), dF/3Y(m) e Iso(Y, Z2)
(so that Y and Z are isomorphic). Then there exists a neighbourhood U of X in X, a
mapping f : U — Y and a neighbourhood Nof min X x Y such that

gf=MnN. (1)

Thismapping f isdifferentiable at X, and

-1
f,(ﬁ):_<a|:(m)) _AFm) @

aY axX

In other words, since the conditiongr f ¢ M meansthat F(x, f(x)) = 0 (for x € U),
% N the theorem asserts that the equation

] m F(x,y)=0
—or f
3‘% g can be solved with respect to y:

y = f(x),

b4 the resulting (“implicite”) function f being differentia-
U ble at X, and its derivative at X can be expressed in terms
of partial derivativesof F at m.

Before the proof consider amodel example.

Example.Let X =Y = Z =R, F(X,y) = x>+ y? —1, m = (0, 1). Here M is the
unit circle with the center at 0. We have dF/9X| g 1) = 0, dF/dy| 1) =2 # 0. The set
M N N (seethe picture below) isthe graph of the function
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the front view

the view
from above

fx)=v1-x2 (xeU=(-31),

and

S5
XM

=

f/(0) = ——=1@b — 0,

(o8]
n

Q|
<

0,1

For the proof we need some lemmas.
Lemma 3.6.2. Let X1, ..., X be Banach spaces. Then their product X; x ... x X, is
also a Banach space.

<1 Completeness of al X; implies completeness of the product, since convergencein the
product is just convergencein each component. >

Lemma 3.63. Let f = (f1,..., fm) : Xe x ... x Xn = Y1 X ... X Yy, and let
X € (X1,...,%n) € X1 X ...x Xpn. Then

afj(x)
0 Xi

wherej and rj are resp. the following imbeddings and projections:

= (mj o f o) (%),

G Xi—=> X1 X...xXp, X (X1,...,%X-1, X, Xi+1, -+ -, Xn),
T Yix...xYm—=>Yj, (Yi,....¥Ym) —Yj.
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< Thisfollows from the facts that
fj =7mjo f

and fj o isjust the mapping f; with all the arguments but i -th one FIXED to be equal
the corresponding components of x. >

Lemma 3.6.4. Let X, Y, Z be normed spaces, Y and Z being isomorphic, and let

A: XXY—>XxZ

be the linear mapping represented by the matrix < ': g)

id 0
A=(25)

whereid = idy, 0 € Z(Y, Z).a € £ (X, Z), b  150(Y, Z). Then A € Iso(X x Y, X x
Z),and
L ( id o
A (—b—loa b—l)'

ail aiz
A~ aii EL X,Y ,
(a21 a-22> ( J ( J )

Here

means of course that

: a;p a2 \ (h1) . [ auhi +azhy
Ah € Y1 x Y2 isrepresented by (a21 a22) (h2> = <a21h1 i a22h2> ,

he X1 x Xo isrepresented by (E;) (hi € Xi).

<1 Thedirect computation yields
idx O idk 0 \ _ (idoid—0Oob™loa ido0+00b~?
ab/°\bloab?l)  \acid-bobloa ac0+bob?

_ Idx 0 o
= < 0 |dY> IdXXYa
and analogously

idy¢ O idx 0 _ (idx 0\ .
—bloabl)° ab)=\ 0 idy xxy - b

Proof of Theorem 3.6.1.
<1 0° Theideaisto extend F to amapping G, to which we can apply the Inverse Function
Theorem (see the picture in Example!).
1° Put
GC=,F): XxY—>XxZ, XY+ (XFXYy).

Note that G does NOT change the first coordinate! (On the picture vertical lines remain
verticall)
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2° We have

FeCL(m)
G L Fy € cim)

(theprojection 1 : X x Y — X isof course of class C! asa continuouslinear mapping),
and
o GRS (Dmm) S\ g o
Gm — ~ 0Bl oflm | =| aFm aFm |-
X Y aX oY
3° By Lemma3.6.4., G’ € Iso, and

idy 0
(G'(m)~t ~ (_ (aF(m))*lo IE(m) (8F(m))1> .
aY axX Y
4° By Lemma3.6.2., both X x Y and X x Z are Banach spaces, and we can apply the
Inverse Function Theorem. We conclude that there exists a neighbourhood N of min
X x Y such that G is ahomeomorphism of N onto G(N), G~1 isdifferentiable at

~ F(m) = (X, 0),
~ G(N)
N and
G, w (G (%.0) = (G'(m) ™
1
G Notethat G~ does NoT change the first coor-

dinate, since G does not.

UxW

5° By properties of product topology, there exist a neighbourhood U of X in X and a
neighbourhood W of 0in Z, suchthat U x W c G(N). Put

N:=G U x W).
6° At last put

f =m0 G1lo 1,
where 7 is the projection X x Y — X, (X,y) — X, and ¢1 is the imbedding X —
X x Z, X+ (X,0).

1

XxY & XxzZ

o | tu
f
Y — X

7° By ChangeRule, f isdifferentiableat X, and

Lenmaz63. 9(G™12((%, 0))
B 2 .

8° Thelatter partial derivativeisjust the (21)-element of the matrix representing

f/ (%) = (m20 G Lo 11) (R)

G Y(®,0) £ (G m)L
9° By 3°, thiselement is equal to

AFmM\ 1 dF(m)
_( aY > °Tax
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Thus, (2) is proved.
10° And, by thevery construction, gr f = MNN. [Formal verification: Let (x, y) € MNN
(sothat x € U). Then

X,y) €M = F(X,y) =0= G(X,y) = (X,0) = (X, y) = G 1(x,0)

=y=(moG o)) =y egrf.

=f

Thus N N M C gr f. Inverting the argument, we can analogoudly obtain the inverse
inclusion.]
NB Vice versa, Inverse Function Theorem can be deduced from Implicite Function The-
orem. [HINT: the equation y = f(x) can be written in the form F(x,y) = 0 with
Fx,y)i=y—fx)]



Chapter 4

Higher derivatives

4.1 Multilinear mappings

Letamapping f : X — Y isdifferentiable (everywhere). Itsderivativeisamapping from
Xinto Z(X,Y):
X = Z2XY), x— f'(x).

Itis natural to define f7(x) as (') (x), so
f7(x) e Z(X, ZL(X,Y)).
It is also natural to consider the mapping

(h1,h) = (f7(xX)-h1) -hy, X x X =Y.
————
cZ(X,Y)
This mapping iSBILINEAR, that is, linear in h; for fixed h1 (evidently) and linear in hy for
fixed hy (since f”(x) isalinear mapping from X into £ (X, Y)).
Analogousdly higher derivatives lead to MULTILINEAR mappings. Let X1, ..., X, and
Y be vector spaces. We say that amappingu : X1 x ... x Xy — Y is mutilinear (or

n-linear), and we write
uel(Xg,..., Xn;Y),

if uislinear in each separate variable for fixed others, that is, if

Viefl, ..., ny:oouxy, ..., Xi—1, @Xi + BYi, Xitls .. .s Xn)
=au(Xy, ..., Xiyoon, Xn) + BU(Xq, ..., Vi onns Xn) (a,B € R).
(For 2-linear mappings we say bilinear.)
For multilinear mappings one uses one of the following notations:

uxy, ..., Xp) =U-X1...Xn=UX1...Xn = (U] X1, ..., Xn).

Examples.
1. The usua multiplicationR x R — R, (X, Yy) — Xy ishilinear.
2. ThemultiplicationR x R x R — R, (X, Y, 2) — Xyzis3-linear.

3. Thescalar product R" x R" — R, (X, y) > Y i1 Xi Vi, wherex = (X, .. ., Xn), Y =
(. ..., Yn), isbilinear,

47
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4. The vector product R x R3 — R3, (X, V) — X x Visbilinear.
5. The COMPOSITION
comp: L(X,Y) x L(Y,Z) — L(X,2Z),(,m)+— mol
and the EVALUATION
ev: X xL(X,Y) =Y, (x| Ix
are hilinear.
6. The DETERMINANT mapping

X1 X2 X3
det: RExREXR3 >R, (X,¥,2) > |1 Y2 3
Z1 22 Z3
(X = (X1, X2, X3), ...) is3-linear.
Itiseasy to verify(!) that L(X1, ..., Xp; Y) iSaVECTOR SPACE.

Operator norm
Now let X; and Y be normed spaces. Then the vector subspace of L(X1, ..., Xn; Y)
consisting from all CONTINUOUS n-linear mappings we denote by

L (X, ..., X Y).
Put foreachu e L(X1, ..., Xn; Y)

lull ;== sup Jluxi...Xnll (operator norm).
Ixall<1
IXnll<1

Examples.

1. ||multiplication|| = 1;
2. ||scalar product| = 1;
3. ||vector product|| = 1;
4. |lcomp|| < 1;

S levl < 1

6. ||det]| = 1.

Basicinequality. Letu € L(X1, ..., Xp; Y). Thenfor any (X1, ..., Xn) € X1 x ... X Xp

Llluxa...xall < Julllixall... Ixall]  (basicinequality (BI)).

< If xi = Ofor somei then both sides are 0. Let none of x; is0. Then
X1 Xn

Xl = I1%nll

—— —_—

luxa. ol = |[u
uis
multilinear

’ el Xnll < flull Xl .. - fIxnll - >

X1 Xn
eB; eB]
—_—
< ul

Normed space Z (X1, ..., Xn; Y)
Theorem 4.1.1. Letu € L(Xq, ..., Xp; Y). Thenthefollowing conditionsare equivalent:
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a) ue Z(X1,..., Xp; Y), thatis, uiscontinuous,
b) uiscontinuousat O;
0 llull < oo.

<1 0° For short consider thecasen =2:u € L(X;Y; 2).

1° (@)= (b): obvioudly.

2° (b)=(a): Let (x, y) beanarbitrary pointin X x Y. We need to show that u is continuous
a (x, y). We have

[lu(x + h, y +Kk)—u(x, y)|| = [Juxk + uhy + uhk| < [Juxk| + [[uhy| + luhk] .
'—,_/ N e’ N — N e’
ulis

T, U, y)4u(x,k) 1 3
mu@m'-ﬁu?h?y)fu?h,k)

Soitissufficient to verify that[1],[ 2], [3] = Oas Ih], k| — O.1f k = Othen[1] =0,
if k # O then

3 ) )|

If ||l — O then /TK — 0 and hence /Tk[x — 0; further |[k//TKI|| = IIkll/+/TKT =
JTKI — 0. Thus[1] — Oas k| — 0, by (b).

Quite analogously [2] — O as ||h|| — 0. At last[3] — 0as ||| — O, [kl — O, by
(b).
3° (b)=(c): By (b), there exists § > 0 such that

IXI <8, llyll <8 = [luxy|l < 1. 1
Then
lull = sup Juxy|| <82 < 00.
[Ix]|<1

lI< —
lyl<1 =s-3u(dx)(8y) |l
—————

@,
< 1if IIXI=1,llyll<1

BI
4 ()= (b): If IIxIl, llyll — Othenfluxyll < [lull IXIIllyll - 0. >
——

©
<0
Note that al the multilinear mappings from Examples 1)—6) are continuous (since all

they have norms < 1). As to mappings from 1)—4) and 6), their continuity follows also
from

Theorem 4.1.2. In finite-dimensional case all the multilinear mappings are continuous.
<1 Analogoudly to the case of linear mappings. >

Theorem 4.1.3. The operator normisreally anormin £ (X, ..., Xn; Y).

We EVER consider £ (X4, ..., Xp; Y) asanormed space with the operator norm!

<1 By Theorem 1, the operator norm iSFINITE onthewhole space £ (X1, ..., Xp; Y), and
it iseasy to verify that all 3 axioms of anorm arefulfilled.

Canonical isomor phisms

Theorem 4.1.4. For any natural k and n, k < n, it holds

ZL(X1y oo s X3 Y) & L (X1 ooy Xiis L (Xkt1s -+ -5 Xns X))
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(the isomor phism of normed spaces), and the CANONICAL 1SOMORPHISM
L(X1, o X3 Y) > L(X1y o X LKkt s -0 Xns Y)), u e U,

U(X1, oo, XK) i= UKD, oy XKy vy enes s )
——

n—k “freg”
arguments

conserves the norm:
full = (T

<1 0° For short consider the case n = 2, k = 1. We need to verify that
L (X1, X2, Y) = L (X1, Z(X2,Y)).

1° ALGEBRAICAL ISOMORPHISM:

ag.
L(X1, X2;Y) =~ L(X1,L(X2,Y)). 2

Put foru € L(X1, X2;Y)
Uxp) :==u(xy,) (€ L(X2,Y)),
andforv € L(X1.L(X2,Y))
U(X1, X2) = (v-X1) X2 (€Y).
Itis easy to see that the mapping
U: X1 — L(X2,Y)
islinear, that is, U € L (X1, L(X2, Y)), and the mapping
VX1 x Xo—>Y
ishilinear, that is, v € L (X1, X2; Y), and that the mappings
ur Uandv =7

are linear and mutually inverse (ﬁ: u, V= v). Hence u — U is alinear bijection of
L(X1, X2; Y) onto L (X1, L(X2; Y)), thatis, (1) istrue.

2° TOPOLOGICAL ISOMORPHISM: If U € £ (X1, X2,Y) then Vx1 € Xi: U(xq) =
u(Xq, -) € £ (Xz,Y) (sinceu is continuous). Now the (linear) mapping

U: X1 = Z(X2,Y)

is continuous since it has a finite norm equal to the norm of u:

U] = sup [[Uxall= sup sup || (Uxy)- X2l =llull.
Ixll<1 Ixel<llxell<l ————
—_— =U(X1,X2)

ogvSu
= SUPjjxq || <1. [|x]l<1

Thus, U € Z (X1, ZL(X2,Y)).
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Quiteanalogoudly itcanbeverifiedthat if v € £ (X1, Z (X2, Y))thenv € £ (X1, X2; Y).
We concludethat u — Uisalinear bijection of £ (X1, X2; Y) onto £ (X1, Z(X2,Y)).
Since ||u|| = ||U|l, both u — T and v — v have the norm 1 and hence are continuous.
Thus they are isomorphisms of our normed spaces. >
Remark. For X1 = X2 = R"and Y = R, (1) isin fact the well-known (from linear
algebra) isomorphism between bilinear forms and linear operatorsin R".

Differentiation of multilinear mappings

Theorem 4.1.5. (Quasi-Leibniz Theorem (QL)). Any mappingu € £ (X1, ..., Xp; Y)is
differentiable, and its derivative is given by the formula

n

U(Xg,...,%n) - (hy,...hp) = Zu(xl, cooXies hi Xigt, .o, Xn),
i=1

or, more shortly

n

u/(X]_’ R Xn) = @ u(X]_’ s Xi—1, X|+l5 RN Xn)' (3)
i=1

(The definition of the DIRECT suM @i”=1|i =11®...®Il, seein Chapter 2.)
<1 Thisfollowsat oncefrom Theorem on continuouspartial derivatives. Indeed, u islinear

and continuousin each its argument, henceVi € {1, ..., n}:
au
W(Xl’ ey Xn) = UKL, ey Xiedy s Xik Ly« - -5 Xn) (e Z(Xi,Y)).
|

Now, each partial derivativedu/9X; : X1 x ... x Xp = £ (X, Y) iscontinuous as the
composition of two continuous mappings:

au
— = Uj omj,
0 X
where
Tt X1 X oo X Xp—=> XX oo X Xi Xooo X X, (X2, .., X)) > (X1, o o0, Xiy v vy X)),

U 0 X1 X oo X X X oo X Xn = 2K, Y),
(X1, + o, Xiy ey Xn) > UKL, oo, Xie 2 o Xigds - -5 Xn);
i IS continuousas any projection, and u; is continuous by Theorem on canonical isomor-
phism (sinceu is). >
Remark. We can rewrite (3) so:
U=@®o(iomy,...,Uyomn),

where @ denote the following mapping:

n
B LXY)x .. x LXn, Y) > L(X1x ... x Xn.Y). (1.....12) > EPi.
i=1
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It is evident that thismapping @ islinear, and it is easy to verify (1) that it is continuous.

Corollary 4.1.6. (Leibniz Theorem). Let f : X — Y andg: X — Z bedifferentiable at
apointx, andletu e Z (Y, Z; W). Then the composition u o ( f, g) isdifferentiable at x,
and

(uo (f,9)' () =u(f'eoh, gx)+u(fx),gh).

f
x 59y z 8w

<1 Thisfollows at once from Chain Rule and Quasi-L eibniz Theorem (QL):

Chain
rule

(uo (f,@)'COh = (W ((f,p(x))o (f,9) () )-h
—_—— —_———
=(f(x),9x)) =(f'(x),g'(x))
= U (F(x), g00) o ('00h, g0l T u(f’(oh, g(x)) + u(f (x). g'0h).

Examples.

1. If uistheusua multiplicationR x R — R, andif X = R, weobtaintheclassic Leibniz
rue (fg) = f'g+ fg'.

2. For the mapping g : R" — R, X > X+ ...+ x? = x - x = x2, we have (here
f =g =id, u= scaar product)

gx)-h=x-h+h.-x=2x-h

(thefirst point denoting the application of alinear mapping, the other points denoting the
scalar product!), so
g'(x) = 2x,

if weidentify avector x with the linear function h — x - h. (Compare with the usual rule
(x3) = 2x.)

4.2 Higher derivatives

Letamapping f : X — Y bedifferentiable everywhere (orinan openset U c X). Then
we can consider the derivative map

X - Z2XY), x— f'(x).
We say that f istwo times differentiable at a point x, and we write
f € Dif2(x),

if f’isdifferentiableat x; we definethe second derivative f”(x) of f at x asthederivative
of f’ atx:
f7(x) = () (%) (e Z(X, Z(X,Y))).

By induction, we put
/

and we use in evident sense the notations

Dif"(x), Dif"(U), Dif".
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Besides we put

o0
Dif! := Dif, Dif*® := ﬁ Dif".
n=1

Thus we have

f: X—=>Y
X > ZLXY)
7 X = L(X, Z(XY))

FO) X o X LK LYY ))

The space Z(X, Z(X, ..., Z(X,Y)...) of vaues of the n-th derivative f™ is
isomorphic (by repeatedly applied Theorem on isomorphism, see 4.1) to the space of
N-LINEAR mappingsfrom X x ... x X (ntimes) intoY:

ZLX, ZX, ..., ZXY)..)n)~= LXK, ..., X;Y) = Z2"X;Y).

n times

The multilinear mapping, corresponding to f (W (x), is given by the rule

—~

fMx)(hy, ..., hn) == C..(F"X)-hy) -hp)...) - hp.

Usually we IDENTIFY f™(x) and f ™ (x), drop the wave and write

Example. For g : R" — R, x > x2 := x - X (see 4.1) we have q” = (2 scalar product),
that is, Vx € R":q”(x)hiha = 2h; - hy. (Prove!)

4.3 Rulesof differentiation

They arein essence the same as for thefirst derivative.

Linearity. If f, g € Dif"(x) then Ve, 8 € R:af + Bg € Dif"(a), and
@f + 9™ x) = af ®x) + Bg™ (x).

<1 By induction. >
Product Rule. Let f = (f1,..., fn) : X = Y1 x...x Ym. Then f e Dif"(x) iff each
fi e Dif"(x), and

O (x) = (fl(’” X), ..., fO (x)).
< By induction. >

ChainRule. If f e Dif"(x) andg < Dif"(f (x)),thengo f e Dif"(x). (Theexplicite
formulafor (g o )™ (x) isvery cumbersome, and we drop it.)
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<1 For simplicity we consider only the case n = 2. By Chain Rule for thefirst derivative,
(go f) =comp(f’,g o f),

where
comp: Z(X,Y)o ZN,2Z) - £ (X,2), (,m)r— mol.

Since f and g are 2 times differentiable at x and at f (x), resp., the mappings f’ and g’
are differentiable at x and f (x), resp. The mapping comp is differentiable (everywhere)
by Quasi-Leibniz Theorem. So (g o f)’ isdifferentiableat x by Chain and Product Rules
for thefirst derivative. But thismeansthat g o f is2timesdifferentiableat x. >
Computation Rule. Let f : X — Y be n times differentiable at x. Then for any
hi,...,hp e X
8[1
oty ...oty = —ty=0

d d
- - f(X+tlhl++tnhn) .
t1=0 otz t,=0 oty th=0

For short we shall write the last expression as

fMx)hy, ..., hy = f(X+tih1 + ...+ thhy)

0
Ty

0 0
—| ... —| f(x+tith1+ ...+ thhp).
aty o atn 0 ( 1M1 n n)
<1 For simplicity consider the case n = 2. It holds
d
—| —| f(x+tihy+t2h
atloatz0( 1h1 + t2h2)
- f/(x+t1h1)h2m:°kevh2 (F/(x+tahy))
C.R. for
the 1. der.
/ |—Rule 8 ’
= —| (evh,-f'(x+tihy)) =" evh,- —| f'(x+tihy)
C.R. for
thelz.der.

() (x)-h1
= evh, -(f"()hy) = (f"(0h1) - h2 = f"(x)hgha. >

(Recall that evy, denotesthe (continuouslinear) mapping of evaluation at a given point
h, see Chapter 1.)
[-Rules.

f
Q) LetX 5 Y5z, feDifP(x),l € Z(Y, Z). Then

(o) Pxhy...hp =1 -(f<p>(x)h1...hp),

or, shortly,
(o H)Px) =10 (fP(x)),

where we consider the p-th derivative f (P (x) asa p-linear mapping.
In particular, if X = R then

(o H)YPx)=1.fP(x),

where we consider f (P (x) asan element of Y.
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f
b) Let X 5 Y = Z,1 € £(X,Y), f  Dif®(Ix). Then

(foh(h1...hp = TP (Ax)(h1)...(0hp).

<1 For short consider p = 2.

a)
,, Comp. Rule 0 ad
(o ©)’'xhthy =" —| —| (o f)(x+tihy +1t2hy)
|—rule for 1. der. O 0
= — | . —| f(x+tihy +th
8t10( ot (X +tihy + 1t 2))
|—rule for 1. der. 0 0
= I - | —| —| f(x+tihy+tsh
<8t108t20 (X+t1h1 + 12 2))
Compz.RuIeI ) f”(X)hlhz.
b)
y Comp. Rule 0 a
(fol)’x)hthy =" —| —| (f o)(X+1t1hy +t2hy)

1is linear ¢ 1 4 t11hy+talhy)

Comp_. Rule

f”(x)(hy)(hy). >

4.4 Higher partial derivatives

Let f : X1 x...x Xy — Y. Of course we define partial derivatives of higher orders

inductively:
oPf0 [ ot )
OXiy ... 9%, X, \aXi, \" T\ axi, ) ’

aP a a

or, shortly,

= 11, ..., i 1,..., n
XX, ax, o e,  veleed D
So
aPf(x)
_— Xi Xiy, o Xi,Y)...
8Xi1,,,8Xip eg( |1a$( 125 59%( Ip>» ) ))
~ LXK, .., Xip: Y),
Th. on
1som.

and we have identity 8P f (x)/3 Xi, ... 8 X, with the corresponding p-linear mapping:

P _ AP f(x) |
mhl-.-hp=(.-.<< axi, h1>h2>...>hp (hk € Xiy) -

Asin the case of thefirst order, if each X; = R (that is, X1 x ... x X = R"), we put

feo AP f (x)
e 3 )
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Lemma4.4.1.Letamapping f : X1 x...x Xy — Y be p timesdifferentiableat x. Then
foranyiy,...,ip e {1,...,n}andfor any hx € Xj,k=1,..., p, it holds

aPf(x)

— = h;...hy= fPx)h;...h,
8Xil...8xip ! P (Cohs P

where A
hg :=(0,...,0,h,0,...,0),
Ik

that is, the partial derivativeappliedtothevectorshy, .. ., hpisjustthe* total” derivative
appliedtotheirimageshathy, .. ., ﬁp by the canonical imbeddingsof X;, into the product
space X1 X ... X Xp.

<1 1° We use below the following result: If f : X — Z(Y, Z) isdifferentiable at x then
for any fixedh € Y themapping g : x — f (x)h, X — Z isalso differentiableat x, and

vk e X:g'()k = (f'(k)h.

(See Chapter 2.)
2° For short let p = 2. We have

f/)©.....h.....00,....h,....0)
1

12

Comp. P 3
Rde 1 2| fx+1(0,....h,....0 + (0, ....K,...,0)
8t1 0 8t1 0
Com&me(af(x+t1(0,...,h,,..,O))/axiz)k
o 0| af(x+1t1(0,...,h,...,0) K
- 8t1 0 8)(b
Comp.

2
Rule << 9 9 )(x)h)kdgia f 1k
a Xj; 9Xi, 9 Xiy - 90X,

Theorem 4.4.2. (on representation). Let a mapping f : X1 x ... x Xp — Y be p-times
differentiable at x. Then its p-th derivative at x can be represented by the matrix of the

partial derivatives:
f(P)(X) ~ M
X ... 8Xip o

in sense that

vhl, ... hPeXyx...x Xy h€= (K ... hK):

n
AP f(x)
fPx)ht.. hP = —— = ht...nP.
(X) Z=13Xi1...8xip 1 Ip

i1 ..... Ip

< In notations of the previouslemma,

FPooht.. hP = (h}+4hY)... (hP+hb)



4.5. CLASSCP 57

fPogis  n . .
multlzllnear Z f(p)(X)hil—i—hil >

1 p

—_————

i, ip=1

4L Gp(t (0)/8(Xiy.- XiphE P,

Corollary 4.4.3. Let f : R" — Y be p-times differentiable at x. Then f(P)(x) can be
represented by the following matrix with elementsin Y:

F () ~ AP f(x)
0Xig ... 0%y J, ipe{l,...,n}’

inthe sensethat for any h!, .. .hP e R"  (hK = (h¥, ..., h¥))

n
P f
fP(x)hl...hP = Z h}...hf’i (€Y).
. - 1 P OXj,...0X
i1,..,ip=1—"—" P
eR “

eY

Here all hikk arereal numbers, and hill . hi‘:) isjust the usual product of real numbers.
Remark. For the case p = 2 and Y = R we obtain as the representative of f”(x) a

“usual” n x n-matrix
(82f(x)>
XiOXj /i e,

.....

Thismatrix is called the Hesse matrix of f at x (and its determinant is called the Hessian
of f atx).

Example. For themapping g : R" — R, X — x2 = x - x we have
2 0
vx e R": f7(x) ~ =21
0o 2
where 1 denotes the unit matrix. It corresponds of course with the fact we know that
f7 = 2id.

45 ClassCP

We say that amapping f : X — Y is p-times continuously differentiable (resp., p times
continuoudly differentiableinanopenset U c X or atapoint x € X) or that f isof class
CP (resp.,isof classCP in U or at x), and we write

f e CP(resp., f e CP(U)or f e CP(x),

if fisptimesdifferentiableeverywhere (resp.,inU or in aneighbourhood of x) and the
derivative f (P is continuous (resp., continuousin U or at x).
Thus,

f eCP:s (P ¢ Cont.
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We put also
o
c?:= Cont, C® = m CP.
p=0

The mappings of class CP we call also, for short, CP-mappings.

Example. Any continuous linear mapping is of class C*°. (Indeed, the first derivativeis
a constant mapping, and all the other derivatives are zeros.)

Lemma4.5.1.
c’>cloc?H...0CP ... > C® =Dif*.

< 1°DifP*l c CP. <« f € DifPtl = (P ¢ Dif = P ¢ Cont = f € CP. pp>

22CPHlc CP. < f e CPHl = f e DIfPYL L f c CP. b
3° C*® ¢ CP <« Obvioudy. >t
4° C® c Dif*® <« Obvioudly. bt

5° Dif® € C® <1 f € DIf* => Vpe N: f e DifP*! S vpeNifeCP= fe
C®. o> >

Lemma4.5.2. For anyk € {0, 1, ..., p}

feCPo 0 ccPk

a (F0)P0 = ¢

Theorem 4.5.3. Any continuous multilinear mapping is of class C*.
<1 Use induction. For linear mappings the assertion is true, by Example above. Let our
assertion istrue for k-linear mappingswithk < n — 1, and let

ue (X1, ..., Xn; Y).
By Remark after Quasi-Leibniz Theorem,
U=@&o(iomy,...,Uyomn),

where u;j are continuous (n — 1)-linear mappings, and & and m; are continuous linear
mappings. All these mappingsare of class C*°, by theinductive assumption and henceare
infinitely differentiable. By Product and Chain Rules, U’ is also infinitely differentiable.
Hence u isinfinitely differentiable and therefore (by Lemma4.5.1.) is of classC*®. >
Remark. In fact the n-th derivative of a continuous n-linear mapping is a CONSTANT
mapping, and hence all the subsequent derivatives are ZEROS.

u™ = congt, u™b — o, ult2 —o, ...
Viz,ifue L(X1,.... Xn; Y)thenVx € X1 x ... x Xn:
uMxhl.. . h" =

= 3" uny® .. .pg® (h":(h",...,hﬁ)exlx...xxn) (1)

Ueen
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where &, denotesthe group of all permutationsof theset {1, . . ., n}. [This can be proved
by using Computation Rule. (Prove!)] E.g., for bilinear u

u” (x)hk = uh1ks + ukiho. 2

Note that in the case of MULTIPLICATION (u : RZ2 — R, (x,y) — Xy), Equation (1)
follows at once from Representation Theorem:

/ 01 / 0 1)\ /k
U’ (x) ~ <1 0), hence u” (x)hk = (hy hy) <1 o) <k;> = hiko + keho.

Note also that it follows from (1) that u™ (x)h? . .. h" does NOT change by any permu-
tation of the vectorshl, ... h" (for bilinear case it is quite obvious, see(2)). Thisis no
accident! See the next section.

Product

Theorem4.5.4. (f,..., fn) e CP & f1,..., fn € CP.
< Thisfollows at once from Product rule for higher derivatives and from the topological

fact that (fl(p), - rﬁp)) is continuousiff each £ is. >

Composition

Theorem 4.55. f,gec CP = go f € CP.
<1 By induction. For p = 0 all is O.K. (the composition of continuous mappings is
continuous). Let our assertionistrue for p — 1. We have, by Chain Rule,

(go f) =compo(f’,g o f).

The mapping comp : (I, m) = mol isacontinuous bilinear mapping (see 4.1) and hence
is of class C™ (by Theorem 4.5.3.). A fortiori it is of class CP~1, by Lemma4.5.1. The
derivatives f’ and g’ are both of class CP~1, by Lemma 4.5.2., and f isof class CP~1
by Lemma 4.5.1. Hence g’ o f is of class CP~1 by the induction assumption. Then, by
Theorem 4.5.4. (on product), (', g’ o f) isof classCP~1. So, once again by theinductive
assumption, the mapping compo(f’, g o f) is of class CP~1. Thus, (go f) € CP1,
which means, by Lemma4.5.2.,thatgo f € CP. 1>

CaseR" — R"
Criterion. Amapping (f1, ..., fm) : R" — RMisof classCPiff all thepartial derivatives
of the order < p of each function f; exist and are continuous.
<1 Analogoudlytothecase p=1. >

4.6 Symmetry of higher derivatives

Here we prove that for CP-mappings the derivative f (P (x) is a symmetrical multilinear
mapping.

A mapping f : X" — Y (for arbitrary sets X and Y) is called symmetrical if its value
does not change by any permutation of its arguments:

f eSym:& Vxy,....,Xn € X VYo € Gn: f(Xo(1),---s Xom) = T (X1, ..., Xn).
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(Recall that G, denotes the group of permutations of the set {1, ..., n}.) The set of all
symmetrical n-linear mappingsfrom X" — Y (for vector spaces X and Y) we denote by

me(nx; Y).

(Respectively, for continuous case we use the letter Z.)

Lemma 4.6.1. Let for a mapping ¢ : R2 — R the second partial derivative 3%¢/dydx is
continuous at the origin. Then

0%9(0.0) _ . A%p(0: (1,0), (0. 1))
ayax 0 t2 '

Here A2y denotesthe SECOND DIFFERENCE of ¢. Recall that thefirst difference Ap(x; h)
of ¢ at x by h isdefined so:

Ap(X; h) = App(X) := (X + h) — p(X). 1)

Higher differences A"p(x; hy, ..., hy) of ¢ at x by h, ..., hy are defined inductively.
E.g.,

A20(x; h1, 1) == Apy(An @) (X) = Apo(X + h2) — Apo(X)

L o(x+h+h) —p(x+h) —px+h)+ex). (2
x+h;
©
@ Note that (asit is clear from (2)) the second differenceis
. x+h+h, SYMMETRICAL in the increments:
6 AZp(x; h1, h2) = A%p(x; ha, ha). (3)
x+h,
Qt72A2%(0; (1, 0), (0, 1)) = t 2A¢.0)(A0.1)9) (0, 0)
trick: g(x):=
Ane(x,0)=

DD =2 g(t) — g(0))

Lagr. Th,;
fgr sr(J)nge
=Y g
g x)=
20 -1 dpB. 1)  99(0,0)
aX aX
Lagr. Th,;
for some
Jd 0
LY 122 ot
ay dx

_ 9%(6.7) _ 9%9(0.0)
©9ydx  tlo  Aydx

since 82¢/9ydx is continuous at (0, 0) and (0, ) — (0,0) ast | 0. >
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Corollary 4.6.2. Let for a function ¢ : R?2 — R the partial derivatives 9%¢/dydx and
92¢/9xdy are both continuous at (0, 0). Then they are equal there:

_ P
0,0 axXay

82(p
dyax

0.0 .

<1 This follows from Lemma 4.6.1., by symmetry of the second difference in the incre-
ments. >

Lemma 4.6.3. Let for a mapping ¢ : R2 — Y (where Y is a normed space) the partial
derivatives 3%¢p /dx19x2 and 92¢/dx29x1 are continuousat a point . Then

82<p
0X10X2

_ %
B T AX00X1

.
<1 1° Without loss of generality we can assume that X = 0, since our function ¢ has the
same differentiability properties at X, as the function

¢ :h>e®R+h),R2>Y

at 0. (This follows at once from Chain Rule, since the mapping h — X + h has at each
point the derivative equal to id.)

2° Put

82g0

0 - 0X20X1

_ %
T 9X10X2

y: (€eY).

Our amisto show that y = 0.
3° By Lemma from Functional Analysis (see Chapter 1), there exist | € Z (Y, R) such
that ||I]| = 1andly = |ly||. Then

iyl =ty =1 (22| _ _Z¢ | \i-mue 2op)|  7000)| ag2

0X10X2|g  0X20X1|g 0X10X2 |g 0X20X1 |q ’
since the second partial derivative

32l 32 o

M — | o ¢ (|, J — 1’ 2)

0XidXj 1-Rule for 0% 0X;]
X=R

is continuous at 0 together with 8%¢/3x; dx;. >
Lemma4.6.4.Lety : R" — Y beof classCP. Thenfor anyo € & andanyiy, ..., ip €

{1,...,n}itholds
Py Py

8Xia(1) e Xig ) 8Xi1...Xip

In other words, partia derivativesdo not depend on the order in which we differentiate.
<1 1° It is sufficient to prove this for p = 2, since then we can TRANSPOSE any two
NEIGHBOUR partia differentiations, and by such transpositions we can obtain any permu-
tation.
2° for p = 2 our assertion follows from Lemma4.6.3., since all partial derivatives at the
second order of a C2-mapping are continuous. >

Theorem 4.6.5. Let f : X — Y beof class CP. Then for each x € X the p-th derivative
f (P (x) is symmetrical.
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Comp.
Rule aP

<A F PO - .. ho(p) 3ty(1) - - Olo(n)
o ... 0l 0

fX+temho + .-+ to(pho(p)

Ogvtlh1+m+tph p

464 aP CF(emlqp'
2t f(X+thi+...+tphp) =

3t ot o (X +tihy + ... +tphp)
(We can apply Lemma 4.6.4., since the mapping (t1,...,tq) — f(X +tih1 + ... +
thhn), R" — Y is of class CP as the composition of the C*°-mapping (1, ...t,) —

X +t1hy + ... + tahy (aconstant plus a (continuous) linear mapping) and f € CP.)

f®P)hy...hp. >

Corollary 4.6.6.Let f : X1 x ... x Xn — Y beof class CP. Then partial derivatives

oPf
Xy ... X

p

(i1,...,in€{L,....n})

do Not depend on the order in which we differentiate.
Thismeans, e.g., that 32 f (x)/8X19 X2 and 82 f (x) /8 X29 X1 define one and the same
bilinear mapping X1 x X2 — Y:

. 92f(x) 32f (x)
Vhy € X1,hy € Xo: ———h1h, = ———hoh;.
1€ A1, N2 € A2 3)(13)(2 152 3X23X1 201

< Thisfollowsfrom Theoremin view of Lemma4.4.1. >
Remark. This corollary justifies notations of the type

83
IX29Xo

4.7 Polynomials

Let X,Y be vector spaces. We say that a mapping p : X — Y is a homogeneous
polynomial of degree n, and we write

p € Pn(X, Y)5
if there exists an n-linear mapping

uel™X;Y) (=L, ..., X5Y))

n

such that
p=uocA,

where A = Ay isthe diagonal mapping, defined so:

AX > XM=Xx...x X, x> (X, ...,X).
+ n

In other words,

p(X) = u(x, ..., X).
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In the case where X, Y are NORMED spaces, we say that p is a continuous homoge-
neous polynomial of degree n, and we write

p S Pn(xv Y)7

if thereexistsu € .Z("X; Y) with the same property.
If p=uo A wesay that u generates p, or that p is generated by u.
We put also

Po(X, Y) := {al the CONSTANT mappings X — Y}

(the polynomials of degree 0).
In what follows we consider only homogeneous polynomials, and we will drop
“homogeneous’.
Examples.
1. Each linear mapping is a polynomial of degree 1, that is, P; = L.
2. The power mapping x — X", R — R isacontinuous polynomial of degreen.

3. The maping (x, y) — x3 + 4xy?, R? — R is a continuous polynomial of degree 3.
< Thispolynomial isgenerated, e.g., by the following two 3-linear mappings (R?)® — R:

(X1, Y1), (X2, Y2), (X3, Y3)) > X1X2X3 + 3 (X1Y2Y3 -+ X2Yay1 + Xay1Y2),
(X1, Y1), (X2, Y2), (X3, ¥3)) > X1X2X3 + 4X1Y2Y3,
the former being symmetrical, and the latter being not. >

4. Each n-linear mapping is a continuous polynomial of degreen.
< Forn = 2, eg., abilinear mappingu : X1 x X2 — Y is generated by the following
bilinear mapping U : (X1 x X2)2 — Y:

U : (X1, Y1), (X2, ¥2)) = 3(U(X1, Y2) + U(X2, Y1)). B>

5. Thefunctiong : R" — R, X > X2 = X-X = X2 +. ..+ x2 isacontinuous polynomial
of degree 2 (generated by the scalar product).

6. More generally, for any linear operator A : R" — R", with the matrix (&jj), the
mapping (quadratic form)

el n
R”—>R,xr—>(Ax)p- X = Zaijin X=(Xg,..., Xn))
ij=1
isapolynomial of degree 2. (Provel)
7. Thefunction C([0, 1]) — R, X fol x2(t) dt isapolynomial of degree 2. (Prove!)

Symmetrization

For any mapping f : X" — Y, where Y isaVECTOR SPACE (X" := X x ... x X),
we define its SYMMETRIZATION sym f by the formula

. 1
VX1, ... Xn € X5 | (sym f)(Xq, ..., Xn) = Z f (Xo (L) -+ - Xo () |

O'EGn
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Example. Let f : R2 — R, (X, y) — X — 2y. Then

(ym H)(x.y) = 3(F o y) + F(y. %)) = S(x = 2y) + (y - 20)) = =25 Y.

Lemma4.7.1. Letu € L(";Y). Then
a) symu € Lym("X; Y);
b)u € Lym("X;Y) & symu = u.
< a) Forany T € G, it holds
1
(symu) (Xt(l), Ceey Xr(n)) we r(ca%elfacel E U(X‘E(U(l))’ ey X‘E(U(n)))
by o(1) eic ~ °€6n oD ¥

0:=To0

=(to0)(N)

= — UXo(1)s - - - » Xo(n))
if o runsover G, NI s e e®
Too aso runs over Sy Q€GN

® ymuy(xa. ... xn),

which meansthat symu is symmetrical.
b) "=":if uissymmetrical then
def 1 1
: —_— — :

o€6n =uhj...hp

hencesymu = u.
"<":if symu = u then u issymmetrical by a). >

Lemma 4.7.2. If a polynomial is generated by u then it is also generated by symu.
<Letp=uoA.Then

1
((symu)oA):(wmu)(x,...,x):n— Z UuX, ..., X) =UXx,...,X) = p(x),

|
UEGn

thatis, p = (symu)o A. >

Lemma 4.7.3. Each polynomial is generated by an UNIQUE symmetrical multilinear
mapping.

In other words, if ug o A = Uz 0 A and ug, Uz € Sym, then u; = us.
<1 For conTINuous mappings this follows at once from Theorem on differention of
polynomials it the next subsection, which saysthat if p = uo A andu € Zym, then
u=1/n! - pM(0). For "agebraical case” we give below a scetch of the proof (you may
omit it).

For any given hy, ..., h, put

JT(t]_,,tn):u(t1h1++tnhn,,t1h1+,tnhn)
=t{uhy...hy+ ... +tjuhy. . hy.

Then a"7 /oty ... dtn|o is equal to the coefficient by tito . . . tn. This coefficient is equal,
by symmetry of u, to n'uh;...hy. Hence uhs ... hy isuniquely defined by . But 7 is
uniquely defined by p, since (tg, ..., th) = p(tith1 + ...+ thhp). >

Corollary 4.7.4. 1f a polynomial is generated by two multilinear mappingsthen they have
one and the same symmetrization:

UioA =Uzo0A = Symus = Symup.
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< It followsfrom Lemmas4.7.1.-4.7.3. >

Differentiation of polynomials
The following theorem is a generalization of the fact that

MO —nn—-1)...(n—k+ Dx"K,

Theorem 4.7.5.Let p € Pn(X,Y), p=Uo A, u € Lym("X,Y). Then

a) pisofclassC®;
b) for anyk € {1, ..., n} it holds

p® € Pn_k(X, Lym*X; Y)),

viz,fork <n

P =nin—1)...(n—k+ Duk o An_x, (1)
where
UK (X1 oo oy Xnek) i= UKL, vy XKy 5 e e ey *)s 2
——
k
that is,
pWeohs...hk=n—=1)...n—=k+Dux,....x, h1,....ho, (3
——
n—k
andfor k =n
p™® = nlu
¢) For anynatural k > n

<11° p € C* hy Theorem on composition of CP-mappings, since p = uo A, and
both u (as a continuous multilinear mapping) and A (as a continuous linear mapping) are

C°°-mappings.
2° We have
Chain
POh = (Uo AY (0h ™28 y(ax) . Ah=U'(X,....x) o (h,...,h)
Quasi—
Leibniz

= "uh,x,....,xX)+...+u,...,x, h) ueiymnu(x,...,x,h),
which meansthat for k = 1 theformula(1) istrue. Let usfix this:

(U ] An)/ = nu]_ O Anfl. (4)
3° Let (1) istrueforl, ..., k. Then

p®¥ =nin—1)...(n = K)uk o An_k.

Hence
pk+Dd = (P =n(n —1)...(N — k+ 1)(uk o Api)’
(4),applied to
UgoAn—k
= nn—-21...(n—k+1)(n—=K) (U1 o An—k)—1,
e ——

(2 =An_
= n—(k+1)
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which meansthat (1) istruefor k + 1, and, by induction, b) is true.
4° Since p™ = const, all the subsequent derivatives are zero. >
Remark. You can obtain (1) using Computation Rule. (Do it!)

Corollary 4.7.6. Let pbea continuous polynomial of degreen, generated by a (continuous)
symmetrical n-linear mapping u. Then p(0) = 0 and

) _ 0, |fk7£n,
P (O)_{n!u, ifk=n.

4.8 Taylor Formula

At first alemma:

Lemma4.8.1. Let amappingr : X — Y bek times differentiable at 0, and let

r(0) =0, r'(0) = 0, r’) =0,..., r® ) = 0.

h)
h = h k . r( 4 0> .
rh 0(” | ><© Ih[% 1hi—0, [ni£0

<1 By induction. 1° For k = 1 we have

Then

r(0+h) = L(93+r’(0)h +r (h)
=h =0 =0

(that is, r isequal to itsrest term), so r (h) = o(||h||) by the definition of differentiability.
2° Let for k — 1 our assertion istrue. Then

IrIE v =r @l mvr 1

sup [r'cthy| b

i by —hi% o=t
/
tick o, tkflllf (t:)ﬂ
O<t<1 ||th|| - [lhj|—0

by the induction assumption; indeed if ||h|| — O then ||th|| = |t| ||h] — O uniformly
int e (0, 1), and hence |r'(th) | /lith|*~1 — 0, since r” satisfies the conditions of the
lemmafork — 1. >

Taylor Formula

Theorem 4.8.2. Let f : X — Y beofclassCKinU ¢ X. Thenfor x € U

FxHh) = £00+ 100 + 217002 + ...+ & FR oMK 1 (h), )
where
(s) S._ £(9
Y00 = f (X)h'.”h’
S times
and

r(hy = o(Ih|%).



4.8. TAYLOR FORMULA 67

<1 0° We can rewrite (1) in the form

)

_|H

k
where
fihy := f(x+h) — f(x),

and p; denotes the polynomial generated by f @ (x) (which
is a continuous symmetrical i -linear mapping, since f is of
class

CP inU). Thusthe graph of f (see the picture) is also the graph of f when considered
with respect to the trandated (on the picture dotted) axes. By Lemma4.8.1., all we need
isto verify thatr (0) = 0,r'(0) =0, .. ., r®©) = 0.

1°r(0) = 0, since ?(0) = 0 and each polynomial isequal to 0 at 0.

2Forany j=1,...,k

=~

1

ro) 2 fio) — ' pﬁj)(o) — 0>
N—— i 1! ——
Obvf(J)(x) 476{ D ifi = j
0 ifi#]j
CaseR" — R

Corollary 4.8.3. Let a function R" — R have continuous partial derivatives up to order
kinanopensetU c R". Thenfor any x € U

B f(x) a2t
fox+h) = f(x)+z 2!ij:18xi8xj hihj +
1 < K (%)
= — " hi...h h
+k!| 2:‘ OXiy ... 0%, T,
Lo
(h=(hy,..., hn) € R™)

wherer (h) = o([|h]¥).
Here ||-|| is ANY norm in R". (If ||-||1 is another norm in R", thenr (h) = 0(||h||'i)
also, since any two normsin R" are equivalent.)






Chapter 5

Extreme Problems

|. PROBLEMS WITHOUT CONSTRAINTS

5.1 Generalized theorem of Fermat

Definition. Let X beatopological space, andlet f beafunctional on X, f : X — R. We
say that f hasalocal minimumat apoint X € X, and we write

X € Locmin f,

if fattainsat X its minimal value in some neighbourhood of X. Thus,
% € Locmin f 1< 3U e NbgVx e U f(x) > f(X).

Theorem 5.1.1. Let X be a normed space, and let a functional f : X — R hasa local
minimum at a point X.

a) If for someh € X thereexists Dy, f (X), then Dy f (X) = O.
b) If f isG-differentiableat X, then f’(X) = 0.

< @) If X € Locmin f then 0 € Locming, whereg : R — R,t — f(X + th). By the
classic Fermat's theorem, ¢(0) = O; but Dy, f (X) = ¢(0).
b) It followsfroma), since f’(X)h = Dy f (x). >

Example. If X = R" and f has the partial derivatives of the first order at the point
X € Locmin f, then all these partial derivatives are equal to O:

it _af®) _

8X1 o aXn

5.2 Necessary and sufficient conditions of locmin

Theorem 5.2.1. (on necessary conditions and sufficient conditions of the second order).
Let X eNS, f : X —> R, f € C4(R).

69
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a) (Necessary conditions) If X € Locmin f then f’(X) = 0, and

vhe X: f7(%)h? > 0. (1)
b) (Sufficient conditions) If f/(X) = 0 and 3« > 0 such that

vhe X: f”()h? > « |h|?, (2)
then X € Locmin f.
<1 By Taylor formula,
FR+h) = FR) + f/(k)h+%f//(>?)h2+r(h), 3
where
r(h) = o(||h]|?). C)

a) Let % € Locmin f. Then f/(x) Teorem 5.2

f (X) for all sufficiently small t € R. Hence,

0. Furtherleth € X. It holds f (X +th) >

21217 (R)h2+r (th) = 3 f7(R)(th)2+r (th) D f&4th) — F(%) — f/(R)(th) > 0 (5)
—_— ——

>0 0
for al sufficiently small t. But
r(th) = o(t?), (6)
since (without loss of generality h # 0)
r(th) r(th)
O g2 T8
t Ithj? -0
N e’
@
t—0

So (5) ispossible, only if f”(x)h? > 0.
b) Let /(%) = 0, and let (2) be fulfilled. Then

fR+h = f0 217 @h2+rh) > % IhI2+ o(lh?) > 0
———

2
(z)ozuhu2

for al sufficiently small ||h||. Hence, X € Locmin f. >

Conditions (1) and (2) in (5.2.1.) are, respecively, the condition of non-negativity
and the condition of strict positivity of the second derivative f”(X) in the sense of the
following definition:
Definition. Let X € NS, u € L(X, X; R) (bilinear functiona).

a) U issaid to be non-negative if the corresponding polynomial is non-negative, that

is, if

vh e X: u(h, h) >0, (7)
and positiveif the corresponding polynomial is positive at any non-zero vector, that
is, if

vh e X\0: u(h, h) > 0. (8)
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b) uissaidto be strictly positive if

Ja > 0Vh e X: uth,h) >« |h|?. 9)

It is evident that
strict positivity = positivity = non-negativity
In genera the inverse implications are not true;

(Counter-) examples.

1. The functional R? x R2 — R, ((X1, V1), (X2, ¥2)) — X1X2 iS hon-negative, but is not
positive.

2. The functional £2 x €2 — R, (X, y) > Y i21(1/iD)x Vi is (evidently) positive, but is
not strictly positive (verify!).

Finite-dimensional case

In FINITE-DIMENSIONAL case positivity is equivalent to strict positivity: If u €
L(R", R"; R) is positive, then u is strictly positive.
<1 Denote by Sthe unit spherein R" (defined by the equation ||x|| = 1), put p:=uo A,
and consider the restriction p|s. It is clear that this restriction is continuous (since in
finite dimensional case any bilinear functional is continuous). Further, Siscompact, being
closed (S = ||-|| " (1)) and bounded. Hence, p|s attainsits minimal value, say . Sinceu
is positive, we have o > 0. Thus,

Xl =1= u(X,x) >a > 0. (20)
Soforany h #0
h h h h
uch,h) =u <||h|| —— [Ih]| —) = [Ih[%u (— —) > o ||h||?,
Il [l bl lihl]
e e

(10)
> o

which meansthat u is strictly positive. >
Further, in FINITE-DIMENSIONAL case the positivity condition (2) takesthe form

vh = (h hn) € R™0: Xn: 82f()A()h hi >0 (12)
= . —nijNn; > L.
1, » n = 3Xi3Xj it

This condition is none more then the condition of positive definiteness of Hesse matrix of
the function f at the point X. Thus, by 1.9, for f : R" — R, strict positivity of f”(X) is
equivalent to positive-definiteness of Hesse matrix of f at X. Thelatter may be established
with the aid of SILVESTER CRITERION from algebra:

SILVESTER CRITERION. A symmetric square matrix A is positive definite iff all its
principal minorsdet Ax (k =1, ..., n) are positive.

A17”a12 | - 8y

A, —l 8 8 8y3| - Ay,
Ag— 81 8y 8| - By

A=A, | audpas - a,,
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Remark. For the case of local MAXIMUM we havetoreplaceall “>" in(1) and (2) by “ <”.
Thestrict NEGATIVITY of f”(X) isequivalent to NEGATIVE definiteness of the Hesse matrix
A; thelatter is equivalent to the conditions: det A; < 0, det Az > 0, det Az < O, det A4 >
o,...
<1 Apply Silvester criterionto —A. >

[l. PROBLEMS WITH CONSTRAINTS

5.3 Setting of the problem

Definition. Consider the following EXTREME PROBLEM WITH CONSTRAINTS (for definite-
ness, the case of minimum): for a given function f : X — R (X € NS) and a given set
A C X (the constraints), to find al pointsin A, where the RESTRICTION f |4 hasits local
minimum:

Locmin(f|a) =? (@D}

Of course, we equippe A with the induced topology, so that

a e Locmin fla < 3U € Nba(X)Vx e U N A: f(x) > f(a) (ae A).

If A= X, weobtain aproblem without constraints.
Definition. By smooth (extreme) problem we shall mean a problem (1) with A given by
an equation
A=g0), (2)

whereg : X — Y isa(sufficiently) smooth (e.g., of class C) mapping from our normed
space X into some another normed space Y. In other words,

A= {x e X| g(x) = 0}. ©)

Example. Theproblemwiththeconstraints A ¢ R? givenasfollows: A = {(x, y}| x = 1}
isasmooth problemwithY = R and g(x) = x — 1.

5.4 General (non-smooth) problems: necessary condition
of locmin

At first consider a motivating example. Let f : R2 — R, A = {(x, y)|x > 0}, f € Dif,
andleta = (X, y) € Locmin f|a. Then

YA
f'a@y=0 if acintA (thatis, if X > 0),
f f . N
r aag(a)zO,aa(ya)zolfaefrA(thatls if X =0).
A7 This follows from a general theorem to be proved below,
butitisclear by itself: in thefirst case we havein fact, locally
7 grad f (that is, in some neighbourhood of a), a problem without

constraints, so Fermat theorem is applicable.
In the second case (X = 0) our function f cannot have a strictly negative derivativein x
at a, sinceit would mean that f STRICTLY decreasesat a in x-direction, which contradicts
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to local minimality at a. The conditions af (a)/ax > 0, af (a)/dy = 0 mean that the
gradient (8f (a)/9x, 9f (a)/dy) of f and the unit outer NORMAL vector v = (—1, 0) to
A at a have opposite directions. In general, as we shall see, the vector opposite to the
gradient at a point of local minimum, must lie in the NORMAL CONE to A at this point.

Tangent vectors
Definition. Let X be a normed space, A C X,a € A. We say that avector h € X is
tangent to A at a, and we write h € T, A, if there exist a sequence {a,} of pointsin A
and a sequence {t,} of positive real number, such that a, convergesto a and tn—l(an —a)
convergesto h:

an —a

heTaA:e Ith} € (0, +o00)IHan} C A:an — a, — h.

n
It is obvious that always 0 € Ty A (takea, = a) and thatif h € T Athenth € T4 A
forany t > O (taket, = t—1t,). Thismeansthat T, Ais
a CONE with the vertex at 0 (the vertex belonging to the
cone).

-1
t; (al_a)

Examples.

1. For a motion f : Ré — RS2 the velocity f/(t) at a
“time”

moment t is tangent to the trgjectory at the point f (t).

2. For adifferentiablefunction f : R — R any vector of

the graph of the derivative at a point X (considered as an

eement of Z (R, R)) istangent to the graph of f at the

\ point (x, f(x)).

| 3. If Aisopen then ANY vector is tangent to A at each
point:

() X

Vac A: T,A=X (verify!).

In particular
¥xe X: Ty X =X,

4. To{0} = {0}.
5.1f Y € X (thisnotation meansthat Y isavector subspacein X), then

vyeY: TyY =Y.

Lemmab5.4.1. Let f : X — Y bedifferentiable at a point a, and let

an—>ad"? .y (@, he X, Ty > 0). (1)
tn n—oo
Then
f(ay) — f
@) -t@ ¢, @
tn n—o0
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5 f(apn) — f(@) feDif(a) (f(@+ f'(@(@n—a) +r(@a—a)— f(@)

Tn Tn
trick an—a r@—a) llap—al
1 ) + — f'(@h.>
Th lan —all Th
—— —_—— —
(€] 1) (€]
—h lan—all—0  —Ihll

_ reSmall
—_—

f’(a)eCont
—— f/(a)h

-0

Normal vectors
NORMAL vectorstoaset A C X arenot “in reality” vectorsin X, they are covectors,
that is, elements of the space
X* = Z(X,R)

(whichis called the buAL spaceto X; recdl that R* ~ R, (RM)* ~ R").
Definition. Let X € NS, A € X, a € A. We say that an element h* € X* isnormal to A
at a, and we write

h* € Ng A,

if h* (asalinear function on X) is NON-POSITIVE on the tangent coneto A at a:

h* e NaA:< Vhe TaA: h*-h<0. (3)

(Recall that wewritelh =1 - x = I (h) for linear|.)
Inthe case X = R" you can IDENTIFY alinear function

I(Xl,...,Xn):|1X1+...+|an

with the vector (I1, ..., Iy) (in the same R™) and think about | - h as about the SCALAR
PRODUCT.
Onceagain, it is clear that N5 A isacone, containing 0 as the vertex.

Examples.

1. For a(smooth) curvein IR3, the normal cone at a point is the normal plane to the curve
at this point.

2. Let KT and K ~ be the positive and the negative quadrantsin R?,
resp. Then

NoK+t =K, NoK™ =K.
3. For an OPEN set A the normal cone at any pointistrivial:

Vae A: Na A= {0} (verify!).

In particular Vx € X: Ny X = {0}.
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Necessary condition of locmin

Theorem54.2. Let X e NS, f : X - R,ae AcC X, f e Dif(a). Ifa € Locmin f|a
then
—f’(a) e Ng A.

< Let ussupposethat — f'(a) € Na A. Then, by definition, 3h € T, A:
— f/(ah> 0. 4)

By definition of atangent vector, 3a, — a (a, € A) 3Ty > O:

an —a

an — a, — h.

n

for all sufficiently
great n since
an—a and acLocmin f|a f( ) f( )
(recall that Ty>0) an) — (@ Lms4.1 4 -
< = » f/(a)h < 0, acontradiction! >
n

Remark. That werequireinthetheorem f < Dif(a), notmerely f € Difg(a), isessential,
as the following counter-example shows:

Example. Let A bethecircleinR? shown on the picture, and
z gFf’(O) let f : R2 — R be defined by the rule

x Oif (x,y) e A
A _
A P 1E(X’y)_{xif not.
y ? Then f e Difg(0), with f/(0) = (1, 0),and0 € Locmin f A,
but

—1'(0) = (=1,0) ¢ No A= {(X, y)| x = 0}, (= y-axi9).
The point isthat the set A isnot “star-like”.

NB InthisexampleTogr f # gr f/(0). <1 gr f = (Ax0)U(gr f/(0)\ A) (seethepicture);
Togr f = gr f/(0) U x-axis >i>

Remark. For f € Dif, the generalized Fermat theorem follows from Theorem 5.4.2. and
Example 3 from prewious set of examples.

5.5 Smooth problems: sufficient conditions

IDEA OF LAGRANGE. The idea of Lagrange was to reduce the problem with constraintsin
guestion:
Locminf|la=? (A=g %(0)

to a problem wiTHOUT constraints for some new function @ (instead of f). The mosts
simple way to construct ® : X — R, starting from f and g, isto consider some LINEAR
(continuous) function A : Y — R and to put

d:=f+rog (1)

Such a function @ is called LAGRANGE FUNCTION, and the functional A € Y* in (1) is
called LAGRANGE MULTIPLIERS (plurall).
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If Y =R, then A € R* ~ R isjust anumber (Lagrange multiplier), if Y = R", then
A e RM* ~ R"isavector (Aq, ..., An) (Lagrange multipliers).
Theorem 5.5.1. (sufficient conditionsfor a smooth problem). Consider a smooth problem
Locmin f|a =2, A =g 0).

If for some A € Y* Lagrange function ® = f + A o g has a local minimum at a point
a € Athen
a e Locmin f|a.

<aelLocmin(f + Ao Q) - 4 e Locmin (f +209)|a = aeLocmin f|a. >
——

2 f|a+ (2 0 9)la
N———
9|A=:00
Remark. The condition “3x» € Y* : a € Locmin(f 4+ A o g)” is NOT necessary for
“a € Locmin f|a”, asthe following counter-example shows:
Example X =R2, Y =R, f(X,y) =X, g(X,y) =X+ x5 hereA={x =0} U {x =
—1},0 e Locmin f|a, but VA € R: 0 ¢ Locmin(f + rg). (Verify!)

5.6 Smooth problems: tangent coneto A = g~—%(0)

Theorem 5.6.1. (on the tangent cone to a graph).

Y Yoo Let X,Y € NS, f : X — Y, and let f e Dif(x).
o () Then
: (xf() T(X,f(x)) o f=or f/(X). (]_)
"
g ‘ , Heregr f dentotesthe graphof f:
X X X

o f:={x fx)|xeX}cXxY.

<1°gr f/'(X) C Tix,x Or f. << Let (h, k) € gr f/(x), that is, k = f’(x)h. Take ANY
sequence Ty | 0, and put X, := X + Tp h, yn := f(Xn). Then (Xn, Yn) € or f, and

feCont(x),Tn h—0

(Xn, ¥n) = X+ Tnh, f (X +Tnh)) —————— (x, T(x)),
(Xn, Yn) = (X, T(x)) (X +Tnh, f(xX+Tnh)) — (x, (X))
Th N Th
obv (h, f(x+Tn) — f(x)) f eDif(x) (h. £/60h) = (h. K):
Tnh n— oo

hence, (h, K) € Tx f(x) or f. D>
2° Tix,tooyor £ Cor f/(%).
< Let (h,k) € Tix, fo)or f,thatis, I{xn} € X, I{Tn} C (0, +00):

(Xn, T(Xn)) —2 f(x)), 2

(Xn, F(Xn)) — (x, T(X))
n

Tn *)OO’ (hv k) (3)
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Relation (2) means that
Xn —> X,  f(Xp) = f(X). 4@

Relation (3) means that

Xn — X f(xn) — f(x)
—-h —

k. 5
Th ’ Th ©)
By Lemmab.4.1., it follows from (4) and (5) that
To) =10t (6)
Th

Comparing (6) with the second relation in (5), we conclude (by the uniqueness of limit in
aHausdorff space) that k = f’(x)h. But thismeansthat (h, k) € gr f'(x) o> >
Remark. In Step 1° we used just G-differentiability of f at x, but in Step 2° we have
used F-differentiability essentially, and this condition of F-differentiability is essential
for validity of the theorem, as the following counter-example shows:

Example. Let A be a CIRCLE, shown on the picture, and let f : R2 — R be defined by
therule

OiIfx,y) €A

Y- f(X’y)z{xif(x,y)eA

Then f e Difg(0), f/(0) = 0, gr f’(0) = R2 x 0, but Togr f =
(R? x 0) U (R(1, 0, 1)). (Verify! Compare Ex. 2.9! That examplealsois
0 3 Suited!)

Theorem 5.6.2. (on the tangent cone to g~1(0)). Let X,Y € BS, g: X — Y, A =
g71(0),a € A(thatis, g(a) = 0), g € C§(a), g'(a) € Sur (that is, g'(a) is SURECTIVE:
g (@)X =), and let the kernel

K :=kerg'(a) :=(g'(@)) " {0) = {k| ¢'(@)k = 0} ©)
N e’

pre—image, rather
. thanthe
inverse mapping!

SPLITS the space X in the sense that there exists a vector subspace L in X such that:

(i) K, L e BS (when equipped by the induced norm);
(i) X=K @@L (thatis, X =K + Land K NL = {0});
(iii) X~ K x L (that is, more precisely, the mapping (k,1) — k+1, K x L — X)is
a (linear) homeomor phism). Then

‘ TaA=kerg'(a). (8)

Note, that K as the pre-image of a closed set is CLOSED, so the condition K € BS
is fulfilled automatically (a closed set in a complete metric space is also complete, when
equipped by the induced metric).

Note also, that in FINITE-DIMENSIONAL case (X = R™) ANY vector subspace splits
the whole space 1, so you can forget about this condition if you wish deal just with
finite-dimensional situation.

14 Choose an orthonormal base in K , and extend it to an orthonormal basisin R"; the subspace, generated
by the “new” basis vectors, will be the desirable L. >
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<1 1° Without loss of generality (wlog) we can assumethat a = 0. Otherwise we consider
anew mapping § : X — Y, defined by the rule gth) = g(a + h). It is clear that
§(0) = g'(a),and that A:=§1(0) = g~1(0) —a = A— a, that is, Aisthetransation
of A byf the vector —a, so that Tg A = T4 A.

L A 2° By (i)-(iii), we can assume that g isamapping K x L — Y.
Denote by g and g; the corresponding partial derivatives:

U 3° gx (0) = 0. < K = ker g'(0). o>
4° g (0) € Sur. <1 Since g'(0) is surjective

VyeYakheKxL:y=gO- k) < g @k+g, 0l =g O
———

%o

Thismeansthat g; (0) is surjective. b>
5° g (0) € Inj (that is, iSINJECTIVE). << Let| € L and g (0)l = 0. Then

/ g / /
g - 0.1 2 gl (00+g Ol =0,
—_——  —
0 0
which means that

0, ekerd(0) =K x0 (weidentify K and K x 0OI).

If follows (by (ii)) that| = 0. o>

6° By 4° and 5°, g| (0) € Bij (isBIJECTIVE). Hence, g; (0) € Iso(L, Y), infinite dimensi-
onal case automatically (any linear map is continuous!), and in general case by so-called
Openness Principle from functional anaysis.

7° By Implicit Function Theorem, 3U € Nbg(K) 3V € Nbg(L) 3¢ : U — V :

1L geg=ANU x V),

2. ¢ € Dif(0),

3. ¢'(0) =—(g; (0)) "t o gr (0) = 0.

inverse map! —
%o
It follows from 3), that gr ¢’ (0) = K x 0 = ker g’(0).
8° By Theorem 5.6.1.,gr¢’(0) = To A. >
Theorem 5.6.2. says in particular that the tangent coneto A is a VECTOR SUBSPACE

in X. In such a case any normal vector is ORTHOGONAL to each tangent vector:

Lemma 5.6.3. (on orthogonality). Let X € NS, A C X,a € A. If T4 A is a vector
subspacein X, then
Vh e TaAVh* e Na A: h*.h =0.

If h* . h = 0 then we say that h* and h are orthogonal (in finite-dimensional case it
isusual orthogonality).
<1 By the definition of anormal vector, h* - h < 0. But we have also —h € T, A (since
Ta A is a vector subspace), so it holds also h* - (—h) < 0, that is, h* - h > 0. Hence,
h* .h=0. >

Corollary 5.6.4. In conditions of Lemma 5.6.3.,

Vh* € Ng A: Ta A C kerh*.
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5.7 Smooth problems:. necessary condition

Theorem 5.7.1. (on Lagrange multipliers). Let X,Y € BS, and let (see the diagram)
A:=g10),acA, f eDif(a),ge Cl(@),g' (@) e Sur.lf

a € Locmin f|a, (1)
then
I eY(=ZLN,R):(f+xrog)(@a=0. 2
——
=
X f R
gn 7
Y

Thus, the theorem says, that there exists Lagrange multipliers A such that the corre-
sponding Lagrange function satisfies at the point a Fermat condition.
Before the proof consider amodel example:

Example. Let X = R2, Y = R, f(x,y) = x2+Vy2 g(Xx,y) = x — 1. Here A =
{(x,y)x=1},andVb e A: Th A= {x =0}, NpA={y=0}.
B g

=:{x=1}

Now, A € R* ~ R may be hereidentified with areal numbers, so our Lagrange function
hasthe form

.y DX, y) = X2+ y?+ A(x — 1).
[ d Condition (2) gives (for a =: (X, ¥))
'(@) = (2X+2,29) = (0,0). (3

q X
level ) Conditiona € g~1(0) gives
linesof || |9 @=(20) £—1=0. )

level It follows from (3) and (4) that
\ linesof g

TA A

Thus the unique candidate for a point of local minimumisa = (1, 0), and it is easy
to verify that really a € Locmin f|a.

The necessary condition — f/(a) € N3 A meanshere(since T, A isavector subspace
of R?) that grad f |4l Ta A. So grad f |, isorthogonal at a both to the level line of f (as
the gradient of f) and to thelevel line of g (whichisjust A). It follows (by the formula
dp/dv = grad¢-v), that both f and g have zero derivativein thedirection of the common
tangent line to these level lines, that is, zero derivativein y: af/dyla = 39/dyla = 0.
Further, 39/9x|a = 1 # O, so far some’ € R it holds af/0X]a = %.09,/0%|a (namely, for
% =2, forwehave df/dx|a = 2). So, for thisx, both f and xg have ONE AND THE SAME
partial derivatives at a and hence one and the same derivative at a. Hence their difference
f —Ag has zErO derivative at a.

We see that our desired Lagrange multiplier is

NaA

S\

/

X=1, y=0(thatis,a= (1,0)), A = -2

A==\
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Roughly speaking, by adding Ag to f we “rotate” the graph of f around the HORIZONTAL
line, passing through the point (a, f (a)) and parallel to the mentioned common tangent
line, until we obtain the HORIZONTAL tangent plane to the graph.

THE PROOF. <1 1° To avoid appealing functional analysis, werestrict ourselvesby the
FINITE-DIMENSIONAL case (X = R", Y =R™M).
2° By Theorem5.2.1. — f/(a) € N3 A.
3° By Theorem5.6.2., T4 A = kerg'(a).

obv

4° kerg'(a) C ker f/(a). <k kerg'(a) X Ta A ? ’Sc'6'4' ker(— /(@) = ker f'(a). o>
5° ALGEBRAICAL LEMMA (on passing through). Let X, Y, Z be vector spaces, and let
¢ € L(X,Z),y € L(X,Y). Let y be SURJECTIVE. Then the following two conditions are
equivalent:

(a) kery C kerg;

(b) Ix € L(Y,Z) : ¢ = % oy (¢ can be “passed through ).

X ¢, z
N 75
v

<1 (b)=(a): Let x € kery, that is, yx = 0. Then ox 2 3(yx) = 0, that is,
——

0
X € ker¢.

(= (b): Takeany elementy € Y. Sincey € Sur,3x € X : yx = y. Put
VY =X

This definition is correct, that is, doesn’t depend on the choice of x. Indeed, if we have
another x” with the property yx’ = y then

@
yX —=xX)=yX —yx=0=2x —xekay=x —xekeap= oX —x)=0

= ox' = px.
By the very construction, ¢ = A o y. D>
6° By 4°, we can apply 5° to the diagram
x _f® g

g/(a% 7 A
Y

and conclude that In e L(Y,R)(= Z(Y,R),sinceY =R™ : f'@ = Ao g(a).
7° Put A = —A. Then

Chaine
Rule

(f+rog/@ = f@+rog@="f'(@-%iog@=0r

5.8 Problemswith equations and inequalities

As an application consider a classic extreme problem with equations and inequalities to
find local minimums of a given function R" — R on the set

A={xeR"gx)=0,..., gk(X) = 0; gky1(x) =0, ..., g (x) > 0}.
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(All the function are supposed to be sufficiently smooth.)
Description of amethod. At apointa € Locmin f |5 wehavefori = k+1,...,| either
gi(@ =0orgi(a > 0.

According to which of these two possibilities is realized, there 2! % possibilities. A
method of solution the extreme problem is to consider one by another al the possibilities
and apply to each of them Theorem on Lagrange multipliers (TLM) with an appropriate
g.

Weillustrate this method on the following simple example:

Example. Let
A= {x] g1(x) =0, g2(x) > O}.

Put
A1 = g;(0), Az i=g;"(0), By = g; (0, +00)).

The sets A; and Az are closed (as the pre-images of the closed set {0}), and the set By is
open (as the pre-image of the open set (0, +00)). Itis clear that

A= (A1N A2) U(A1N By,

the two intersections being digoint. Let a € Locmin f | a.
There are two possibilities: 1) a € A1 N Ag; 2)a € A1 N Ba.
In thefirst case

a e Locmin f |A} ALNACA .

= aelocminfipn, n A, -

AN A 1M A2
ae AN A

0V (g1 g1 @)
Thuswe can apply TLM with g = (g1, g2) : R" — R2.
In the second case

a e Locmin f|A} A1BeCA

Locmin f Locmin f .
ac AN By acloc |anB, = @ € Loc | A

——
)

(Proof of the last implication: since B, € Op, there exists (U € Nba(R") : U C By =
(A1NBy)NU = A;NU.)
Thuswe can apply TLM withg = g1 : R" — R.






Chapter 6

Riemann integral in R"

6.1 Partitionsand cubes

A partitionof a(bounded closed) interval | = [a, b] isafinitesequence p = (to, t1, .. ., t),
such that

In such a case we write
pePatl.

We say that theintervals Jj = [ti_1, tj] arethe intervals of the partition p, and we write
Ji € Intv p.

AcubeQinR"isaproduct 11 x ... x Iy of nintervals |; = [a;, bj] (maybea; = b; for
somei), we write
Q € CubeR".

The volume of a cubeis defined as the product of the lengths of its edges:
vol Q := (b1 —a1)...(bp — an).

For example, any point x € R" considered as aone-point set {x} isacube of zero volume.
A partition P of acube Q = 11 x ... x I isasequence (py, ..., pn), where p; isa
partition of the interval I;:

PePart(ly x...x 1) P=(p1,...pn), pi € Partl;.

A cube Sof a partition P isaproduct J; x ... x J,, whereeach J; is
an interval of the partition p;:

S SeCubeP:& S=J x...x Jn, J €lntvp;.

Let P =(py,..., Pn) and P' = (pj, ..., pr,) be two partitions of acube Q. We say that
P’ isarefinement of P and we write

P'~P
if for suchi the sequence p; is a subsequence of p.

83
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6.2 Riemann integral

Let f : M — R, M C R". Inthischapter we ALWAYS suppose that f isbounded, that is,
itsimage f (M) isabounded subset of R:

f € Bdw i f(M) € BAR).
If f € Bdy then we can EXTEND f to abounded function on the wHOLE R" by putting
f(x) =0forx e R"\M.

So without loss of generality (wlog) we can (and we shall) assume that our functions are
defined on the whole space.

For agiven cube Q in R" and agiven partition P of Q wedefinethelower sumLp f
and the upper sumUp f of f, correspondingto P, by the formulas

Lp f = (inf f)vol S, Up f = (sup f)val S.

Segt;eP S Se%ep
(Here, e.g., infs f denotesthe infimum of f on S, that is, inf(f (S)).) By boundeness of
f, boththeinfs f and supg f are ever FINITE.

The lower integral of f over Q is defined as the supREMUM of all lower sums, and
the upper integral as the INFIMUM of all upper sums:

L/ f:=sup{Lp f|P € PartQ}, u/ f:=inf{Up f|P e Part Q}.
Q Q

=:L =:U
As we shall seein aminute (Lemma 6.3.3.), the set L lies TO THE LEFT of the set U, so
L U both integrals are finite, and the lower one is less (by “less’ we

I mean “ <", for “ <” wesay “strictly less’):

Lf{ L\JyfR L/Qf§U/Qf.

We say that f isintegrable over Q inthe sense of Riemann if the lower sum iSEQUAL
to the upper one:

f e (R)Int :@L/f:U/f.
L u (Rinte Q Q
[ Y A . . . .
! Insuchacasethiscommonvalueiscalled the Riemannintegral
fo of f over Q andis denoted by

(R)/ f or (R)/ f(X1,...,Xn)dXy...dXn.
Q Q

Asarulewe shall drop (R) and “in the sense of Riemann.”

Examples.
1. f =const=c; fQ ¢ = cvol Q. < For any partition P of Q

Lpc= ) cvaS=c Y Y- cvol Q,

SeCube P SeCube P

and analogously for Up c. >
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1]e—o
a -

—_— .
2.f=-1 0 1 [[71,1] f = 1 (doesnot dependonthevalue« at 0). < Exercise. >

3. The Dirichlet function fpj, : R — R, defined by therule

foir () = {é::ﬁi%

is NOT integrable over, say, [0,1]. <VP € Part[0,1]: Lp fpir = 0,Up fpir = 1, S0
Lf[O,l] foir = 0, Uf[O,l] foir=1. >

4. Any function CONTINUOUS on a cube (that is, in each point of this cube) IS integrable
over this cube. This follows from the LEBESGUE THEOREM below. For n = 1 we obtain
the classic integral of one-dimensional analysis.

TheDirichlet function from example 3 isan example of so called indicator functions:
Definition. The indicator (or characteristic) function of asubset M of aset X is defined
by therule

. lifxeM
M (X) = {Oifx ¢M

6.3 Criterion of existence of Riemann integral
Let f € BARM), Q € CubeR".
Lemma6.3.1.VP e PatQ: Ly f <Up f.

VSe CubeP:infs f <supg f. >
Lemma6.3.2.1f P, P’ € Part Q and P’ >~ P then

Lpfpr/fop/foPf.

<1 The middle inequality is true by Lemma 6.3.1. Let us prove the
left one. Any cube S of the partition P is built from some cubes
S...... § of thepartition P’ (k dependson S), and so

@/S volS=vol § +...+vol §;
hence

S (inf f)vol S = (inf ) vol S| +...+ (inf 1) vol §
~—— ~——
<infg, f <infg, f

If we sum these inequalities over all S € CubeP, we obtainLp f < Lp/ f. Theright
inequality may be proved analogically.
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Lemma6.3.3.VP, P’ e PartQ: Lp f < Up f.

IT N4 U < Takeapartition P” of Q suchthat P” > P and P” > P’. Then
|_f/I '\U f 6.3.2. 6.3.1. 6.3.2.
) i Lpf < Lpf < Upf < Upf>

Lof U,.f
Criterion of integrability. A bounded function f : R" — R isintegrable over a cube Q
inR" if and only if

Ve >03P ePatQ: 0=<)Upf—-Lpf <e. (1)
L U N
C

< 1°Let f € Intg, thatissupL = inf U = ¢, where
L:={Lp f|P € PatQ}, U = {Up f|P € Part Q}.

Let e > 0 be given. By the definitions of supremum and infimum

Lo f ) c [ Usf )
Lf UL HP//ePartQ:Up//f_cfé' (3)

Let P be arefinement both of P’ and P”. Then

6.3.2. 6.3.1.,6.32 ¢ &
Upf—-Lpf < Uprf—Lpf < EJ’_E:& OK.
2° Viceverse, let (1) betrue. Then

infuU—supL <Upf —Lpf<e.

L U <Up f >Lp f
L.f St U,f Since ¢ was arbitrary we conclude that inf U — supL < 0, that is,
infU < suplL.
But by Lemma6.3.3.,
infU > suplL.
Hence,
infU=suplL,

which meansthat f < Intg. >
Remark that the differenceUp f —Lp f which appearsin Criterium, may be written
inthe form
Apf=Upf—Lpf= Y (supf—inff)vols

SeCubep S s
Thisjustifies the following
Definition. Let f € Bdgn, M C R". We define the oscillation of the function f on the
set M so:

Qmf = (sup f) — (inf f).
M M

If M = R" we omit M in the notation.
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Example. 2sin = 2.
Thus
Apf = Z (Qsf)vol S.
SeCubeP

Lemma 6.3.4. (on monotony). If P’ >~ P then Ap f < Apf.
< It follows at once from Lemma6.3.2. >

Exercises.
1

A L floap XA = % (not depending on taking A wiTH the boundary or
WITHOUT).

ol 121
2. fiag id (: f; X dx) = 3(b? — a?) (do not use Newton-Leibniz formulal).

3.1f f,gelIntq then f +gelntg, and [o(f +9) = o f + /5 0.
[Hint:infs f +infsg <infs(f + ), supg f + supsg > sups(f + g).]

Below we omit for short “if. . . then...
4 [qcf =c /o f.
5.f<g=[of </q0
6.‘fQf’ng|f|.[Hint:Qs|f|§st.]

7. f = gon Q\F,#F < oo (F iSFINITE) = [Q f = ng (changing a function on a
finite set does not change the integral).

8.VP e PatQ: [o f =Y sccupep Js f-

6.4 Null sets

We say that aset N C R" isaset of Lebesgue measure zero or anull set if forany ¢ > 0
there exists (AT MOST) COUNTABLE family {Q;} of cubesin R", which covers N and is
such that the sum of the volumes of the cubesislessthan ¢:

N e Null :¢> Ve > 03{Qi}icy : Qi € CubeR", [ JQiD N, > volQ <e.
ieN ieN

(We can, without loss of generality, assume that the family isjust countable, since adding
to our family any countable number of one-point set does not change the sum of volumes.)
In the integration theory null sets are “negligible” in a sense, as we shall see.

Remarks.

1. Emphasizethat Q; may have zero volume.
2. A cube Q has PosITIVE volumeiff it has the non-empty interior:

vol Q> 0& O 4.

3. We obtain an EQUIVALENT definition if we replace the condition UQ; © N by

JQionN.

ieN
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(Proveasan EXERCISE. [Hint: for fixedlq, .. ., I (thelengths of the edges of acube)
thefunctiont — (I1 +1t)...(n +1), R — R iscontinuousand strictly increasing
at0.])

Examples.

1. Any point (that is, aset {x}) isnull. < {x} € CubeR", vol{x} = 0. >

2. Any finite set isnull.

3. Any countable set is null. <« Numerate the points of our set into a sequence {x;} and
take Q; = {Xi}. >

4. Any straight linein R? isnull. <t EXERCISE. >

5. A setin R" which hasan INTERIOR point isNOT null: M # = M ¢ Null. In particular

no cube with positive volumeis null; in fact, vol Q > 0 < Q ¢ Null (prove!). (But there
exist NOT-NULL sets (even in R) with the EMPTY INTERIOR, cf. Exam. 6.7 2.)

Lemma 6.4.1. Any subset of a null set isnull.
<1 Obvioudly. >

Lemma 6.4.2. The union of a countable family of null setsisa null set.
< Let Ny € Null foreachi € N, andlete > Obegiven. Let uswritee =e1+e2+ ...,
whereeach ¢j > 0. For eachi there exists acountablefamily { Qjj } j < of cubes, such that

UJQioN. > volQij<s.
j j
Thenthefamily {Qjj }; jen (Whichiscountable!) covers| J; Ni and satisfiesthe inequality

ZVO| Qij :Z(Zvd Qij) < Zsi =& >
i i i

———
=&

Lemma 6.4.3. If anull set N in R" is comPACT then for any ¢ > 0 there exists a FINITE
family Q1, ..., Qx of cubessuchthat U ; Qi > N, YK ,vol Q; <.
<1 By Remark 3, there exists a countable family {Q;} of cubes such that

UCOQiDN, ZvoIQifa.

ieN ieN
By compactness of N we can choose a finite subcovering, and this finite family is what
we need. >
Remark 4. Thecompactnessconditionin Lemma6.4.3. isessential (see Exercise2 below).
Exercises

1. The Cantor set, the intersection of the sequence

n=1 | |
0 1
=2 3 13 23 1
n=3 — — i
0 1/9 2/9 23 7/9 8/9 1

isa(compact) null set.

2. Let M be the set of rational numbersbetweenOand 1, M := Q N[0, 1]. Then M
iSNULL as a countable set. Prove that there exists no FINITE family 14, ..., Ik of
intervals, such that Ul > M and )" length |; < 1. [Hint: useinductionink.]
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6.5 Oscillation

Let X be anormed space, let M c X, and let f : X — R be a bounded function. The
oscillation of f on M at apoint x € X (usually x € M) isdefined by
the formula

f(xX) :=1limQg, f,
wm F(X) 510 - “Ba00NM

Bs(X) where 2 isthe“global” oscillation, defined in Section 6.3:

QMf:s:\JApf—ﬂf f.

This limit existssincesupBé(XmM f | andinfg;onm f 1 asé | 0.1f M = X we omit
theindex M.

Examples.

1f= 'm s of (0) = 1, 0(—00,0f(0) =0, wi—1,0/f(0) = 3.

foo= 19X TX#0 c0 =2
0 if x=0;

O AN
VAR

Remark. Thevaluewy f (X) doesnot changeif wereplacethenormin X by any equivalent
norm.

Lemma 6.5.1. Let X beanormed space, M C X,x € M,andlet f : X - R bea
bounded function. Then f iscontinuousat x if and only if the oscillation of f at x isequal
to zero:

fIm € Cont(x) & wm f(x) =0.

<Q"=":Let f|v iscontinuous a x. Consider arbitrary ¢ > 0. By supposed continuity
thereexists § > 0 such that

vy eBsc)NM: [f(y) - fOl < 5.

Then

su f<f(x)+§, info f>fX —§&,
Bg(x)EWM 00 +3 Bs ()NM 00 =3

whence it follows that
Qp;onm f < e.

Hence
oM F(X) <e.
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Since ¢ was arbitrary we concludethat wy f (x) = 0.
"&": Letwy f(X) = 0, and let ¢ > 0 be given. Then there exists § > 0 such that

~

Qe;onm f < e. (1)

f(x) Hence for each y € Bs(x) N M it holds
iy) obv _ )
[fxX)—fyl <= sup f— inf f <eg,
Bs(x)NM Bs (x)NM
B4¥) which meansthat f |y iscontinuousat x. >

Lemma 6.5.2. Let X be a normed space, M C X, andlet f : X — R be a bounded
function. Then for any ¢ > 0 the set

A; = {Xx € M|om f(X) < &} (strict inequality!)

iISOPEN IN M.
< Let x € A;. We need to show that thereexist § > 0 such that
B;(X) "M C A.. 2

But indeed (since wym f (X) < €) thereexist § > 0and (0 <)’ < ¢
B, () such that

Qsoonm f <€ (3)
B() Lety e 1035(x) N M. Obvioudly thereexists y, 0 < y < §, such
that B, (y) C Bs(x). Then B, (y) N M C B;s(x) N M, and hence

3
QM F < QoM f < &,

which implies that
om f(y) <& <e.

Thismeansthat y € A;, and (2) istrue. >
Let usreturnin R", equipped, say, by the Euclidean norm (||-||5).

Lemma6.5.3. Let Q beacubeinR", and let f : R" — R be a bounded function such
that

e >0Vx e Q: wof(x) <e (drictinequality!). (4)
Then there exists a partition P of Q such that
> (@sf)volS<eval Q.
SeCubeP

<11° Consider arbitrary point x € Q. By (4),
E(SX >0: QBéx(X)me < é. (5)

Let Qx be a cube with the center at x such that (ng # @ and Qx C By, (x). (Such acube

exists, since ||-|lo ~ lI-1l2.) Thecubes{(ogx} form an open covering
of Q. By compactness of Q, we can choose a finite subcovering,
say

Q ) )
B () Qs Qg 4o Xk € Q).

Q
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Thus, (ngl U...U (ngk D Q. Thereforeif we put Qj := Qx N Q, it holds

Q1U...UQx=Q.

2° Obviously each set Q; isacube, and there existsapartition P of Q such that each cube
Sof P iscointainedin some Q;, that is,

SCQNQCB; (X)NQ.

Q, Q, Then
Qsf < Qa, ot < e.
Hence,
@ < Z (Qsf)volS< ¢ Z volS=e¢evol Q. >
SeCubeP 2o SeCubeP

6.6 Lebesguetheorem

The following result is fundamental.

Theorem 6.6.1. (Lebesgue). Let Q be acubein R", and let f : R" — R be a bounded
function. Denote by discontg f the set of all pointswhere f|qg isnot continuous:

discontg f := {x € Q| f|g & Cont(x)}.
Then f isintegrableover Q if and only if discontg f isanull set:
f eIntg < discontg f e Null.
<1 For short put A := discontg f, and put for eache > 0
A i={Xx € Qlwgf(x) > e}

(This set is COMPLEMENTARY in Q to the set A, from Lemma6.5.2. (with M = Q).) We
have

AT (x € Qlag f(0) > 0} 2 | Jix € Qlugf() = £,

k=1
that is,
A= Ay (1)

keN

"="1° Let f e Intg. We need verify that A € Nul. In view of (1) it is sufficient (by
Lemma6.4.2.) to show that for each § > 0

As; € Nul. (2

Let ¢ bean arbitrary positive number. By (Corollary of) Criterium of integrability (Section
6.3) there exists a partition P of Q such that

> (@sf)volS<e. ()

SeCube P
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2° Denote by N the union of the boundaries of al cubes of P:

N = U fr S.

SeCubeP

Obvioudly, N € Null; hence there exists acountable (end even finite, since N is compact;
see Lemma6.4.3.) family {Q;} of cubesin R" such that

JQoN. > vilQ <= (4)

3° Now denote by S the set of all cubes Sof P such that at least one INTERIOR point of S
belongsto As:

S:=(Se CubeP|SN As # ). (5)
Itisclear that
VSe S:Qsf > 6 (6)

(sincefor somex € Sit holds o f (X) > 38). Further,

(6)
YsesVOlS < Yo g8 (Qsfvol S=6"1Y o 5(Qsf)val S
trick (7)
3
< 5 1Y scuep(Qsf)vol S < &5~ L.
obv
4° The cubesfrom {Q; } and from S atogether cover As, since each point of As either lies
in N or isinterior for some cube S, and

(4),(7)
va Qi+Zvo|s < e(1+87h.
SeS

But here § isfixed, and ¢ is arbitrary. We conclude that (2) istrue.

"«<" 5° Let A € Null. We provethat f e Intg, using the same Criterion. Let ¢ be
an arbitrary positive number. Theset A; = {x € Q| wq f (X) > e} isnull (since A, C A)
and is compact (A, isbounded since A, C Q, and A, isclosed since (A,)°NQ = {x ¢
Ql wg f(X) < ¢} isopenin Q by Lemma6.5.2., hence A, is closed in Q and therefore
is closed (since Q is closed!)). By Lemma 6.4.3., there exists a finite number of cubes
Q1, ..., Qk suchthat
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Q g

- = Q,

It isclear that

(since White c (A:)°).

White

93
k R 8
)& > A (8
i—1
K 9
A ;VOI Qi <e. ©
6° Put

¥x € White : wg f(x) <&

Black

Black := (U, Q) N Q

(shadowed on the second picture), and

White:= Q\(U*_, Q) (= cl(Q\ Black)).
(10)

7° Obviously there exists a partition P’ of Q such
that each cube S of P’ lies either in White or in
Black.

Put

W = {S € CubeP’| S C White},
B :={S € CubeP’| S c Black}.

Itisclear from (9) that

> volS <e. (11)
SeB
8° For each S' € W there exists by Lemma 6.5.3.
(in view of 10)) apartition Pg such that
Apy f <evolS. (12)
9° Findly, there exists a partition P of Q such that
P>~P
and
VS e W: Plg > Pg.

(Here P|g denotes, naturally, the “restriction” of
the partition P to S'.) Let us show that P iswhat we
need.
10° For thisend put

(M isfinite, since f € Bd). Itisclear that

VSe CubeP: Qsf < M. (13)
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11° Now,

Apf = Z (Qsf)vol S= Z Z (st)vo|s+z Z (Qsf)vol S.

SeCubeP S'eW SeCube P S'eB SeCube P
Scs Scs

We have
6.3.4. (12)
:Ap‘s/f < Ap,f < evolS, (14)

22 Y Mws=MY 3 visTMY vas T M (15

S'eB SeCube P SeB SeCubeP SeB
Scs Scs
Thus
(14),(15) obv
Apf = Z [1}]2] "< Z evol S+Me & ¢ Z vol S +Me < g(vol Q+M).
SeWw SeWw SeWw
———

obv
<volQ

But ¢ was arbitrary small. So by Criterium, f < Intq. >

Exercises.
1. Let
% if x e Qandx = £, p, qbeing
f(x)= mutually prime integers,
0 ifx¢gQ.

Provethat discont f = Q (denseinR!). So f isintegrable over any (bounded) interval.

3.Let f :R" - R™ f = (f1,..., fm), Q € Cube(®R"), and let each component
function f; isintegrable over Q. Let further g : R™ — R be a CONTINUOUS function.
Prove that the compositiong o f

R RM S R
is integrable over Q. (In particular the product f1 f, of two integrable functionsis inte-
grable.) [Hint: discont(g o f) c U, Discont f; ]
6.7 Jordan measurable sets
Now we define the integral over ARBITRARY (bounded) set. Let f be a bounded function
on R", and let M be a bounded set in R". We say that f is integrable over M and we

write f € Inty, if the product xu f (recall that xu denotesthe indicator function of M)
isintegrable over some cube Q > M, and in such a case we put

/fZ:/XMf.
M Q
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(The result does not depend on the choice of Q, and sometimes we shall drop Q.)
Further we say, that M is Jordan measurable if the constant function 1 isintegrable
over M, and we define the volume of M as the corresponding integral:

MeJMeas:@E/ 1:/XM =:vol M.
M

This definition evidently agrees with our original definition of volume for cubes.

Theorem 6.7.1. A bounded set M in R" is Jordan measurable iff its boundary is a null
Set:
M € MMeas < frM e Null .

< Thisfollows at once from Lebesgue Theorem, since Discont xiy = frM. >

Remark. A null set (and even countable!) may be non-Jordan-measurable (Example 1
below); an open set may be non-Jordan-measurable (Example 2). [All the null setsand all
the open ones are LEBESGUE MEASURABLE.]

Example 1. Theset Q N[0, 1] is not Jordan measurable. (Cf. Example 1.2 3.)

Example 2. We construct a bounded open set in R by the following procedure. Write

%281+82+... (i >0

(eg.&i =27171).
Sep 1. Take the interval of the length &1 with the center common with the center of
theinterval [0, 1]:

&
\ ‘ |
| |
0 1

Sep 2. Take 2 openintervals, each of the length %82 with the centers common, resp.,
with the centers of 2 intervals complementary in [0, 1] to the open interval constructed in
Step 1.

1 1
| 28 & 28& |
| 1 ‘ 1 |
0 1

Sep 3. Take 4 open intervals, each of length ;1183, with the centers common, resp.,
with the centers of 4 intervals complementary in [0, 1] to the open intervals constructed
in Steps 1 and 2:

1 1 1 1 1 1

28 28 48 & 18 28 483
| n ‘ I ; £ ‘ I |
0 1

Theunion M of al constructed by this procedure open intervalsis a (bounded) open
set, which is not Jordan measurable (but is LEBESGUE MEASURABLE, with LEBESGUE
MEASURE 1/2).

Exercises
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1. Prove the assertion of Example 2. [Hint: prove at first that fr M = [0, 1]\ M; then
prove by inductionin k, that there exists no finite covering of fr M by intervalswith
the sum of thelengths < 1/2 (cf. Lemma6.4.3.).]

. Any coMmPACT null set is Jordan measurable (and its volumeis equal to 0.)

3. Provethat

N

volM =0= M € Null
and that if M € JMeasthen

volM =0« M e Null

4. feBdvoM=0= [, f=0.

5.
VoM =0 Ve > 03k e N3Qy,..., Qe Cube: U, Qi O M,
Zik:lvolQife
& Ve>03keN3IQp.....Qce Cube: JQ DM,
ZikzlvolQifs

6. volM = 0= vol M = 0. (Remark that M e Null & M e Null!)

6.8 Fubini Theorem

This theorem says about possibility to reduce calculation of the integral over a product to
calculation of integrals over the factors.

Theorem 6.8.1. (Fubini). Let A be a cube in R", let B be a cubein R™, and let f :
A x B — R bea (bounded) integrable function. Put for each x € A

1(X) = L/ f(x, ), ux) := U/ f(x, ).
B B

Then both the functions| and u are integrable over A, and

Joa'= 0=l

(Recall that the “x-section” f(x, -) of f isthefunctionB — R,y +— f(X,Yy).)
<1 1° Obvioudly, any partition P of A x B may bewrittenasapair P = (Pa, Pg), where
Pa € Part A, Pg € Part B. We have

Se CubeP & S=5ax Sg, SaeCubePa, Sg e CubePs.

2° For any P = (Pa, Pg) € Part(A x B)

Lpf= Y <ir%ff)v0IS: > (SingBf)vol(SAxSB)

SeCubeP SaeCube Pa —
SheCube Py =vol Savol Sg
= E E inf f Jvol Sg | vol Sa.
SaxSg
SpeCube P \ SgeCube Pg
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3[1] <infs,]. <1 Vx € Sa’infs,xs, f < infiqxss f = infsg f(X, ). Hence

weSils Y (inff(x,-))voISB:LpBf(x,-)gL/f(x,-):l(x).
B

Ss cCube Pg

Weconcludethat <infg, . >p>
LLpf <Lp,l.

2° 3 .
<Kl Lpf= E voI Sa < E (|£1f|)volsA=LpAI.|>&>
SaeCube Pa SacCubePy A

5° Up f > Up, u.<x1 Analogously. >t>

I<u
6°Lpyl <Upyu. < Lp,l < Lpyu<Up,u. D>

7° By 3°-5°,
Lp f <Lp,l <Up,u<Upf.
It follows that
sup Lpf< sup Lpl< inf Upl< inf Up f.
PePart(Ax B) PacPart(A) PaePart(A) PePart(AxB)
=/axp | =L f,! =U [al =U [acs f
Therefore
L / = / - / f
A A AxB
which meansthat [, = [, g f.
8° The other equation may be proved analogously. >
Example. Let
| 1 ifx=3y¢Q
| — 2° g
0:0 Foy {O otherwise.
: Thenl =0,u = X{1/2} and
Dirichlet
| = 0
function / f= {{IO*” _ f[o*ll } =0
[0,1]2 0,11 Y = Jio,y X{1/2}

(Remark that f isintegrable, though it has a NON-integrable section f (1/2, -).)
Notations. It is convenient to use the following “classic” notations:

/fz/f(x,y)dxdy, /f(x,-)sz(x,y)dy, /f(-,y)z/f(x,y)dx

(and analogously for L [, U [). E.g. we use these notationsin the corollaries below.

Coroallary 6.8.2. (change of the order of integrations).

(/ f(x,y)dxdy:)/(L/ f(x,y)dy)dx:/(L/ f (X, y) dx) dy
AxB A B B A

(and any fromtwo “ L” or both of them may be replaced by “ U”).
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Corollary 6.8.3. (reduction of adouble integral to a repeated one). Let, in the conditions
of Fubini Theorem, for each x € Athefunction f (x, -) isintegrable. Then

/ f(x, y)dxdy:/ (/ f(x, y)dy) dx.
AxB A\J/B

The condition of Corollary 6.8.3. isfulfilled, e.g., for continuousfunctions(since any
section of a continuous function is also continuous).
In particular, for f € Cont we have (by induction)

bj_ bn
/ fz/ / f(X1,...,Xp)dX1...dXn
[a1,b1]x...x[an,bn] ag an

bn by
:/ ((/ f(xl,...,xn)dxl>...>dxn.
an ay



Chapter 7

Partition of unity. Change of
variables

7.1 Smooth indicators

For afunction f : R" — R its support supp f is defined as the closure of the set, where

f f isnot equal to O:
_.__A,_

supp supp f :=cl{x e R"| f (x) # 0}.

We say that a C*°-function f isasmoothindicator of aset A Cc R"if f|a = 1.
G Theorem 7.1.1. For any open set G in R" and any compact set K C G
@ there exists a smooth indicator f of K with the supportin G:
supp f flk =1, supp f C G.

: —t
<1 1° Theoremistrueforn =1, K =[a, b], g = (c, d). ca bd
<kl Sep 1.

f
— tg? X if — 2 < x 2 _,_4&,_
f = € I T/2<X<m/2, :
1(X) {0 i not. w2 0 T2
Itiseasy to verify that f; € C*° and supp f1 = [—n/2, 7/2]. ¢
2
Sep2.Va<bIfpe C®: fa > 0,supp f2 = [a, b]. a b
W2 —
< Put fp := f1ol, wherel = b >
-Tv2

A fa,b
Sep 3.Va<b Hfayb e C®: fa’b > 0, fayb|(7oo’a] = 0,
fablib,+o00) = 1.

a b <mfa,b(x):z(/axfz)/(/abf2>.u>f>

99
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Step 4. Choose€and d suchthatc <€ < a,b <d < dandput f = fgg — fy 7.
A

SN

<« ¢ € ab dd D> D>

(o]
2° Theoremistruefor K = Q1, G =Q,, where Q1, Q2 € Cube(R").
< Let Q1 =[a1,b1] x ... x [an, bn], Q2 = [c1, d1] x ... x [cn, dn]. By 1°, for each
i =1,..., nthereexistsasmooth indicator f;
of [&, bj] with supp fi C (¢, di). Put

f=11®...Q fn,

that is,

f(X1,...,%Xn) = f1(X0) - ... - fa(Xn).

Itisclear that f iswhat weneed. o>
3° General case. For any x € K thereexist cubes Q}, QY
such that

(0] (0]
xeQl, QO Qce

o/
The cubes Q, cover K. By compactness of K, we can
(0]

’ (o}
Qy Qx choose a finite subcovering, say Q 7. ..., Q, with the
b corresponding “outer” cubes Q7 ..., Q. By 2°, for each

i =1,..., kthereexistsasmooth indicator fi of Q; with

[0}
supp fi CQy’. Put
k
fi= Z fi.
i—1
Itisclearthat f € C™, f >0, flx > 1, supp f C G. Atlast, put

1 = fo10 f,

—h

where fo1 =70 1 = (see Step 3 of 1°). Itisobviousthat f iswhat we need. >

7.2 Partition of unity

Let A C R", andlet O be an open covering of A (the notation: O € OC(A)). A family ®
of C®-functionsR" — R iscalled apartition of unity for A submitted to O (the notation:
® € PU(A, O)),if

1) Voped:0<gp<1;
2) Vx € A 3JU e Nby such that only FINITE number of functions from & are not
identically zero on U (the condition of local finiteness);

3) Vx € Al Y cp9(X) = 1(thisSumisFINITE, by 2));
4) Yo € ®3U € O : suppy C U (¥ issubmitted to O).

Remark. For any coMPACT set K C Athereexistsonly FINITE number of functionsg € @
such that ¢ |k # 0.
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<1 Thisfollows from 2) and from compactnessof K. >

Theorem 7.2.1. For any A ¢ R" and any open covering O of A there exists a partition
of unity for A submitted to O.
< Case 1. Aiscompact. Without loss of generality we can assume that O iSOFINITE.

[0}
1°Vx € A3Ux € O 3Q4, Q% € Cube(R™) : x eQ/, Qx CQ
(o)
A 7. Q4 C Uy The cubes Q cover A. By compactness of A
(o} (o}

Q we can choose a finite subcovering, say Q1, ..., Qy, with the
QX corresponding outer cubes QJ, ... Qy.
[0}
U, By Theorem on smooth indicators applied to Q; and Q' for
eachi =1, ..., k thereexistsasmooth indicator fi for Q; with
(0]
supp fi CQY.

[0} [0}
2°Puton Q}U...UQ} =: G

fi
g

= i=1...,Kk). 1
fi4+... 4+ fx ( SRR &

(Obvioudly, f1 + ...+ fx > 1on G, hencethis definitionis correct.)
3° Onceagain by Theorem on smooth indicators, applied thistimeto A and G, there exists
asmooth indicator fo of Awithsupp fo C G. Put

.| foti on G,
=10 onG°.

Itisclear that ¢1, ..., gk arejust what we need. Indeed,

0o 1°
suppei C supp fi cQ{ c U for someU € O,

=1
Case2. A= U2 A, Al € Comp, Aj C A ;.

A= Uf&i), each set Kj = Ai\f&i_l is compact (verify!), each set G; = 'Z‘i+1/Ai72 is
open, and
Ki C Gj (seethe picture). Put

e
<> 1.

A

Note that in this case A is open (since

O :={UNG;iU € O}.

Then O; is an open covering of K;, and by Case 1,
thereexistsaFINITE partition of unity ®; for K; submitted
to O;. Now put

wr=i2w.

i=1 ped;

This definition is correct since each point of A liesin some G;, and for eachi al the
functionsfrom ®; with j > i + 3 have the supports OUTSIDE G;j, so on each Gj our v is
the sum of a FINITE number of functions ¢.
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At last put for each ¢ € U2, @

o=
4

The family of all such ¢’ iswhat we need.
Case 3. Aisopen. Putfori =1,2,...

Ui = {x e R"|dist(x, frA) < {},

A = ANUSNB;.

Here Bj denotesthe ball of radiusi with the center
at 0, and dist(x, Y) denotes the distance from a point
X toaset Y, that is defined by the formula

dist(x,Y) :=inf |[x —y|.
yeY

For any fixed set Y the function

oy = dist(-, Y)

is continuous (verify!).
We claim that

o
Vi:Ai € Comp, Al C Ay, and A=[ A
i=1

<1 We use the following simple fact from topology: The difference of s set and an OPEN
neighbourhood of its frontier is closed. (Verify!)

By thisfact ANUF e Cl. Further, B; is bounded and closed. Hence A is bounded
and closed, that is, Aj € Comp. (Note that U; is open since Ui = o;a((—3, +1)) and
ofrA IS continuous function.) Other relations are obvious. >

Hence we can apply Case 2.

General case. Put G := Uyc<oU. By Case 3, there exists a partition of unity for G
submitted to O. It is of course also a partition of unity for A. >

7.3 Partition of integral

Now we show that having a partition of unity ® for A we can represent theintegral [, f
asasum of integrals [, ¢f over ¢ € ®.

Lemma 7.3.1. If A, B are Jordan measurable then
AUB, ANB, A\B, B\A (1)

are also Jordan measurable.

<1 Recall that a set is Jordan measurableiff its frontier isanull set. ThusfrA and frB are
null sets and hence their union also isanull set. But the frontier of each from 4 setsin (1)
liesinfrA U frB (verify!) and henceisnull. >
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Lemma 7.3.2. If Aisa (bounded) Jordan measurable set then for any ¢ > 0 there exists
a COMPACT Jordan measurable subset K of A such that

Vol(A\K) < e.

(Note that A\K is Jordan measurable by Lemma7.3.1.)
< frAisacompact null set, hence by Lemma 1.4.3 there exists a finite number of cubes
Q1, ..., Qk suchthat

k
Q o frA, Y vol Qi <e.

1 i=1

k
i=

Put

k
K:=A/JQ.
i=1
This set is bounded (obviously) and closed (as the difference of a set and an OPEN
neigbourhood of its frontier, see the end of the previous section). Hence K is compact.

By Lemma (7.3.1.), K is Jordan measurable (each (Ogi is obviously Jordan measurable).
Atlast, A\A C UQ;, hence

VOl(A\K) <) "vol Qj <e. 1>

Theorem 7.3.3. Let A be a (bounded) Jordan measurable set, and let f be a (bounded)
function integrable over A. Let O be an open covering of A by Jordan measurable sets,
and let ® be a partition of unity for A submittedto O. Then

Af:ZAwf, @

ped

where the series converges ABSOLUTELY.

(Recall that a series Zweq, a, (a, € R) converges absolutely to s if for any ¢ > 0
there exists aFINITE set g C ® such that for each FINITE set @', satisfying the condition
dg C ' C @, it holds

s— ) ay| <e

Pped’

In such a case the series Z¢E¢ |ag | also (absolutely) converges.)
< Consider anarbitrary ¢ > 0.By Lemma7.3.2., thereexistsacompact Jordan measurable
set K ¢ A such that

vol(A\K) <. 3

By Remark to the definition of a partition of unity, the set ®q of all functions ¢ from &
such that ¢ |k # 0, iSFINITE. For any finite ®' such that ®o C @' C @ it holds

[ 2l (-2 rl ()

ped’ ped’

sum is
finite
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ped ped’ ped\ P’

Zwedﬂf‘/’M 1sup|f|/ (Zgo—Zgo)—M/ Z .

3
= M/ gogM/ 1= Mvol(A\K) > Me.
ped\ P’ A\K A\K

=9k =0 PN

N e’
<1

Since ¢ was arbitrary we concludethat (2) istrue. >

Remark. 1. Since Zw@ ¢|a = 1, we can rewrite (2) so:

[Sor-x [

ped ped

that is, we can change [ and )" with places.

Remark. One can use (2) to EXTEND the definition of | A f to non-Jordan-measurable
or/and non-bounded sets A and non-bounded functions f. But we shall not need such an
extension below.

7.4 Change of variables

The following result is a generalization of the known rule of classic analysis concerning
achange of avariablein an integral.

By a change of variables in R" we mean a (C1-)diffeomorphism g of an open set
G c R" onto an open set H c R", that is, a C1-bijection G — H such that the inverse
mappingg~!: H — Gisalso of classC1.

Since any C-mapping is continuous, both g and g~ are continuous, thus g is a
homeomaorphism.

Remember: any (C1-)diffeomorphism is a homeomorphism.

Sinceglog=idandgo g1 = id, it follows by Chain Rulethat for any x € G and
fory := g(x)

@ HWed=id  gmo@ ™y =id
Hence (remember!)

Vx € G: g (x) € Iso(R™) (& detg'(x) # 0).

Theorem 7.4.1. Let g : G — H (G, H c R") be a (C1-)diffeomorphism. Then for any
integrable function f : H — R it holds (below we prefer write g(G) instead of H)

f
G3HSR / f=/|fog|detg/|. 1)
9(G) G

< |. PRELIMINARIES. 1° Thistheorem istruefor integralsin the extended sense mentioned
in last Remark. But we shall prove this theorem only for our ”old” notion of the integral,
and by this reason we shall suppose that our sets G and H are bounded and G is Jordan
measurable. (It followsfrom (1) with f = 1 that H must then also be Jordan measurable.
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2° We say that a Jordan measurable set A C G is nice for a diffeomorphism g and we
write

A € Nice(g),
if for any (bounded) integrablefunction f (on H)

/ =/<f o g) detg]. @
g(A) A

It follows from (2) with f = 1 that g(A) isthen aso to be Jordan measurable. Thus our
aimisto provethat G isnicefor g.

II. CONDITIONAL PART.
@ h L‘LR 1° A e Nice(h), h(A) e Nicek) = A e
Nice(k o h).
<K Forany f integrableonk(h(A)) it holds
/ f:/ (fok)|detk’|=/(((fok)|detk’|)oh)|deth’|
k(h(A)) h(A) A

(p¥)oy=
(oy)(ey) / (f okoh)|det(k o h)|| deth’|

det(BoC)=
(detB)(det@/(f ko h)|det (K oh)oh')|. >
S—

Chﬁrule(k hy’

2° If an open Jordan measurable set A admits an open covering O by sets each of which
isasubset of A and is nicefor a diffeomorphism g then Aitself isnicefor g.
<1 For any set S ¢ G put for short

S=g(9.

Since g is a homeomorphism, the sets U withU e O forman open covering of A; note
that each U is Jordan measurable, for U is nice (see I, 2°). Denote this covering by O.

By Theorem 2.2 there exists a partition of unity @ for A submittedto O. For any ¢ € ®
put § := ¢ o g1 (sothat ¢ = ¢ o g). Itisclear that the functions ¢ with ¢ € ®, form
a partition of unity for A submitted to O. Denote this partition by . We have for any
integrable function f

A 300

7.33. ~ suppgcU ~
[ ey [l s [ 1
9 ged ' A 7

UeNlce(g)
E f(p o detd’

ped —(fog) (@o0)
——

=¢

Supp §=supp ¢’
et Zf((f o g)ldetgey L /(f o g)| detg'|. o>

ped
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3° Let Qbeacubein g(G). If for anycube Sc Q

/1:/ | detg| ©)
S g~x9

(thatis, (2) istruefor g~1(S) and f = 1), then both pre-images g 1(Q) and g~1(Q) are
nicefor g.
<k1 @) The pre-image for any cube S C Q with vol S = 0 aso has zero volume.

0

(x): | det g'| is a continuous function on the compact g~1(S) which is nowhere 0. >
b) For any cube S ¢ Q and any bounded function f on G

/ f=0.
frg=(s)

xx frg= (9 g~1(fr S). Since fr Sisalfinite union of cubes with zero volume

it follows by a) that fr g=1(S) is afinite union of zero volume sets and hence has itself

zero volume. But the integral of bounded function over avolume 0 set isequal to 0. bbb
¢) For any integrable function f on Q it holds

geH_omeo

VP e Part(Q):Lpf = Z (inf f)vol S
SeCubeP =/s1

. b)
@ > [, jdegi2 [ (fogidegl.
1 S -1
SeCubep’9 (S 2 __ Q
=(fog)ly-1s

It follows that [Q f < fg_l(Q)(f o g)| detg’|. Analogously we conclude that the inverse
inequalityistrue(considerUpf).HencefQ f = fg,l(Q)(fog)|detg’|.Byb)weconcIude
thatalsofé f :fg—l(é)(f oQ)|detg’|. >

[11. ABSOLUTE PART. 1° For any permutation o € &y, each Jordan measurable set
A c R"isnicefor s,, where

So (X1, - -+, Xn) = Ko (D)s - - > Xo(m))-

(Itisclear that s, isalinear bijection R" — R"
and henceis a diffeomorphism.)
&, <k1 The matrix of s, has evidently the determi-

% nant equal 1, so

/(fOSg)|detS(;|=/ fOSUZ/ f(X(,(]_),...,XU(n))dX]_...dX
A —— A A

=1
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change the order of integrations

by FubinlzTheorem / f(yr,....yn)dy1...,dy, = / f. o>
S (A) So (A

2° Theoremistruefor n = 1.
<1 For any [, B] € 9(G)(C R) it holds

Newton— .g-1(g) consider two possible

obv Leibniz cases. g'>0,9'<0
| a®poaltde [ g m=atee [ g
[o.B] g (@) g7 (.8

Hence by 11, 3° the pre-image of any open interval in g(G) is nice for g. Since these
pre-images (which are open intervals) cover G we concludeby 11, 2° that G isnicefor g.
3° Now argue by induction. Let Theoremistrueforn — 1.

4° For any point X € G there exists an open neigbourhood Uy, such that

Olu;, =kohos,, 4

where o € &y, and k and h are diffeomorphism, each of which DOES NOT CHANGE AT
LEAST ONE COORDINATE.
<1 5° We have, putting g =: (91, - - -, On),

ggl ggl

Xl o Xn

. d 0

detg@ =] : ~ : | @ <8—2”Mn1+...+a—?(”|v|m)
90n 90n ! " %

dX1 "7 IXn "

(x): decomposition of the determinant corresponding to the last row.
Since det g'(X) # 0, we have

00

#+ 0, Mpi |z # 0 for somei.
X

£
Take aso the TRANSPOSITION of i and n. Then g o 5, =: § satisfies the conditions

99

. # 0, Mpn| slg 70

SR

If we decompose § into the composition of diffeomorphismsh and k as above, we obtain
the diserable decomposition (4), since§ oS, = goS oS = g.
——

X =id
Thus without loss of generality we can assume that
ﬁ i = n, sothat

L M| 40, Mmlk#0 ©

nle

(Xl""’)gw-l) lk 6° Put X
\ h(x) := (g1(X), . .., Gn-1(X), Xn), (6)
9 so that h DOESNOT CHANGE THE LAST COORDINATE.

We have
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g 091 9%
3X1 U 8Xn71 aXn
deth’ : Do Manls 2 0
* 00n-1 00n-1 9Qn-1 nnls # 0.
3X1 T 8Xn71 aXn
o ... O 1

X

By Inverse Function Theorem, there exists an open neighbourhood Uy of X such that

h|u, € Diffeo.
7° Now put

k:=goh™t 7)
(k is a diffeomorphism as a composition of two diffeomorphisms). This k DOES NOT
CHANGE THE FIRST n — 1 COORDINATES. Indeed, if X = (X1,...,X%Xn) and h(x) =

(Y1, - -, ¥n), then, by (6), y1 = 91(X), ..., ¥n—1 = Gn—-1(X), ¥n = Xn, SO

k(Yl’ B yn) (:7) g(x) = (gl(X), ] gn(x)) = (ylﬂ ] yn—la gn(x)) >
8° Uy e Nice(h).

, < Forshortput X = (X1, ..., Xn—1, Xn ) = (Y, 2),
z —_—— ——~
Q =y =z
Q, h h(y, 2) =: (a(y, 2), z). For any cube Q = Q1 x Q2 in
/ 7 h(Uy) it holds
y Q Y
Fubini o
/ 1 Theorem dz/ dy3=/ dz/ | det (a(-, 2))’ |
Q Q@ Jo Q JatzahQy T
=oh/ay
deth'= 3h(/)z)y Bhiaz —detah/dy Fubini

= / dz/ | deth’| TheXem | deth|.
Q2 @@,27hH(Qu) h-1(Q)

By Il, 3° we concludethat for any cube Q C h(Ug) we haveh—l((og) € Nice(h). But such
the pre-images cover Uy, so, by I1, 2°, Ug isnicefor h. o>

9° h(Ug) Nice(k). <1 Quite analogously. >

10° Ug € Nice(g). <« Thisfollowsfrom (4), 1°,5°,6° and I, 1°. >

11° G € Nice(g) <« Thisfollows|l, 2°, since the neighbourhoods Ug, X € G, cover G
and arenicefor g, by 7°. o> >

Corollary 7.4.2. Let g be a diffeomorphism of an open set G c R" onto an open set
H c R", andlet A C G.Ifvol A= 0thenvol g(A) = 0.

< Exercise. >

NB If gismerely ahomeomorphismthenvol A = 0 % vol g(A) = 0. (A counter-example
can be constructed using two Cantor type sets, the usua one, with zero volume, and a
maodification, with a positive L ebesgue measure)



Chapter 8

Differential forms

8.1 Tensors

By tensor of rank k (or k-tensor), k = 1, 2, .. ., on avector space X we mean ak-LINEAR
functional
Uu: Xx...x X—>R.
———

k—times

The set of al k-tensorson X we denote by LX(X):

LKX) :i= L(X x ... x X: R).

It is convenient to put

LOX) = R.
Notations. Our main specia caseis X = R", with points x = (X1, ..., Xn). We denote
by ey, ..., e, thecanonical basisin R":

6:=(0...010..0,
I

and by m; the canonical projectionsin R":

TiX =X.
Itisclear that
1 ifi=j,
i€ = dij = {O if not.J &)
Examples.

1. LY(X) = L(X,R) =: X’ (the dual vector space); 1-tensors are oft called covectors,
2. For asmooth function f : R" — R

K k k
fOx) € LEm@®™ c LR,
where Lg,m(X) denotesthe set of all syYMMETRIC k-linear functionals.

109
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3. For any A € L(R", R") we can define a 2-tensor ua by the formula
ua(h, k) := (Ah, k),

where (-, -) denotesthe scalar product in R". (The correspondence A — ua isabijection
L(R", R") — L2R").
4. (Elasticity theory.) Let f (x) denotesthe position of apoint x of a(3-dimensional) body
after a deformation. The 2-tensor generated (in the sense of previous Example) by the
operator

3(F700+ £/00T) —id

(here f/(x) € L(R3, R3); the symbol T denotes the transposed matrix; we identify linear
operatorsin R" with their matrices) is called deformation tensor.

The 2-tensor generated by the operator v — F, where ¥ isthe unit normal vector to some
flat section of the body, and F is the force that acts “on 1 cm?” of
the surphace of that graf of our persected body for which v isOUTER
normal vector, is called the stress tensor. The known Hook law says
that the stress tensor at a point linearly depend on the deformation
tensor at this point. The corresponding matrix describesthe elasticity
properties of our body at the point in question.

5. The determinat can be considered as a tensor:

det(hy, ..., hp) =

(wherehj = (hj1, ..., hjn) € R").
The main operations over tensors are TENSOR PRODUCT and PULL-BACK.

Tensor product
Letu e LP(X),v € L%X), p, q > 1. Thetensor product u ® v is defined by the formula

ug® U(hl, P hp+q) = u(hl, ey hp) 'U(hp+1, ey hp+q) .
eR eR

Itisclear that u ® v € LPTA(X).
Fort e LO(X) = R it is convenient to put

t®u:=tu.

NB Ingenera uU® v # v ® U.

Example. InR", 7j ® 7 corresponds (in the sense of Example 3) above) to the operator
A with the matrix with just one non-zero element which is equal to 1.

[i]
< (i @ wj)(h, k) = (mih) - (wjK) = hik; = (Ah, k). >
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Theorem 8.1.1. The operation ® is distributive and associative:
U+uwRVv=Uu1R®V+U2R v, U® (11 +12) = U 11 +UQ v2,

tU®v) =) ®v=UuUR (tv), U Quw=Uu® (v ® w).
< Easy exercise. >

Theorem 8.1.2. (on basis of LX(R™)) For any k = 1,2, ... the products 7, ® . .. ® i,
(ij € {1,...,n}) forma basis of the vector space LX(RM). Hence,

dimLK@R") = nk.

<1° letu e LX®RM). Then

n n
ucthy,...,hgy) =u (Z hy, &, ..., Z hkikak)

i1=1 ik=1
uelk &
= Z hai; - . . hii, uEy, ..., 6y
11,0, 'k:1=(m1®...®nik)(h1,~~~ahk) =iy ik
n
= Z i, 47T, Q... Qi (hls ’ hk)
i1,...,ik=1

Hence,

that is, our products span LX(RM).
2° They are linearly independent. Indeed, let

n
u= Z Ay i T ®...Qmy =0

i1,...,ik=1
Applying thisto (&, ....e), we obtain, by (1),

a; iy =0.0

Ik

Pull-back

Let X,Y be a vector spaces, and let | € L(X,Y). Forany v € LX(Y) we define the
| v pull-back I*v of v, putting

X -
* I*v)(hy, ..., h) ;== vdhq, ..., Thy).
LK) | LKCY) (Mv)(hy k) =v(lhy k)
Itisclear that

I*v e LX(X).

So we “pull” thetensor v “back” to X.
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Example. For k = 1 we obtain the operator I* : Y/ — X’

R which act so:
Iy /7 NY v v ol
= ol.
X —I) Y y y
* v/ o\ _ /
X! | v < (*yHh=y'dh) =( ohh. >

This operator between the DUAL spaces is called the dual operator to|. Note that |*
act in the oPPOSITE direction.

Theorem 8.1.3. Pull-back RESPECTS tensor product:
f*luv) = (f*u) @ (f*v).

< Easy exercise. >

8.2 Asymmetrictensors

A tensor u € LX(X) (k > 2) is called antisymmetric if it has value 0 at any point
(h1, ..., hy) which has two equal components. The set of all antisymmetric tensors we
denote by AK(X). Thus,

ue AKX):eu(...h,....h,..)=0.

It is convenient to put
AYX) =LY X) (= X)),
A%(X) = LX) (= R).
Remark. An equivalent description is such: a tensor is antisymmetric iff it changes the
sign by any transposition of its arguments:
ue AKX) s u...h,....k..)=—u(...k,....h ..)
(all others arguments remain unchanged).
<“=":u....,h+k,....,h+k,..)=uC...,h,....h,..)+u(....,h ...,k ..)+

=0 =0
ui...,k,....h, .. ) +ul..,k ...k, ..,

henceU(. .., Ny Ko )+ U Koes i Pyt ) = O,
“<”u(...,h,...,h,..)=—u(..,h,...,h .. ), henceu(...,h,....h,..)=0. >
Examples.

1. det.

2.Let Ae L(R",RM), and let ua be the corresponding 2-tensor. Then

ua € A°R" & AT = —A

(Weidentify A with the corresponding matrix.) <1 Exercise. > Operators A satisfying the
condition AT = — A, arealso called antisymmetric. A typical exampleisrotationby 90° in

R?, e.g. counter-clock-wise, with the matrix < 10

) . The corresponding antisymmetric
tensor isjust det.
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0-1 hy
< UA(h, k) = (Ah, k) = (kl, k2) 1 0 h2 = hlk2 — h2k1 = det(h’ k) >
Thus,
0-1
<1 0) <« det.

Operator at
From any tensor we can make an antisymmetric one. Viz., put for u € LK(X)

1
@tuy(hy, ..., hi) := o > (sgno)u(he . - .. ho k).

oS¢

(Inthe sum the signs dternate (+, —, +, —, .. .), whence the notation.)
Recall that sgno denotesthe sign of apermutation. It is clear that at u is ak-tensor.

Examples.

1.alt{-,-) = 0. (Recall that (-, -) denotesthe scalar product, whichisasymmetric 2-tensor.)
More generally, alt sends ANY symmetric tensor to O:

ue Sym= datu=0.
NB Theinverseimplicationis not true! See Exercise 8.2.2. 3) below.
2.1fu < A(thatisu = up), thendtu < 3(A — AT). (Verify!)
Theorem 8.2.1. The operator alt has the following properties:

a dte L(LK(X), A%(X)), that is, altu isan antisymmetric tensor, and the mapping
ur atuislinear;

b) ue AK = atu = u, thatis, AK isINVARIANT under alt;

c) at? = dlt, that is, alt isan IDEMPOTENT operator; (alt?u := at(atu));

d) dtu=0= VYv: dt(u® v) =0 (“ bad sheep principle’ : one bad sheep spoils all
the crew).

<1 @) Thesumdefining (atu)(...,h,..., h...) can be splitted onto pairs of the form
4+u(...,h,....,h..)—u(..,h ....h..),

where our two h appear on one and the same pair of places (different for different
pairs). Hence the sum is equal to O.
b) Vu e Ak:
1
dtuthy, ... ho = = > (sgno) u(hs ). - .. No )

oS¢

=(sgno)u(hy,....hk)
1
= (Ktuthy, . o) = uchy, ... h).

c) By a), altu € A¥, hence
dt@tu) 2 dtu.
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1
= m Z (sano)(Uhg 1y, - .., ho () WNo (pr1)s - - -5 No(ptq))-

U€6p+q

If, for afixed og we consider all the o such that
{oD),...,0(p)} = {o0(d),...,o0(p)} (as NON-ORDED set!),

o(p+1 =o00(p+D,..., o(p+a) =oo(p+q),

then the sum over al such such o isequal to 0, since altu = 0. But the whole sum
splits onto such subsums. >

Exercise8.2.2. 1) dtosym = 0.

2) symoadt=0.

3) Give an example of u € L3(R3) such that u # 0, symu = altu = 0.

NB Such an u is not the sum of its symmetric part symu and antisymmetric part alt u.
Only 2-tensors have this property.

Answer:
% if (i, j,k)=(,23),
ugeje =\ -1 if (i, j.k =321,
0 otherwise.

Using the operation at, we can make from tensor product an operation over antisy-
mmetric tensors.

Exterior product
Foru e AP(X) (p>1),v e AYX) (g > 1), the exerior product u A v is defined by the

formula
_ (p+ !

p!q!

UAwv

at(u ® v).

Remarks. 1) u ® v itself isnot in general antisymmetric (give an example!).
2) The coefficient in this formulais chosen to obtain the coefficient 1 in the formula (1)
below.

Example. In R?, 1 A w2 = det. < (1 ® m2)(h, K) = m1h - mok = hiko; hence (1 A
m2)(h, k) = (1+D)!/(A 1) dt(ri®m2) (h, k) = 2(3(m1®72)(h, K)— 1 (m1@m2) (K, h)) =
hiko — kihy = det(h, k). >

Exercise 8.2.3. Provethat foru € AP,u e AY

un U)hl...hp+q = Z (SgnG)(Uhg(]_)...hg(p))(vhg(p+1) ...ho‘(p_l'_q)) (l)
0€6piq
oc()<o(2)<...<o(p)
o(p+D)<...<o(p+q)

Theorem 8.2.4. The operation A hasthe following properties:

a UL+ U)Av=UlAV+U2AYD, UA(v1+12) =UAUvL+UA v,
tuArv)=(fuAv=UA(tv)t eR (distributivity);
b) urnv= (=PI Au(ue AP, v e AY) (“ semi-commutativity” );
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) WAV Aw=UA@AW) =(P+g+D/(PIgIrHadtu®vew) =UAVAW
(Ue AP, ve A% we A") (associativity);
d f*(uav) = (f*u) A (f*v) (pull-back RESPECTS exterior product).

<1a) Obvious.
b) Consider the permutation

o — 1 ... p p+1l...p+g
1+g...p+q 1 ... ¢

It is clear that sgnog = (—1)PY (1 is transposed q times, then 2 is transposed g

times, ... p istransposed g times).
Each permutation o € S p,q can be written antheformo = ¢’ o op. Then

o(p+1) = o'(oo(p+1) =o' (D), ..., o(1) =o' (00(@+1) =o' (@+1),... (2)

and
sgno = (sgno’)(sgnoo) = (=P sgno’. 3)
Hence
+
uAv)hy,...,hpeg) = M atu®v)(hy,...,hpeg)
%,_/
=.C
" (p+ q)' 2 (NN (..o 0 Mo (pi1: - Nacpia)
0€Gp4iq
o=0"000
2.3 ¢
= 0T > (=DPsgno’) (Mo g1y - - - hy' (g p) (o), - - - ho(q))
.U/€6p+q

= (=DPcdtw ® u)(hy, ..., hpig) = (—DPIUA D) (hy, ..., hpiq)-

¢) To verify that
(p+g+n)!
(U/\U)/\ Walt(u@v@w)

we need (after canceling constant factor) to verify that

dt(@tuev) ®v) =dtu vl w).

[ [2
But[1]—[2] *E-alt(@tuev) @w—uvew) at(@tu ® v) — u® v) ®w)
. [3]
PdShe PIAPe () since alt]3] P=- aAt2(u ® v) — dtu ® v) M= 0,

d) Easy exercise. >

Corollary 8.2.5. For any antisymmetric tensor of obD rank its exterior product by itself
isequal to 0.

Sifue AK k € Odd, thenu A u 2 (—1)¥*, whence2u A u) = 0.
—_——
-1
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Basisof AK(RM)
Theorem 8.2.6. For any 1 < k < ntheset {mj, A... A |i1 < ... <ik}isabassof
the vector space AX(R"). hence

. kom (DY . n!
dmA*(R") = (k) = 7k!(n— o1

<1 By Theorem on basis of LK(R"), we can writeany u € AX(R") asalinear combination

of 7, ® ... ® mi:
n

u:= Z e T ® .. ® T 4

(thefirst dots mean anumber coefficient). It follows that

Th8.2.1. 4 atel
u = altu(z)altz...ml@...@mk = Z...a|t(ml®...®mk)
Th82.4. Z G T A A LT Th824.b).cor. Z LT A T
i1<...<ik

Thus, our set spans AK(R"). The linear independence can be proved just asin the case
of LX(RM). >

Corollary 8.2.7. The space A"(R") is 1-dimensional. Hence (since det € A"(R™)) any
element of A"(R") hasthe form

cdet (c e R).

Corollary 8.2.8. InRR",

|n1A.../\nn:det.|

<1 By Corollary 8.2.7., 71 A ... A my = cdet. Applying both sidesto (ey, ..., e,) and
taking into account that i ej = §jj, we concludethat c = 1. >

Corollary 8.2.9. For k > n
AKR™) = {0}.

< Thisfollows from the PROOF of Theorem 8.2.6. >

Theorem on deter minat
Theorem 8.2.10. Let A € L(R", R™). Then

A* det = (det A) det

Here det A denotes the determinant of the matrix of A in the canonical basisin R".

NB Let X be an arbitrary n-dimensional vector space, and let A be a linear operator in
X, A € L(X, X). Then the determinant of the matrix of this operator in basisin X does
not depend on the choice of the basis. <t The matrix in a “new” basis has the form
BMB~1, where M is the matrix in the “old” basis, and B is the “transition matrix”. But
det(BMB~1) = det B det M (det B)~1 = det M. > So we can say about the determinant
of an operator (in afinite-dimensional vector spaces).

<1 By Corollary 8.2.7., A* det = cdet. Hence
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(A*det)er...en =cdete;...en =cC
[1 =1

def. of the matrix
of an operator

(1. dLoF A" et Aer) ... (Aay) & = det A

We concludethat ¢ = det A. >
Theorem 8.2.10. meansthat alinear operator A changesthe volume by det A times. (It
follows aso from Theorem on Change!)

Corollary 8.2.11. If det A = 1, then A* det = det.
In other words, an operator with the unit determinant does not change the volume.

Examples.
1. Forany uy, ..., un € AYR") (= L(RM)

where ujj are the coefficients of thelinear functionu; : R" — R,

UiX = Uj1X1 + ... + UinXn.

2.Foranyus,...,ux € AY@R"), k<n

(UL A...AUhL...hg =

In particular

(g A ATIhy . he =

(Note that the determinant of the transposed matrix is the same.)

8.3 Differential forms

Let X beanormed space, and let U bean open setin X. A differential form o of degreek
(k=0,1,2,...) (or k-form) on U isasmooth (that is, of class CP for some p) mapping

o U — AXX),

that is, a “tensor field” on U, al the tensor being antisymmetric. As to smoothness, we
consider w asamappinginto NORMED sPAacE AK(X) (avector subspacein L¥(X) equipped
with the induced norm). We denote the set of all k-formson U by

QKU).

Examples.
1. Any smooth function f : U — RisaO0-form.
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2. For any smooth function f : U — R itsderivative f’ isa1-form.

3. Asaspecia case of the previousexample, 7/ € AL(R"); for any point x € R" we have
7/ (X) = mj. Thus 7 isa CONSTANT 1-formon R". It is denoted traditionally by

dx;.
Soforany x e R"andany h = (hy,...,hy) € R"

dxi)(X) - h =h;.

4. On R", a CONSTANT mapping w(X) = dety is k-form. We denote it also by dety, or
simply det.
The operations A and * for forms are “point-wise”.

Exterior product
Let w1 € QPL(U), w2 € QP2(U). Theexterior product w; A wy is defined by the rule

VX € U (@1 A @2)(X) i= (@1(X)) A (@2(X)).
Itis easy to verify that w1 A wp isaSMOOTH mappingU — AP1HP2(X), so
w1 A w1 € QPITR2(U).
Moreover we put for f € QO(U)

fAw:=fo,

where
Vx € U(fw)(X) := (f (X)) (@(X)).
N’
eR
Example. OnR",

dxg A ... Adxp = det.
A A... AT =det. >
Theorem 8.3.1. Any k-form w on R" can be written in the form

w= Z fig i OXig A .o A dX,,

i1<...<ik

where fi, _j, are smooth (real-valued) functions.
< It follows at once from Theorem on basis on AK(RM). >

Example. For f € Q0

of of
f'= —dxy +... —dXn.
3X1 1+ aXn n

<1 Apply bothsidestoh = (hy, ..., hp). >
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Pull-back
Let X, Y benormed spaces, let f beasmooth mappingfrom X into Y, andlet w € QK(Y).

‘ We define the pull-back f*w of w by therule

X — Y

f* Vx e X (F*w)(x) = (f')) o (f (X)),
QK(X) —— QX(Y)
where the star in the right-hand side means pull-back for tensors.
Thus, the value of the pull-back of w by f at x is the tensor pull-back by the
DERIVATIVE f’(x) of thevalueof w at f(x).
More explicitly,

(fFFw)(x)hy...hg = o (f (X)) (f' ()hy) ... (f'(x)hp).
Moreover we put for g € QO(Y)
f*g =go f.

Example. For asmooth mapping f : R" — R™, f = (f1,..., fy), it holds

< f*dy)(x) -h = @y;) - (f'(x)h)

dfy/0x1 ... af1/0xn hy
n n
ofi ofi
=2 o5 hi :(Za—xjdxj) h. >

Theorem 8.3.2. The pull-back operation over forms has the following properties
a) f*(w1+w2) = o1+ f*w2 (linearity);
b) f*(w1 Aw1) = (F*w1) A (f*w)) (* respects A); in particular, for g € Q°
f*(gw) = (go f(frw).

< Thisfollows at once from the definitions and the corresponding results for tensors. >

Pull-back of deter minant
Theorem 8.3.3.Let f : R" — R" (thatis f : R"” — R") besmooth, and let g € QO(R").
f g Then

R" - R" = R",
<1 1° f*(det) = (det f’) det.

<K Vx € R": (f*det)(x) = (f/(x))* det(f(x))

——
=det

2° f*(gdet) (go f)f*(det) £ (go f)(det ') det. >
NB In the special case where f is a diffeomorphism, this Theorem describes the change

of a“weighted” volume by a change of variables—compare with Theorem on change of
variables (where we write f instead of g and v.v.).

| £*(gdet) = (go f)(det f') det

Th. on det for tensors

(det f/(x)) det >t>.

Th83.2.,b)
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8.4 Exterion differentiation (operator d)

If we differentiate a form w € QK(X) (asamapping X — AX(X) between two normed
spaces) then we obtain ’'(x) € L(X, AX(X)) c L(X, LX(X)) ~ Lk¥t1(X). In general
o' (X) considered as an element of L*t1(X) isnot antisymmetric, that is, does not belong
to AKt1(X). So we appeal the operator alt.

Operator d
Let X beanormed space, andlet w € QK(X) we definethe exterior derivative (or exterior
differential) dew by therule

Vx € X1 (dw)(X) = (k+ Data'(x) (e AKL(X)), (1)

where m denotes the element of LKT1(X) generated by o' (X):

@' (X) - hoht ... h := (@' (X)ho) -h1 . ... hic. )
—_———
eAK(X)

Isis easy to verify that if w € CP then dw € CP~1, so is sufficiently smooth if w is.
Thus
dw € Q1(X).

Remark. Thefactor k + 1 is chosen to obtain the coefficient 1 in some formulas bel ow.

Examples.
1. For f € QOwehavedf = f/.
2.Forany f € Q°

d?f =0,
where
d?f = ddf).
QR H(x) = @@ ) 2 @) L @+ Dat(T)x) = 2at f/(x) =0. &>
—_— f”7(x)eSym

:f//(x)
3. InR?, d(xdy) = det. <We have w : (X,y) + X2, S0 that ® € L(R?, L(R2, R)),
—
hencew’ = . SO

(dw)((X, ) = (1+ D ata/(x, y)) hk = 23 @hk — &kh)
—_————

=:(hy,h) =:(ks,k2) =w
@ (wh)k — (wk) h = hiks — khy = det(h, k). >
~—— ———
hymo kqmo

Exercise8.4.1. Let A € L(R",R™) and w(x) = (An, ) (¢ L(R", R) = AL(R")). Prove
that
d(z) = uAfAT .

Remark. It can be shown that

k
do(x) - ho...hk = > (=1 (@' (Ohi) - ho... b .. hg,
i=0
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where hj meansthat this term is to be canceled.

Theorem 8.4.2. The operator d has the following properties

a) d(w1 + ®2) = dwy + dwy (linearity);

b) d(w1 A @) = (dw1) A w2 + (—1)98%101 A dw) (“ semi-leibniz’ rule);
0 =0 (d’w = d)dw) (“ self-annihilation” );

d) f*(dw) =d(f*w) (pull-back respects d).

Here deg w denotes the degree of w.

<1 @) Obvious.
b) Let wy € Q", w2 € Q2. We have (for short we drop the argument x)
(w1 ® w2)’hg...hrp4r, Leibnitz e ((w1ho) ® w2 + w1 @ (whho))h1 ... hrygr,

= ((w/lho)hl .. hrl)(a)Zhr1+1 e hr1+r2)
+ ((l)lh]_ cee hl'l)((w/zho)hl';ﬁ»l cee hl’1+l'2)
= (w/lho e hrl)(a)zhr1+]_ e hl'lfl'z) + ((l)lh]_ e hrl)((l)/zhohr1+l e hr1+r2)
= ((,();L ® (,()2)h0 e hrl+r2 + ((,()2 ® (,()?L)h]_ e hrlhohr1+1 e hrl+r2.
To replace hg to the first place we have to make ry transpositions, which yields
the factor (—1)™. After alternating (applying of at) we obtain what we need. We

omitting the details.
c) Theideaisthe same asin Example 2) above. Let v € Q. We have (omitting the

details)
(w)hg ... hr41 = const@t (@t e’))hg. .. hy 11

= const 4 (o
Yo D@k @'k )
{h,k}ctho...hr 41} - * M
+ — other r arguments in one and the same order

= const Z((w”hk —w’kh)..)=0
e
w//ezwmo

d) We consider the simplest casewhere w € Q°, that is, w isafunction g:

X v 4R
We have
(d(f*@)(x)h = (F*g)(x)h = (go )/ (x)h LM ( 9 (F00)) - (F'00h)

=dg
= ((f*(dg)(x)h,
whenced(f*g) = f*(dg). In more general casetheideaisthe same. >

Remark. The semi-Leibnitzruleis NON-wmmetric/\vl.r. to w1 and wy. Only deg w; enters
the rule. The matter is that in our definition of «’(x) we put the derivative to act onto
the FIRST argument. But we could choose anyone. So in essence dw is defined just up TO
THE SIGN! “Physically”, w and —w are same, that is why when integrating over manifolds
(Chapter 6) we need to choose one of two possible ORIENTATIONS of the manifold in

guestion.
Remark. Itisinstructiveto see how semi-L eibnitz ruleinteractswith semi-commutativity:
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d(w2 A w1) = d((—1)""2w1 A w2) = (—1)""2(dwrw2 + (—1) " w1dwy)
= (—)"2((—~1) D205 A dwg + (=) (D)2 dw, A 1)
= dwp A w1 + (—1)"2wodwy,

r1 “transforms’ intory, asit need to be!
Exercise 8.4.3. Give the proof of d) with all details for the case w € Q1.

dinR"
Theorem 8.4.4. Let w € Q" (R™). If the canonical representation of w is

w= Z fig.i dXip Ao AdX,

i1<...<iy

then dw is given by the formula

do= > dfi_i AdxyA...Adx,

i1<...<iy

< This follows at once from semi-Leibnitz rule for forms and from the self-annihilation
property (d?); recall that fdxi, A... Adx, = f Adxi, A...Adx,. >

Example. InR2, d(xdy) = dx A dy = det.

Closed and exact forms
If dw = 0 (in an open set U) one can saysthat w isclosed (inU). If w = dy (inU) for
some form y then one can saysthat w isexact (inU).
Each exact formisclosed. < w = dyy = dw = d?y =0. >
Theinverse assertion isnot in general true.

Example. Theform
= dx
x2+y2 *

x2 + yzdy
onR?\ {0} isclosed (verify!), but is not exact. (This form arises naturally if one consider
polar coordinatesr, # (x = r cosé, y = r sin@), and by this

y h=(dx,dy) reason is usualy denoted by d@, and though w is not exact!
(But w 1S exact on somewhat less sets,as it follows, e.g., from
do Poicaré lemma))
A

> Poincarélemma

Theorem 8.4.5. Let U be an open ball in Banach space. If aformw is closed in U, then
itisexactinU.
We omit the proof.
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Stokes Formula for Chains

9.1 Chains
By [0, 1] we denote the unit cube [0, 1] x ... x [0, 1] (k-times) in RK. For k = 0 we put
1 [0,1]° := {0}, RO := {0}.
[0,1)2 By acurved k-cube ¢ in R" we mean a continuous mapping
c:[0,1]¢ - R".
1

For short we omit the word “curved” below. If imc ¢ A c R" we say that cisa
cubein A.

Examples. /_C\
1. A O-cubeisjust apoint: ™
2. A 1l-cubeisacurve 0 1 ’ /

3. Theembedingid : [0, 1]% — RX is called the standard k-cube and is denoted by | ¥:

|k = ide |[O,l]k'

Chains
A Kk-chain (in A) isaformal (finite) sum of k-cubes (in A) with integer coefficients, that
is, an expression of the form

2c1 + 3c2 — 5¢3 + 100c¢4,

where ¢; are k-cubes. We identify a k-cube ¢ with multiplication with the chain 1 - c.
In natural way we define for k-chains multiplication by an integer nhumber and
addition.

Faces
For astandard cube | " we define its faces I(L?,a)' i=1...,k, a=0,1, bytherule
I(‘ﬁ,a) 10, 1KY = RX (Xe, .oy Xke1) T (XL ey Xio1s @ Xiy e Xk 1)

123
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Thus, weinsert « into i " place and move all the “tail” to the right by one position.
For any k-cube c we defineitsface ¢ o) by therule

k
I e k
o (i,0) T c @ Cli,w) :=Co0 I(i,oz)'

Operator 0
We define the boundary ac of ak-cube c as the following chain:

K
ac:=Y " Y (-D'"Cja

i=1a=0,1

(an aternating sum of the faces). For chains we define the boundary “by linearity”:

8Zaci ::Za;aci (@ € 7).

Examples.
1_1 1 1 =
Latt=11 —i1t 1 1 2
(ERCHY) 130 Iy T . Igl) , T
-Mao ) Tay| ]+
2_ 12 2 2 2 . ' '
2.01°=150 +1G1 — 151 — 1791, 0); |(220)

—
¥

T 3. 913 three “visible” faces are positive (enter into sum with “+")
gy three “non-visible” faces are negative.

3 @ Theorem 9.1.1. 92 = 0 (that is, 8(3dc) = O for any chain c).
l2o) We do not need this result, so we omit the proof.

Exercise 9.1.2. Verify Theorem for |2,

Closed and exact chains
A chain ciscaled closed if ac = 0, that is, if its boundary is the null chain; c is called
exact (in A) if ¢ = ac’ for some chain (in A), that is, if ¢ is the boundary of some chain
(in A).
By the Theorem above, each exact chainis closed. But not each closed is exact:
Example.
Consider the 1-cubec : [0, 1] — R?, t > (cos2rt, sin2xt)
= c(0)=c(1) (the unit circlein R? \ {0}. We have dc = 0 (verify), so that ¢
is closed, but ¢ is not exact in R2 \ {0}, since ¢ is the boundary
of no chaininR2\ {0}.

9.2 Integral over achain

For any k-formw inan openset U inRX, suchthat U > [0, 1], k = 1, 2, ..., we put

/;k W= /[0,1]k f (1)
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where f isthefunctionU — R, uniquely defined by therelation w = f det. (Recall that
any k-formin RK can be written (uniquelly) in such form; see Chapter 8.)
In more detailed record,

/ fdxg A... A dXp :=/ fdxy...dxn. 2
|k [0,1]k

NB This definition DOES DEPEND on the ORDER of the basis vectors, since det does depend!
For k = O we put

/ o = w(0), (herew e Q0 isaFUNCTION).
jo

Now, let G be an open setinR", let w be ak-formin G, and let c be ak-cubein G. Then

we put
c
[O’ l]k - @ R" w = c*w (3)
G c 1k

C*w | Jw
AK(RK) AKERM

In particular, for a 0-cube ¢ and a O-form w we have

/a) = w(c(0)) (sincec*w = w o ,if w € QY).
c

At last forachainc = ) ac weput

/Ea@ciw:zaj/qw 4

Itisclear that so defined integral iSLINEAR:

/aa):a/a), /(a)1+a)z):/w1+/w2 (x € R).
C Cc Cc Cc Cc

Lemma 9.2.1. (on integral over the boundary). Let ¢ be a k-cube, and let w be a k-form

(bothin G). Then
/ w:/ c*w.
ac 30,17k

< Exercise. >

9.3 Stokesformula

Similarly of properties of the operatorsd and 8 (d?> = 0, 3% = 0), and of the notions
concerning them (closeness, exactness) isnot an accident. Thereisadeep relation between
d and 9, which is expressed by the following

Theorem 9.3.1. Let w beak — 1-formin G(e Op(R")), and let c bea k-chainin G. Then

/c do = /a Cw (Stokesformula) Q)
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<1 1° Atfirst let us provethe folloving fact about pull-back by the standard faces:

dxj if j <i,

(16) o = [ 0 ifj =i, @

dxj_1 if j >1i.

Exer

< (1t a)) 00_h %= (hy,....hi-1,0,hi,..., h_1) whence

—(h1 - hk-1)
(1§ ) dx) = dx; (1§ ) 0Oh =dx;j - (ha, ... hi—1,0.hi, ... 1)
hj ifj <i,
= 0 ifj=i, oo
hj_1 ifj >i.
2° Casec = 1K, w € QK 1(R¥). Calculate the left-hand sideiin (1):

k
Th8.3.1
/lkdw = /Ikdeidxl.../\aX_i/\.../\ka

Th844
/ E dfi AdXy... AQX A ... AdXk
|k ~—
_le dxq+...+D i dxk

k
Th8.24. 20w ts Cor. Z(—l)i*1/ Di fi dxq A ... A dxic 2 Z(—l)i*/ Di fi
k ——————

i=1 =det i=1 [0
Fubini Th Z( 1)|71/ / (/ D; fi (X1, . .., Xk)dX; )Xm. L OX ... dXk
T~ Newt-Leb. T (e Ly X — i (K100, X = .
i

Fubingtrick! Z(_l)Fl /1 o /ldX]_ . dxk
-1 0 0
k
Calculate the right-hand side:

Kk
/ wdef:c’”’/ D fjdxa AL AT AL dX
a1k Y1 Yaoa(-Di*

(Iu)] =1

(4)2 Z( ]_)I+a/k fidxy AL ATX] AL L dXk

IJ =1la= 01 (i)
E) +a Kk * e .
_i%(—l)l /lk—l<|(i’a)) (fidxg A... ATGX] A ... dXk)
*ESPECS A it K «

= (- / I fi

i% = (( ("0‘)) J )
_fJOI(Iu)

@ 0 ifi # ]
Tldxi AL AdRkey ifi =
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_ _ i+t . k
= %:( 1) /|k-1 (f. o I(I,oz)) dx1 A ... AdXk—r

s =det
(1)2 i+a : k
2N (1 / fiolk,
i,a (0.7
def of 'kia +trick . 1 1 1
G Z(—l)”ra (/ fi(xe,...,q, ...,Xk1)> </ ka>
”» 0 0 i 0
k—1 -1
Fubini Th i ! L
= Z(—l)“r“/ fi(Xe, ..., 0, ..., Xk 1)dXq ... dxg
» Jo " Jo |
k
[Yii=X1 o Yic1 = Ximn Y= X Vi = Xis - Y= Xk

) 1 1
= [ [ e e ndy i
i 0 0

02-2(—1)'”/0 /0 (fiy, - 1 Vi)
i,a

— fi(y1,...,0, ..., Yk=1))dy1...dyk.

Theresult isthe same.
3° Casec € k-Cube(G), w € QX(G).

/dwdzef/ C*(dw)*rESp:de/ d(C*w)E/ C'w Lm%z'l'/ w. OK.
c 1k Ik Ik ac

4° General casec = Y aiGi, G € k-Cube(G), w e QK(G).

/da)@zai/dwizai w(é)/ w:/w. OK. >
c G ac; > @ dc; ac
[m——;

def ofg—=ac
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Chapter 10

Stokes Theorem for M anifolds

10.1 Manifoldsin R"

In this chapter by smooth mappings we mean C*°-mappings.
We say that asubset M of R" is ak-dimensional manifold (or simply k-manifold), and
we write
M e MfK@®R™),

if for each point x € M the following condition is fulfilled:

3U € OpNby(R™ 3U € Op(R™ 3 € Diffeo(U, U) :
UNM=aoWUNR"x 0). (1)
cRn—k
(In other words, M is locally, up to a dif-
feomorphism, a k-dimensional vector sub-

space in R".) We call such a mapping ® a
full chart for M at x.

Examples.

1. Each single point set {x} isa0-dimensi-
onal manifold.

2. Each open set in R" is an n-dimensional manifold.

3. The unit circle in R? with the center at 0
is a 1-dimensional manifold. E.g. for the point

(1, 0) afull chartisshown on the picture. (Give
N an analytic expression for ®!)

Exercise 10.1.1. Let G € Op(R™), and let g :
G — RP (p < n) be asmooth mapping. Put

M := g~ 1(0).

Vx e M: rankg'(x) = p

then
M e Mf""P@R").

129
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Here rank denotes the rank of the corresponding matrix. Note that p isthe maximal
possible value for therank of n x p-matrix. [Hint: Let

001/0X1 ... 001/0Xn
gx) =

00p/0X1 ... 09p/0Xn

WIlog we can assume that it is the FIRST mirror that is not O:
001/0X1 ... 001/0Xp
#0
Put
V= (id,g) :R" - R"P x RP = R",
that is,
W(X1,...,Xn) = (X1, ..., Xn—p, 91(X), . . ., gp(X)).
Verify that W' (x) € Iso, and apply Inverse Function Theorem. The inverse mapping
® := W lisafull chart for M.]
Charts

Lemma 10.1.2. Let M € MfX@®R"), and let @ :
=0 U — U beafull chart for M at x. Put

U Vi=UunM, V=xUn®x0), (2
M
p=doi, Yi=mod L (3)
wherer andi arethe canonical projection and

inclusion,~resp. (T (X1, v oy Xn) = (X1, ...y Xk), 1(X1, co X)) = (X, Xk 0,...,0).
Then g : V — R"isasmooth map and is a bijection of V onto V. Moreover

VReV: ¢ e L@\ R (& ranky' () = k). (4)

We call ¢ achartfor M at x (generated by the full chart ®), or a coordinate system on
M at x. The element ¢—1(x) (for any x € V) is called the representative of x in the chart
@, and will be usually denoted by X.
<1 All but the assertion on the rank is obvious. As to this assertion, we have

(©)

Yop=2mod lodoi =moi =idgk,

hence, by Chain Rule,

¥ (X) 0 ¢ (X) = idg« .
Thismeansthat ¢’(X) isinjective, that is, has the maximal possible rank, k. >
Example. If M = R", thenidgn isachart at all points at once.

Transition functions
Let we havetwo chartsfor M at x, ¢1 and ¢» (see the diagram):
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RX X R
N S

g012\71—> V1, (p21\72—>V2.
PutV :=ViNVsand

012 = 03 001 o7 H(V) = 9y H(V), (5)

@21 =91 092 0y H(V) — o H(V). (6)

So defined @12 and ¢21 are called the transition functions for these charts.
In other words, a transition function sends the representative of x € M in one chart
into the representative of x in the other one.

Lemma 10.1.3. The transition function 12 and g1 (see (5), (6)) are mutually inverse
diffeomor phism.

< Itisclear from the diagram, that 912 = 72 0 @51 o®joiq, @1 =m10 @Il o®roir.
Hence both @12 and ¢21 are smooth as compositions of smooth mappings. Now, it isclear
from (5), (6), that 12 and ¢21 are mutually inverse. Hence they are mutually inverse
diffeomorphism. >

10.2 Tangent space

Now we consider tangent vectorsto a manifold in R".
Theorem 10.2.1. Let M € MfK(RM).

R™ _ 1. | Then for each point x € M the tan-
P U ® * gent cone TyM to M at x is a k-
L m — dimensional vector subspace in R";

&/ ‘7(1).1 viz,, for any char ¢ for M at x

U

TX M = Ifﬂ(p’(f(),

lT[l _ /¢Y where X is the representative of x in
X

the chart ¢ (X = ¢~ 1(x)).

< Put g := 72 0 ®~1. Then obviously
MNU =g 0.
By theorem on tangent cone to g—1(0),
TxM =Tyx(M NU) = kerg'(x).

Thus we need to verify that
kerg'(x) = img'(%). 1)
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But, indeed, we have (since ®~1(U U M) c R¥ x 0)

Chaig}Rule g’(x) o (p/(f)\(‘) =0= imgo/(i) c ker g’(x).

go(pzn’zod)flogozo
It remainsto notethat bothim ¢’ (X) and ker g’(x) havethe same dimensionk (sinceker
has dimension k, and since both ¢’(X) and (1) (x) areinjective).
Remark. It is convenient to imagine a tangent vector h from Tx M as an arrow with the

beginning at x and end at x + h (X_—* X+ h). Formally, starting from this point, we
mean by atangent vector to M at x aPAIR (X, h), whereh € Tx M, and we consider the
set Ty M and Ty M asDISIOINT (and if they may coincide as vector subspacesin R".

Representatives of a tangent vectors
Let ¢ beachart for M at x, and let X be the representative of x in ¢. The pre-image by
¢’ (x) of atangent vector h € Ty M (this pre-image is UNIQUE: by
Lemmaon charts, go’(i)Ne Inj) be called the representative of h in ¢

AN _
qW and will be denoted by h).
‘\“\Q
o \h Example. For R" asamanifoldin R" we have

T ¢’ (%) vx: T,R" = R",
0

and in the chart id

ﬁr . o~
Vh: h=h.

Lemma 10.2.2. Let h € Tx M, let o192
be two chats for M at x let X1, X2 be the
h representatives of x in ¢1, 2, resp.; and
leth1, h, betherepresentativesof h. Then

91(0h1 = hy 2

b, o, In other words, the derivative of tran-
- / oy \ % sition function sends the representative of
X - - *.i_H a tangent vector in one chart into the re-
hy b h, presentative in the other one.

M

Q1= 920912 = 91(X1) = ¢5(%2) 0 912(X1)
= @1(XDh1 = ¢5(X2) - 91, (X)h1 = (2). >

=h

10.3 Mappingbetween manifolds. Vector fieldsand forms

A vector field v on amanifold M is a mapping from M into (. Tx M (@l Tx M are
mutually digoint!), that sendsa point x € M into atangent vector to M at x:

viXt v(X) e Ty M.
A k-form w on M is a mapping that sends x € M into an antisymmetric tensor on

Tx M:
X oX) e ATy M).



10.3. MAPPING BETWEEN MANIFOLDS. VECTOR FIELDSAND FORMS 133

SMOOTHNESS of mappings between manifolds and of vector fields and forms on mani-
fold we define as smoothness of their REPRESENTATIVES.
The representative f oF A MAPPING f : M — N (M € MfK®R"), N e Mf'(®R™)
in charts ¢ for M at x and y for

R X R N at y := f(x) is defined by the
V/ f U formula
y &= 1@,
or, equivaently,
¢T _ ~ LIJT _ r::ljf_lofogoiRk—)Rl
R S )/

(for continuous f this last map-
ping is defined in an appropriate
neighbourhood of x).

In particular, the representative of a mapping

f:M—>R"
inachart ¢ for M and the identity chart for R™ is
f=fop=¢*f

The representative v of a vector field v on M inachart ¢ : U — U wedefine asthe

mapping ~ .
7:0 > RK, K> v(X);

in other words,
9" R)V(X) = v(x).
Therepresentative w of ak-formw on M inachart ¢ : U — U isdefined by therule

a0h1 ... hk = w()h1 ... hy,

or, equivalently,
BOh1. .. = 0 (@) (@' ®hy) . ... (¢’ ®hy),
that is,
o= ¢*w.
Smoothness

We say that amapping f : M — N (M, N € Mf) is differentiable at a point x € M
(resp., is smoath), if for any chartsg at x and ¢ at y := f(x) the representative fof f
in these charts is differentiable at X (resp., is smooth). We define the derivative f,(x) of
f at x asthe linear mapping from Ty M into Ty N:

fo(X) € L(Tx M, Ty N),

that acts by therule
f.00h:= f'(h.

In other words, f.(x) isthelinear mapping, represented by the derivative of the represen-
tative of f at the representative of x.
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(It is easy to verify (using Lemma 10.2.2., p.132), that if f has a differentiable
representation in some two charts at x and y, then its representative in any other two
chartsat x and y will be also differentiable, and that our definition of the derivative does
not depend on the choice of charts.)

Example. For any smooth mapping R" — R™M its restriction to any manifold M inR" is
asmooth mapping M — R™M. (Verify!)

A vector field v on M is called smooth if the representative v of v in each chart for
M is smooth. (It is easy to verify, that if v has smooth representativesin each chart from
afamily {¢u}), 9o : Uy — U, such that | JU, = M , then the representative of v in any
chart for M will be smooth, that is, v will be smooth.)

A p-formw on M is smooth (the record: w € QP(M)), if the representative @ of
o in each chart for M is smooth. (Once again, it is easy to verify, that if » has smooth
representatives for some family of chart “ covering” M, then w is smooth.)

Example. For any smooth form on R" its restrictionto M
@M (X) = o (X) [Ty Mx...xTx M

is asmooth formon M.

Exterior derivative
We define the exterior derivative dw of aform w on M as the form, the representative of
whichin any chart for M is the exterior derivative of the representative of w:

dw := do.
(it can be verified that this ” chart-wise" definition is correct, that is, there exists just one
smooth form on M with this property.)

Exterior product
Let w1, w2 betwo formson M. We define their exterior product point-wise:
VX € M (w1 A w2)(X) := w1(X) A wa(X).
Itiseasy to verify that w1 A w2 isaso smooth, and in any chart for M

R

a)1/\cu2=c~()1/\c~z)2.

Pull-back
Let M, N be manifolds, let f : M — N be a smooth mapping, and let w be ak-form on
N. We define the pull-back f*w point-wise:
vx e M: (f*o)(x) = (f.(x)*(@(f (X))
(compare with the definition for forms on vector spaces), that is,

Vhy,...,hgk e Ty M: (F*0)(X)h1, ..., he = o(f () (F.(0h1) ... (FL00hk).
Again, it can be verified that f *w is smooth, and that in any chartsfor M and N
f o = (.
Remarks. 1. The representative @ of aformw on M inachart ¢ for M isthe pull-back:
® =9 w.
2. Just asin the case of vector spaces, for manifoldsalso the operations, d and A RESPECT
each other.
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10.4 Manifoldswith aboundary

A subset M of R" is a k-dimensional manifold with a boundary, or simply a k-manifold
with aboundary (the notation: M € Mf'g(R”)) if for each x € M one of two condition (1)
and (2), isfulfilled, where (1) is the condition from 10.1, p.129, and (2) is the following
condition:

3U e OpNby(R") 30 € Op(R") 3@ € Diffeo(U, U) :

[vaR T § k—1
X=0""xX)eR" " *x 0 , (1)
E]Rn—(k—l)
and ~
UNnM=oUNn@®1IxR, x 0)). )

n—k
(Here R, := [0, +00).) In other words, M is up to adiffeglg%orphism, a k-dimensional
half-spacein R", the point in ques-
tion lying on the boundary of this
half-space.

Note that (1) and (2) cannot be
fulfilled simultaneoudly, since @ is
homeomorphism, and a half-space
(closed!) and the whole space are
not homeomorphic.

The set of al pointsx € M, for
which (2) is fulfilled, is called the
X 19eeer X, boundary of M and is denoted by

oM.

X

Example. If M € MfK(R") then 9M = @ (though fr M # ¢ in general, e.g. for an open
ball).

Exercise 10.4.1. Show that if M € MfK(R"), then aM € Mf*"}(R") and M \ aM €
MFK(®RM).

All the notionsintroduced for manifold “without boundary” (full charts, charts, forms
vector fields, representatives etc.) can be naturally extended to the case of manifoldswith
aboundary. Little complicationsarises with differentiation (" usual” and exterior) at points
of the boundary oM, but dM has zero volume (by Corollary from Theorem Change
Variables), so when dealing with INTEGRALS over manifolds (to be defined below), the
values at boundary points are not essential, and we can just ignore these points. [More
accurately; we define a smooth form on a manifold with a boundary as a form that is
smoothin M \ adM andis cont. on M.

10.5 Orientation
Let X be an n-dimensional vector space, and let
A:={ai,...,an} and B :={by,...,bn}
be two bases for X. We define the sign of A with respect to B by the formula

sgng A= sgndetg az . . . an,
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where detg denotes the determinant with respect to basis B:

n ail ... &n
aj:Za”bi = detga;...an = )
i=1 anl ... 8nn
(Notethat thelast determinant cannot beequal to 0, sinceay, . . ., a, arelinearly indepen-
dent.)
Therelation

A~B:&sgng A= +1

isan equivalencerelation (Verify!) An orientation of X isan equivalent class with respect
to ~. Obviously on X there are just 2 orientations. For a given basis, the orientation,
containing B, we denote by

[B]

the other one by
—[B].

We say that X isorientedif thereis chosen one of 2 possible orientation on X. We denoted
this chosen class

or X
For oriented X we say that a basis A is positive if [A] = or X, and is negative
[A] = —or X.
For R", the canonical orientationis|[ey, ..., en].
Examples.

1.Yo € Gn: [€1),---»8&m] = (sOno)er, ..., en] (Prove!)
2.[—e, e, ...,en] = —[e1,...,en]. (Prove!)

Positivelinear bijections
Let X and Y be two n-dimensional ORIENTED vector spaces, or X = [A],orY = [B], and
let] € L(X,Y) beabijection. We put

sgnl := sgndetl
where det| denotesthe determinant of the matrix of | with respect to the bases A and B:
detl :=detg(lay) ... (an) ({a1, ..., an} = A).

(Itis easy to verify, that this definition of sgnl does not depend on the choice of positive
bases A and B.) We say that | is positiveif sgnl = +1 (resp., negative, if not).

Lemma 10.5.1. A positive linear bijection | between oriented finite-dimensional vector
spaces RESPECTS orientations, that is, sends each positive basis into a positive one.
<LetorX =[A],orY.Let{cy,...,cn} beapostivebasisin X, that is,

detacy...ch > 0. D
Then
Thon det

detg(lcy)...(cy) = (t*detg)cy...cn = (detl) detacyi...ch >0,
—_— —
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which meansthat the basis {lcy, ..., lcn} ispositive. >

Oriented manifolds
We say that a k-manifold M is oriented, and we write

M e Or MfK,

if for each x € M the tangent space Tx M is oriented and if these orientations are
compatible in the sense that for any chart ¢ : V — V for M al all the mappings ¢’ (X),
X e V (which are linear bijections of R onto T, M) have one and the same sign (all
are positive or all are negative), with respect to the canonical orientation of RK.

It isobviousthat if M is orientable (can be oriented), there are just 2 orientation on
M. To fix an orientation on an orientable M, it is sufficient to claim any one chart ¢ as
positive, in the sense that for each point X from the domain of this chart ¢’ (X) is positive.

Examples.
1. Forn > 2 all the (n — 1) dimensional spheresin R" are orientable.

2. Thefamous M 6bius band is not oriented. (Exercise: define the Mdbius band using Two
full charts.)

Positiveinjections
Let N, M € OrMfK and let f be a (smooth) injection of M into N. We say that f is
positive (resp., negative), if for any x € M the derivative f.(x) : Tx M — T N is
positive (resp., negative). Thus, a positive mapping RESPECTS orientations.

Example. The mapping f : Sk — Sk, X — —Xx, where SK denotes
x theunit spherein R¥t1, ispositiveif k is odd, and is negativeif k is even.

Induced orientation
Let M bean oriented k-manifoldwith aboundary. Theinduced orientation
X on dM isgiven by therule: for each x € M
[h1,...,hk_1] € or Tx(dM) :& [v, hy, ..., hk_1] = or Tx M,

where v is the (uniquely defined) unit normal vector to M at X, such that —v isatangent
vector to M at x (notethat TxM is here a (k-dimensional) HALF-space).

Examples.

@1 @O

[v,1] =orM [1]] =oroaM [v,1,2l=0orM [1,2] =0roM

Lemma 10.5.2. Let in the cube [0, 1] its faces im I(‘ﬁ,a) are equipped with with the
orientation induced by the canonical orientationin [0, 1]¥. Then I('ia) ispositiveiffi 4+ «
iseven:

sgnlff ) = (=D
<1 EXERCISE. [Hint: see Example 2 (p. 136).] >
Corollary 10.5.3. Let c be a k-cubein R", and let im ¢ be oriented by the condition that
c ispositive. Let the facesimc; o) be equipped by the induced orientation. Then ¢ o) is
positiveiffi + o iseven: '

SONCiio) = (=)',
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10.6 Integral of aform on an oriented manifold
Throughout this section M denotes an ORIENTED k-manifold with a boundary.

Integral over a chain on a manifold
Let c beak-cubein M (that is, ak-cubein R", suchthatimc c M), and let w € QK(M).
We put just as for cubesin R"
/w::/ c*w.
c Ik

Integrals over chainson M are defined once again " by linearity”:

/ w::Za/w (the sums are FINITE).
> A

Ci

Chart cubes

We say that ak-cubecin M isachart cubeif thereexistsachart ¢ : V — V for M such
that
Voo  ad  c=gplgqx (1)

Thuseach chart cubeisaninjection, soitssIGN isdetermined (with respect to the canonical
orientation on [0, 1]K).
Let w beak-formon M. If there exists a chart k-cube c in M such that

suppw C imc 2

then we put
/ W= sgnc/w (3)
M c

C:=imc,nim
Theorem 10.6.1. This definition is correct,
that is, does not depend on the choice of c: if

c1, Cp aretwo chart k-cubesin M such that

suppw C imcg Nimcy,

sgn01/ w=SgﬂCz/ w.
C1 C2

then

(C) [0,1]'k c(C) R

<1sgnc1/ a):sgncl/ Ciw = sgncy (czo(cglocl))*a)
C1 |k 1k

———
defined only on cl’l(C),
but suppw c C
—sgn01/ (c; oCl) (c )
asak- form

on Rk
= gdet
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Thondet oin clf (gocytcr) det(cyocy) det
|k —

=1:;gn(cgl o 1) |det(c; tocy)|
N e

Chain Rule and
def. of sgn
= (sgncp)(sgncy)
— — 1
—sgncz [ (go e oo)ldec;toc| = snex [ g
[0,1]k Th on change [0,k
of var's

Chw=g det

= sgnczf cngsgnczf . >
|k [+7)

Partitions of manifolds

Lemma 10.6.2. Let M be compact. There exists a
finite covering O of M by RELATIVELY open (that
is, openin M equipped with the topology induced
fromR") sets U, each of which is contained in the
image of some chart cube.

< It follows obviously from the fact that for each
point of M it is fulfilled either (1) or (2) (see the
picture). >

Lemma 10.6.3. For any compact M there exists a finite partition of unity ¥ on M,
submitted to the covering O from Lemma 10.6.2.

(The definition of a partition of unity for manifolds is the same as early, merely
now functions ¢ € @ are functions on M; but we know what is a smooth function on a
manifold.)
<1 Thisfollows from the following lemma >

Lemma 10.6.4. For any M and any covering O of M by relatively open sets there exists
a partition of unity on M, submitted to O.

< BachU € O can berepresented as U’ N M, where U’ isan open set in R". The family
O’ of al such U’ is an open covering of M in R". Let @’ be a partition of unity for M
submitted to @’ Then ® = {p|m : ¢ € ®'} iswhat we need. (Note that ¢|y isasmooth
functionon M (see 10.3).) >

Integral over a manifold
For acompact M and ak-form w on M we put

sy

ped

where g isaFINITE partition of unity for M submitted to acovering O of M by RELATIVELY
OPEN sets, each of which is contained in the image of some CHART cube, and the integrals
in the sum are defined by the formula (3) on p. 138.

Such a covering O and such a partition @ do exists by Lemmas 10.6.2. and 10.6.3.,
and it can be shown that the so defined integral || v @ does not depend on the choice of O
and ©.
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10.7 Stokes Theorem

Theorem 10.7.1. (Stokes) Let M be a compact oriented k-manifold with a boundary in
R", and let w € %"1(M). Then
/ do = / w
M M

where M is equipped by the induced orientation.

< Case 1. There existsachart k-cube cin M such that suppw C int(imc).

(Of course suppw = cl {x € M : w(x) # 0}, theclosureIN M, but since M is compact,

it isthe same asthe closurein R".)

WIlog we can assume that c is positive (if there exists a negative chart cube with the
mentioned property, then obviously there exists also a positive

ime chart cube with the same property). We have

SUPP © / dw:/dw:/ C*dw:/ d(c*w)
M c 1k |k

oM Stokes Th

for chains
= / C'ow = / w =0,
alk ac

im(ac) = U iMC o).

io

sincew = 0on

(Note that Stokes Theorem for chainsis applicable here, since c*w is, by the definition of
a smooth form on manifold, smooth in some open neighbourhood of [0, 1]K.)
Butalso f,,, @ =0,sincew =00ndM OK.

Case 2: Thereexists achart k-cube cin M, such that
I dM Nim(dc) = imcw o), )
Supp W suppw C relint(imc). (2)
Againwlog ¢ is positive, so that

o = 0onall the

/ do asmCasel/ Z( 1)1+a/ wfac%butc(ko)( 1)k/ "
Cii,a) c(k,0)

9 (—pk SgnC(Ok) / w—/aM .

Lm 1=052 (1K

General case: We have

finite!

/d defZ/ oo trick! /(ngAer(pdw)CasalzZ/

2 de=0, ,e ped
since Y p=1
def
=/ w. >
aM
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10.8 Classical special cases

In this section we discuss classical notions of divergence and rotor. For this end we need
some specia 1- and 2-forms, named length element and area element, resp.

Length element
Let M be an oriented 1-manifold (maybe with a boundary) in RS, let v denote the unit
M positive (that is, respecting the orientation) tangent vector to M.
i T The length element ds on M is the 1-form oN M, defined by the
rule

\ ds(x)h := (z, h) \ (heTy M) 1)

Theorem 10.8.1. Let M € Oer%(R3), let © = (11, 12, T3) be the unit positive positive
vector field on M, and let ds be the length element on M. Then

a) ds = 71dx + tody + t3dZ,

b) t1ds = dx, t2ds = dy, 73ds = dz.
Of course, here dx, dy, dz denote the RESTRICTIONS on M of the 1-forms dx, dy, dz on
R3,

<a ds-h @ (t,h) = t1h1 4+ ©hy + 13h3 = 1dX - h 4+ ody - h + 13dz - h =
(11dX + 12dy + 73d2)h.
b) Leth € Tx M. Thenh = ot for somew« € R. Hence
(r1ds)h = r1(ds - h) @ iL(t, at) = dx T = dx - h,

dx-t = =h
and analogoudly for dy, dz. >

Definition. The length of a 1-dimensional compact oriented manifold M in R3 is fM ds.

Area element
Let M be an oriented 2-manifold in R3 (maybe with a boundary), and let v be the unit
normal vector to M, positivein the sense that

[h1, ho] € orM = [v, hy, ho] = or R3,

Thearea element dA on M isthe 2-form on M, defined by
therule

\ dA(X)hk = det(h, k, v) \ (h,k e Ty M).

\

Theorem 10.8.2. Let M ¢ Oer%(R3), let v = (v1, v2, v3) be the positive unit normal
vector field on M, and let dA be the areal element on M. Then

a) dA = v1dy A dz 4 v2dz A dx 4 vadx A dy;
b) vidA=dy Adz, v2dA=dzAdx, vzdA=dx Ady.

<11° For h, k € R3 define the vector product h x k by the rule

vt € R3: (h x k, t) := det(h, k, t). (2)
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) . 3)

h x kZlin{h, k}. 4
(Indeed if t isalinear combination of h and k, then det(h, k, t) = 0.) Hence

Applying (2) tot = g, we conclude that

hxk:(

It follows at once from (2) that

hs hs
ko k3

hz h;
ks kg

hy hy
"1 k1 ko

’

vh,ke TyM: hxk=av  forsomea € R. (5)
. ho ha
2° Proof of @). <kVh.k € Ty M: dAX)hk = det(h,k,v) = vy Ky ks +... =
——
=(dyAdz)hk

(vidy A dz+...)hk. >p>

3° Proof of b). << (vidA)hk = v1(dAhk) = vy detth, k, v) 2 vith x k1) £ vy =

hz h
ater,v) = (erav) 2 fer h ok 2 |28

Definition. The area of 2-dimenstional compact oriented manifold M inR3is f,, dA.

= (dy A dz)hk. >p> >

Theorem on rotor
Let M € OrMf2(R3), and let F = (Fy, F2, F3) beavector field in R3. Put

w = F1dx + Fody + Fsdz
Then
dw = (D2F3 — D3F2)dy A dz+ (D3F1 — D1F3)dz A dx + (D1F2 — D2F1)dx A dy.

We definetherotor rot F of thevector field F asthevector vector formed by the coefficients

of thisform:
rotF = (’ D2 D3 )

F R
/((D2F3—D3F2)dy/\dz+...):/ (Fp dx +..)),
M —— —_— aM ~—

D3 D1
"|Fs R

D1 D2
LT )

Stokes theorem yields

(rotF); v1dA =7ds
whence it follows that
v rot F (6)
/(rotF, u)dA:/ (F, T)ds.
' M M

Physical meaning of (6) is: the FLow of the rotor of a
M yector field through a surface is equal to the CIRCULATION of
T this vector field over the contour.

Remark. 1. Physically, rot F isnot avector, sincethedirection of so definedrot F depends
on definition of d.

2. InEnglishlanguageliterature one use moreoft thetermini “ curl” instead of “rotor”.

3. The so-called Green formula [, adx + Bdy = [}, (38/0x — da/dy)dxdy is a

specia case of (6), corresponding to F3 = 0 and to aFLAT surface, parallel to x, y plane.
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Theorem on divergence

Let now M € Or Mf2(R3) (equipped with the orientation of R3), and let again F be a
vector field in R3. Put

w = F1dy A dz + Fodz A dx + Fzdx A dy.

Then
dw = (D1F1 + D2Fo + D3F3) det.

The quantity inthe bracketsis called the divergence of thefield F and isdenoted by div F:
divF := D1F; + D2F, + D3Fs.
Stokes formulayields
/ (D1F1 +...) det = /(Fldy/\dz+...),
=vq

whence it follows that

/MdivF =/3M<|=, v)dA. 7)

The physical sense of (7) is: the flow of the vector

v field through a closed surface ouTSIDE is equal to the
A = integral of the divergence of the field over the region
inside this surface.







Chapter 11

Functions of complex variable

11.1  Analytic functions

We can identify the set C of complex numbers with the real plain R2. More precisely, if
we put

a:C—R% z (Rez,Imz) =17 (wecal Zthe representative of z),

B1R?> > C, (X,y) > X +1iy,

then
ao B =id, Boa=id.

By thisidentification, the norm in C, defined by the formula
Izll := Izl,

coincides with Euclidean norm in R2. So we can identify C and R? also as topological
spaces.
If
X = 0 C0S0, y =p08no,

we say that o, 6 are polar coordinatesof (x, y) and of z = x + iy and we write

y (X, y) ~{o,0}, and z~ {o,6}.

p _~(xy) _ _
% Eg, 0 ~ {0,0}, O ~ {0,227}, i ~ {1,7/2}, i ~
1, —37/2}.
< {1, —3n/2}

Lemma1l.1.1.1f z; ~ {01, 01} , 22 ~ {02, 02}, then 212, ~ {0102, 01 + 62}.
<1 (01€0S01 + 101 SN01) (02 COSH2 + ip2SiNB2) = 102(COSH1 COSO2 — SiNPy SING2) +

=C0s(61+62)

i0102(SiN61 COSH2 — COSH1 SINGR). >

=sin(61+62)

Lemmall.l.2. Letc=a+io ~ {0, 6}. Consider the operator of multiplication by c

A:C— C, Z+— Cz,

145
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and denote by Athe corresponding operator in R?:
A:=waoAo B.

Then A € L(R?, R?), and the matrix of A isequal to

C A C (a—b)_@(cos@ —sjn9>
b a/ sng cos6 |-
R
R2 2, R?
In other words, A isthe composition of the TURN by the angle 6 and blowing up with
the coefficient o (> 0).

. . . a—-b\/x\) [(ax—by
<1(a+|b)(x+|y)—(ax-by)+|(ay+bx),and(b a)<y>_(ay+bx>' >

C-differentiability
We say that afunction f : C — C isC-differentiableat apoint 2 € C, and we write

f € Difc(2),
if there exists the limit (in the norm)
im 12 =1@ _, f'(2) eC,
z—>2 Z— 27

(z#2)

caled the (C-) derivative of f at z. If G isan open subset of C, and f isdifferentiable at
each point of G, then we say that f is C-differentiablein G, and we write

f € Difc(G).

Examples.

1.z~ Z"isC-differentiableeverywhereif n =0, 1, 2. . ., andisC-differentiablein C\ 0
ifn=-1-2 .. =nz"L

2.2+ Zisnowhere C-differentiable. (Verify!)

C _f, C Notation: Forany f : C — C wedenoteby f thecorresponding

B 1 |« “rea” mapping:

R2 f R2 f~:=ozofo;3,

that is
f(x, y) == (Re(f (x +iy)), Zm(f (x +iy)))
=u(x,y) =(X,Y)
For short wewrite f = u + iv. Thus

f=u+iv:e f~:(u,v).

Theorem 11.1.3. Let f = u + iv. The following conditions are equivalent:

a) f e Difc(2), f'(2) =a+ib~ {o,0};



11.1. ANALYTIC FUNCTIONS 147

_(a—-b\ (cosf —sind
“\b a)T% sne coso )
In other words, C-differentiability is a SPECIAL case of differentiability where the

derivative is the composition of turn an a blowing up with non-negative coefficient.
< Just asintheclassicreal case, f isC-differentiableat z iff it holds the decomposition

o
] 1z1-0

b) feDif@), @ = (gﬂfgi 33@)

Z

fz+)=Ff@+ f'@¢+r(0),

In“R2-language” this means that
6]

fe+0) =fo+ @7 +7@, ~ ——
¢ wzu—o

here f//\(E) denotes the linear operator R? — R, corresponding to the operator of mul-
tiplication by f’(z) (Lemma11.1.2.). So our assertion follows from Lemma11.1.2. >

Corollary 11.1.4. Let f be C-differentiable at a point z. Then

of (2) — (2 of (2)

=if'(2).
aX ay ARG

Here by partial derivativesof f we mean partial derivatives of the mapping
foB:R>— C,(x,y) = f(x+iy),

where C is considered as 2-dimensional vector space over R.
<1 Since differentiability in complex sense is a special case os differentiability in real
sense, and since for real case Chain Ruleisvalid, we have

af (20 af(x+iy)

8 H WA / /
= fp(X,y)- KXt =R@ L0 =1fc@- 1= fc@,
—

X daX
¢ ¢ =1cC
M@ _ 0@ _ i D v B3 0 =t i i
By~ ay = fr(X +iy) 8y(x+|y)_fR(Z) O0.D=fc@-i=ifc(2.>
e e’
=ieC

Cauchy-Riemann conditions

ou/ox au/ay '\ _ ab
du/ax dv/oy ) — \ —b a

in the assertion (b) in the Theorem above it followsimmediately that

From the equality

ou  Jdv au av
o T T (1)
ax  ay ay aX

These are so caled Cauchy-Riemann (or d’ Alambert-Euler) conditions. More precisely,
let G € Op(C). We say that afunction f : G — C, f = u+iv, satisfies Cauchy-Riemann
conditions, and we write

f € CR(G),

if u,v e CY(G) and (1) istrue.
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Analytic functions
Let G € Op(C). We say that afunction f : G — C, isanalytic, and we write

f € An(G),

if f € Difc(G)and f': G — Ciscontinuous.
NB It is possible to show that if f is C-differentiablein G then f’ IS AUTOMATICALLY
continuous. But it is a hard theorem.

Example. z +— z"isanadyticinthewholeC if n € N, andisanayticinC\ 0ifn € Z\N.

Theorem 11.1.5. A function f : G — C is analytic iff it satisfies Cauchy-Riemann
conditions:
An(G) = CR(G).

< Thisfollows at once from Theorem 11.1.3. >

11.2 Complex forms
Forany M e MfK(R™ andany p € (0,1, ..., k} we define
Qf.(M)
asthe set of pairs (w1, w2) € QP(M) x QP(M) written as w1 + iw2; for short we put
w+i0 = w.
We equipe this set by the following structure of vector space over C (below a + ib € C):

(@a+ib) (w1 +iw2) = (aw1 + bwy) + i(bw1 + awy), 1)
(w1 +iw2) + (w3 +iwg) = (w1 +iw3) +i(w2 +iws). 2

Define the conjugate form by the rule
w1 +Fiwy (= w1 — w2, 3
and define the operations A, d, *, |, v Component-wise:

(w1 +iw2) A (w3 + iwa) = (w1 A W3 — w2 A wg) + (w2 A w3+ w1 Aws), (4)
d(w1 + iwp) = dw1 + idwy, (5)
g (w1 +iw2) =g w1 +ig"w2  (g:M = N), (6)

/(wl—i—iwz) ::/ a)1+i/ w2. (7
M M M
Examples.

1. Let x and y denote, in accord with aclassical tradition, the projections (x, y) — x and
(X,y) = yinR2 Then

z:=x+1iy € QL(R?), z=x —iy € Q2(R?),
dz=dx +idy € QL(R?), dz=0Z=dx —idy € QL(R?).

2. Eachfunction f : G — C, f : u+iv, G € Op(C), with sufficiently smooth u, v may
be considered as a complex O-form:

f e Q2(G).
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(In the last relation we consider G as an open set in R2.) What means “sufficiently”,
depends on the context. Sometimes just continuity is sufficient.

NB All theresult for “rea” formsretain (asit is easy to verify) for complex ones, e.g. for
C-formsasfor real ones, it holds

d(w1 A w2) = dw1 A w2 + (_1)degw1w1 A dwo, (8
d>=0 (9)
/ dow = / 10) (for compact oriented M). (20)

M M

Theorem 11.2.1. Let G € Op(R?), and let f, g € Q2(G) (thatis, f and g are functions
G — C). Then the following assertions are true:

a) f eAn(G) & d(fdz) =0;
b) f € An(G) = df = f’dz;
c) df =gdz= f € An(G),g = f".

This can be summarized so:

d(fd) =0« [f cAn|e df =gdz=g=f. (11)

NB Theequationd( fdz) = Oisequivaenttodf Adz = 0 (sinced? = 0), and the equation
df = gdz may be formally written as

df
=9

Both equationssay that d f and dzare proportional (withcompPLEX coefficient) (“ parallel”).
<Letf=u+iv,g=p+iqg.

2__
a) d(fdz) “=°df A dz = (du + idv) A (dx — idy)
(é)(duAdX—dv/\dy)—i—i(dvAdX—i—dUAdy)

[|du—(au/ax)dx+(8u/8y)dy, du:(au/ax)dx+(au/ay)dy|

1 8u+8v 4 au  dv dx A d
N ay  ax ax  ay y-

Hence
ou  Jv au  dv def. Th.11.15.
dfd =06 (—+ =0, —+— =0) ¥ f cCRG f € An(G).
(fdz) ®<ay+8x 8x+8y )@ € G & € An(G)
b) f € ANG) "S> f € CR(G) = df = af/axdx + af/aydy"™ 2 f/dx + i f'dy

= f/(dx +idy) = f'dz
2__
Q) df = gdz = d(fdz) °=°df Adz=gdzAadz=02 f e An2 df = f'dz

obv.

= f'=qg >
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11.3 Integralsof complex 1-forms

Theorem 11.3.1. Let G € Op(C), let ¢ : [0,1] — G be a closed
c(0)= curve (that is, a 1-cubewith c(0) = c(1)), andlet f € Q?C(G) (that
=c(2) is, f : G — C). Then

NS
/df:o.
c

<[ df = fiicdf = fud € 1) = [10' = fo 0 = fo 9Ot = g(1) — g(0) =
=foc=:g

f(c(1) — f(c(0) =0. >
Example. For any n € Z \ {—1}, and for any closed curvein C \ {0}

/z”dz =0.
C

1
< Forn # —1wehavez'dz = d (—z”“) >
n+1

—————
€An(C\0)

Theorem 11.3.2. Let C € CompOr Mf1(R?) (without boundary!), and let
f € Q2(C). Then

f =
- [ar=0
<1/dfs‘°k§”‘ £ 0. >
C oC

Let M beacompact 2-manifoldinR2. Then M isorientable (verify!), and we aways
suppose that M is equipped with the orientation from R2. Further

M = intgz M = M \ aM
(verify!). We say that afunction f : M — C isanalyticon M, and we write

f e An(M),
if itisanalyticin M (we identify R? and C!) and is continuouson M. Thus,

AN(M) := An(M) N C(M).

Theorem 11.3.3. (Cauchy) Let M € CompMf2(R?), and let €

An(M). Then
fdz=0
o |
<1/ fdzswkET“'/ d(fdz =0.>
oM M
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If f ¢ An(M), theintegral can be non-zero, as the following example shows.

Example. Let M = B, (0) (the disc of radius o with the center at
0). Then

/ dz .
— = 27i.
0B,(0) 9B, (0) Z

(Notethat (z+— 1/z) € An(C\ 0).)

/ dz  [dz
3B,(0) Z ¢z

wherec: [0, 1] — R?,t — (o cos2rt, o sin2t). But
h,_/ h,_/

dz . dx + idy (x—|y)(dx+|dy) C*<(x—iy)(dx—|—idy)>
/C7_/C X +iy / x2 + y2 /C x2 4+ y2
B /1 (ca(t) — ica(t))(Ch(t)dt + ich(t)dt
B c2(t) + (1))

1
= 2ni/ (cos2nt —isin2rt)(cos2rt +isin2rt) = 27i. >
0
=1

< Itisclear that

Lemma11.3.4.Let B :=B,(a), f € C(dB). Then

/ fdz
aB

< Leta=:a; +iap. Putc(t) := (a1 + o cos2rt, ap + ¢ sinxwt). Then

< 2momax|f]|.
< QaB||

=.C1 =.C2

1
/|1(f oC) gg; = Vo f(c(t))(c] +icy)dt
=(cy+icy)dt

/ fdz| = /fdz:
B c

Exam. 11.3.5. L,
< 0mtax1 [ f(c(t))(cy +icy)| < 2mpo rralgx|f|. >

= |f(c)lIc] +icy
[ —

=2r0

Exercise 11.3.5. Prove, using Mean Value Theorem, that for any continuous function

f:[0,1] — C
1
/ f (t)dt
0

Exercise 11.3.6. More general, provethat if C € CompOr Mf1(R?), f € Q2(C), then

/ fdz §/|f|ds.
c C

< max | f )]
_0§t§1| (9]
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11.4 Cauchy formula

Example 11.3.6. is a special typical case of the following

Theorem 11.4.1. Let M € Comprg(]Rz), and let f € An(M). Then for each point
aeM(=M\3M)

f(2)d
/ (2)dz =2rif(a) (Cauchy Formula).
oM Z—a

In other words, the values of an analytic function inside aregion are uniquely defined
by the values on the boundary.

< Let ¢ > 0 be such that the disc B := B.(a) liesin M. Obvioudy f(z)/(z—a) €
An(M \ I\C?I). Hence by Cauchy Theorem

0_/ f(z)dz_/ f(2)dz / f(2)dz
Jomd z—a  fim z—a 9B Z—a

So it suffices to show that

f(2)dz .
\/88 Z—_a S—u;ZT[If(a) (l)

Since f € Difc(a), we have

fo=f@+ f'@@z-a+riz-a), @_, )

IZ| 1¢1—0

Therefore,

[ 22 —t@ [ = (f/(a)+ r(Z_"")>o|z. ©

B Z—a aeZ—a Jyp Z—a

[ —
(1 =19(2)

(2

Just asin Example 11.3.6., [1] = 2xi. Asto[2], the function g is by (2) bounded (in the
norm) in some neighbourhood of a, hence, by Lemma11.3.4.,[2] — Oase | 0, and (1)
isproved. >

Theorem 11.4.2. Let M € CompMf3(R?), f € An(M). Then f e C(%O(I\O/I), and

. ! f(2)dz
VneNVaeM:| f™W(@) = / _f@dz 4
neNVace (a) 2721 Joy Z— 2yl 4

Thusif f isjust one time continuoudy C-differentiable, it is infinitely C-differen-
tiable! < For n = 1 thisis Theorem 11.4.1. Let it betruefor n — 1, that is,

vae M: f" D)= nz;il /am (; (_Z):)Z“’ )

Differentiation of (5) in a (which is possible asit can be shown) yields (4). >
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NB For ANY continuousfunction ¢ : M — C, Cauchy formula

1 pd¢
T 27 am ¢ —12

f(2): (6)

defines an analytic function f : M — C, but in general this f, extendedto M as ¢, is
NOT continuous! IFp = f|y5m forsome f € An(M), then Cauchy formuladoesreproduce
the original function f.

11.5 Representation by series

We say that aseries Y 2 5 ¢n, ¢ € C, converges, and we write

o0
Z Ch ~,
n=0

if the sequence of partial sums sy = Zr',“zo Cn converges (in the norm ||z|| = z) to some
ceC,thatis, if [sy — c| oo 0, and in such case we write ) 12y ¢y = C.
—00

Uniform conver gence
Consider a FUNCTION SERIES Y n” g fn, fn 1 C — C.If Y07 fn ~ uniformly inz € A

we write
A
D a2
We say that a function series is majorized on A C C by area series Y ty, th > O, if
Vz e AVn e N:|fh(2)| < tn.

Lemma 11.5.1. Let ) o2, tn, be @ CONVERGING real sequence, and let function series

Y nio fny fn i € — C,ismajorized on A C C by )" t, that is, vn:|fn(2)| < tn. Then

A
Y fa A2,
avze A:
N M e N N N N
ITeg. >
Y @ =) fa@| " "= > f@= > 0@l 3 th 0.
n=0 n=0 n=M-+1 n=M+1 n=M+1

Member-wise integration and differentiation

Theorem 11.5.2. Let C € CompOr Mf}(R?), andlet fn € QX(C) (thatis, fn = un+ivn,
where up, v, are (at least) continuous functionsC — R). If f, —= f UNIFORMLY oOn

C then
/fndz—>/ fdz.
c C

<1 Takinginto account the definition of |, v @, thisfollowsfrom the corresponding theorem
for rea-valued functionson [0, 1]. >
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C
Corollary 11.5.3. Let C € CompOr Mf}(R?), f € QX (C) and } 72 fn X3. Then

[ (i fn) Gz = i [ 1o

Theorem 11.54.Let M € Compr%(]Rz), and let f, € An(M). If f, —2 f UNIFOR-
—00
MLY on M, thenalso f, € An(M), and

VaeMVkeN: £ (a) — f® ().
— 00

< 1° f € C(M) asan uniform limit of continuousfunction.

2° Foreacha € M we have obvioudly f,(2)/(z — a) —= f(2)/(z — a) UNIFORMLY ON
— 00

aM, hence

f(a) = lim f,(a) Cauchy formula 1 / fn(2)dz th us2 1 / f(2)dz
g 3

lim — —
27i Jam z—a 2i Jam z—a
Soby NB from11.4, f € An(M). Thus, inview of 1°, f € An(M). 3°Ya e M ¥k € N

Th 1142 i fn(z)cli(z1 Thil52 ﬁ L)df Thil42 (g o
21 Jom (z — a)kt 2ri Jom (z— ekt

(@)

M
Corollary 11.55. Let M € CompMf2(R?), f, € An(M), 322, fn R3 f. Then also
f € An(M), and

o0
vke N0 =3" 10 inwm.
n=0

Convergencedisc
Bo() Theorem 11.5.6. (Abel) Leta, z € C,a # z. Ifaseries) oo Ca(z—a)"
convergesfor z = 2thenfor eachp > Osuchthat o < |2—a| thisseries
converges UNIFORMLY on B, (a).
<11° Since > cn(2 — a)" ~», the sequence |cn(Z2 — a)"| converges to
zero and henceit isbounded, e.g. by & > O.
2° Now, letz € By(a). Then |z —a|/|z—a| < o/|z— a|] =: k < 1, hence

N

len(z—a)"| < len(2—a)"(1z— al/|2—a])" < ak".

1° <k
<a

Thus, our series is majorized on B,(r) by the converging real series ) k", and our
assertion follows from Lemma11.5.1. >
It followsfromthistheoremthat the set of all pointsz, whereapower series > cn(z—

a)" converges, is either merely {a}, or is the whole C, or lies between IOBQ(a) and B, (a)
for some ¢ > 0. In other words, the CONVERGENCE REGION is, up to the boundary, abisc
with the center at a. We call it the convergence disc.
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Taylor formula
Lemmall5.7.Let M € Comprg(Rz), letz,ae M(= M\ aM),

h h:=z-—a,andlet f € An(M). Thenfor eachn e N
n
1 hnt+1 f(o)de
M @ k2=E‘) k! @n"+ 27i Jam € —2(c—a)"+ 1

=rn(h)
Cauchy formula 1 f (C)dC trick 1 f (C)d{

27 aMm ¢ —2 = 2xi aM B _z—a -
« a)<1 ¢—a>

< f@

—z-a/¢-a=h/¢-a, A-q"H/A-q=1+q+...+7"|

1 f(0) ”( h )” 1 ( h )”“
=_— + d
27i aM;—a(é) {—a 1 h {—a d

(—a

n 1 f(o)de  hML f(£)dg
— k_~
_gh 277i/z) k+1+27‘[i /[) n+1'I>

M (¢ —a) M (-2 —a)
[az ] am

Definition. Let G € Op(R?), f € An(G),a € G. TheseriesY o2, 1/n!- f (M (a)(z—a)"
iscalled Taylor seriesfor f at a andisdenoted by ts, f:

tsafi=)" n—1| fM @) (z—a).

n=0

Theorem 11.5.8. Let B be a disc in R? of a positive radius with center at a.

a) Let f € An(B). Thentsa f ~ f in B.
b) Let> 2gcn(z—a)"~ fin B.Then f e An(l%),andtsaf =Y noCn(z—a)".

Thus an analytic function can be uniquely represented in each “disc of analyticity”
by a power seriesw.r. to the center of the disc.
<a)lLetze B h =z—a.Choosep > Osuchthat z € B 0@ C B.
Then f € An(By(a)) andk := h/g < 1. Hence we havefor the rest
termry, in Taylor formula

h"+1 f(¢)d
Irn(h)| = : / % n
2mi 9By(a) ¢—-2¢—-a
tm1134. _ _ |h|"1 f(&) n+1
= 2mie 2m  teiB, [¢ —z| "1 = oonstk mo’

thatis tsg f ~ f at z.
b)If Y cn(z—a)" ~in l%, then, by Abel Theorem, this series converges uniformly
on each closed disc which is contained in IOS; hence, by Corollary 11.5.5., its sum f is
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andlyticin B, and Vf e NI fW(@) = Y20 S| (en(z—a)" = nlcn. It follows
Z=a

thattsa f => cn(z—a)". 1>

NB This theorem allows to EXTEND analytic functions, if the convergence disc of the

Taylor seriesis greater than the original disc of analyticity. These extensions can lead to

DIFFERENT values at one and the same “outer” point!

11.6 Elementary functions

\We DEFINE exp, sin, etc by the SAME series representation asin real analysis:

2 73 i 79

é::1+z+%+§+m+§+..., (1)
snz:= zZ— :Zg—j—i- ;—?— (2
cosz:=1-— Z—T+ Z—T— (3)
shz:= zZ+ ;—? —i-Z—T—i—..., 4
chz:=1+ Z—T—l— Z—T—l— (5)

Sinceall these seriesare majorized in each disc B, by thereal series ) "7 ; 0"/n! al they
converge in the whole C uniformly on each closed disc. So by Corollary 11.5.5., their
sums are analytic functionsin the whole C.

It follows from (1)—(5) that

iz _ iz Az
sinz = Te — iz, shz=% 2e — _isin(i2), ©6)
eiz —iz ez —Z
COSz = +7g = ch(iz), chz= te = COSiz, (7
and
€’ =chz+shz = cos(iz) —isin(iz). (8)
Putting z:=i6, 6 € R, weobtain
é? = cosf +ising ‘ (Euler formula). (9)
In particular
€ = -1 (10)

Thisformulaconnect three the most fundamental numbersin mathematics, e, = and i, and
is one of most beautiful mathematical formulas.
Relation (9) impliesthat p€? = o cosé + ig sind, which means that

o€’ ~ {00} (20,0 €R). (1)
Further the following basic property of the exponent function remains true:

e1t2 — ge”2, (12)
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<1 Multiplying the absolutely converging series for €2 and €%, we obtain

o0

k oo oo n
e =Y Ay A=)y
0

t
k=0 1= n=0 kzow

(6)

k_n—k
125

_ i @+2)" _ gz

n!
n=0

Logarithm
At last we define Inz as a complex number ¢ such that €° = z. Such a number is defined
non-uniquely. Indeed,

vnezietzmin @ e gni _ ot 5 (13)
-1

Since
gne-tio 12 dnegd?

weseethatif z ~ {o, 8} thenoneof thevaluesof InzisIng+i6. By (13),Ino +i6 +2xin,
n € Z ,are adso values of Inz. It can be verified that there is no other ones. Thus

z~{0,0} = Inz=Inpo+i(2xn+0). (19

The fact that In is a MULTI-VALUED function is just another form of the fact that the
representation z ~ {p, 8} is non-unique.

11.7 Residues
Leta e C,U € OpNby(C),and f € An(U \ {a}). Theresidue of f at a isdefined by the
formula

v res, f = i f(z2)dz, (1)

where B is any disc with the center at a such that B ¢ U and
aeB.
This definition does not depend in the choice of B. Indeed if B; and B, are two different
such discs, e.g. B1 C I%z, then

Oca“CQyTh/ f(z)dz:/ f(z)dz—/ f(2)dz
B\B, 3(B2\By) 0By 9By
Examples.
1. If f isanalyticin aneighbourbood of a, then
f(z)
res, T a2 f(a). 2

<1 Thisfollows at once from Cauchy formula. >
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2. Asaspecia case of previousexample (f = 1) we obtain

resa =1 ©)

Z—a

3. Fork=23,...
1

res;, ——— =0.
R Z_aK

4
(See Example on page 150.)
Theorem 11.7.1. (on residues) Let M € CompMf2(R?), let

0 %eﬁ"ane'\(h(: M\9M), andlet f < An(M\{ay, ..., an}).

n
oM / fdz=2mi) resy f.
M =t

< Let Bk be mutually digoint discs with the centers at ax such that By C I\?I. Then

oC""“‘i”"/ ) fdz:/ tdz— :/ f dz
a(M\UJ Bk) BLY 3By
——

2i-resq, f
(notethat 8 Bk asapart of 3(M \ | Bk) hasthe orientation opposite to orientation of 9 By
itself). >
This theorem reduces calculation of integralsto calculation of residues.

Calculation of residues
A point a € Cisapole of degreen (or n-pole), n € N, of afunction f : U \a — C,
(U € OpNby(C)) if the function (z — a)" f admits an analytic extension to U, but the
function (z — a)" 1 f does not.
Examples.
1.0isal-polefor 1/z, isa2-polefor 1/72, etc.
2.1/sinzhas1-polesat z = 0, &m, £2n, .. ..
Theorem 11.7.2.

a) Let abeann-polefor f. Thethere exist a closed disc B with the center at a such
that B # (pand f can be (uniquely) represented in l%\ a by some series

]

> wz-af  (xeO),

k=-—n

called the Laurent seriesfor f at a; that is,

e¢]

f=3Y «(z-ak inB\a

k=—n

b) Theresidueof f at aisequal to the coefficient by (z — a)~1:
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¢) Thisresidue can be calculated by differentiation:

resa f = ! e (z—a)"f)
(n—1! dz"-1],
1 dn-!

(z—a)"f(2).

= lim
(n — 1! z»adz"-1

<1 EXERcISE for you. [Hint: Apply Theorem 11.5.8. on Taylor seriesto (z—a)" f and then
use Examples 2 and 3 on page 157.] >






Chapter 12

Ordinary differential equations

12.1 Analytic setting

A differential equation is an equation of the form

= (X’ U(X), U/(X), u//(x) ..... u(p)(x)> = 0’ (1)
where
u: X -—Y,
u: X — ZXY)
U(P) X = g(X,...,X;Y)»
——
p
and

FIXXYXZXY)x...xZLX, ..., X;Y) > Z.

Here X, Y, Z are (say) normed spaces; u is the unknown function, and (1) isto be fulfilled
at each point x of someopensetU C X.
The order p of the highest derivativein (1) is called order of the equation.

Classification
If X =R wehavean ordinary differential equation (ODE);
If X = R" we haveapartial differential equation (PDE);
IfY =R wehaveascalar differential equation;
If Y =R" wehaveavector differential equation;
If Z=R wehaveonedifferential equation;
If Z=R" we have asystem of differential equations.

ODE's
In ODE's the unknown function is a function of ONE independent variable, which physi-
cally can be interpreted as TIME (and is denoted usually by t), and (1) can be interpreted
asaLAw of some process, of some evolution.

161



162 CHAPTER 12. ORDINARY DIFFERENTIAL EQUATIONS

Thederivativesin t are often denoted (after Newton) by dots above, e.g.,

dx . d’x
dt’ Todt2’

Examples.

1. Inertial motion equation: X = 0, x : R — R3; this egaution describes a free motion of
apoint in the space (no external forces).
2. Pendulum equation: X + x = 0, X : R — R; this equation
describes the motion of a point, on which the force act, that is
proportional to the displacement of the point, from an equilibrium
position and tends to return the point back.

3. Exponent equation: X = kx, x : R — R; it describes a process where the speed of
grown of something is proportional to the present quantity of this something; e.g., for
k > 0it may beachain reaction, for k < 0 it may be anuclear decay.

Thus, ageneral ODE looks as follows (now we writet instead of x, and x instead of
u, respectively X instead of Y):

F (t, X, X, %, ...,x<”>) —o. @)
Since all the derivativesof x : R — X areagain functionsR — X, now we have
F:Rx X" 7

A solution of (2) isan n times differentiable function ¢ : (a, b) — X (where (a, b) isan
non-empty interval in R, such that

Vte@b): F (t, o), G(b), ...,<p(”>(t)) -0

NB Not every equation, containig derivativesint,isan ODE. E.g., theequation X(X(t)) = 0
iISNOT.

Reduction to afirst order equation
We shall consider oNLY ODE’s SOLVED w.r. to the highest derivative:
d"x

=F (t, X, X, X, ...,x(”‘l)) —0. ©)

Theorem 12.1.1. Equation (3) is equivalent to the following system of n ODE’s of the first
order:

X]_ = X2
Xz = X3
: 4
Xn-1 = Xn
Xn = F(t7 le X25 I ) Xn)
that is, to the equation (X1, ..., Xn)" = (X2, ..., Xn, F(t, X1, X2, ..., Xn)).

<If ¢ (a,b) > Xisasolution of (3), then

(@v §b7 ¢v st go(n_l))
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isasolution of (4); v.v., if

((pl5 (p27 "'7¢n) . (a5 b) - Xn

isasolution of (4), then ¢1 isasolution of (3). >
By thistheorem we can restrict ourselves by ODE’s of thefirst order

, X R = X, fiXxR— X.

12.2 Geometric setting

Geometrically, theunknownfunctionx : R — XinanODEx = f(x,t) isaCURVEin X.
The space X is caled the phase space of the equation. The graph

X X of a solution ¢ is caled an integral curve of the equation. The
space X x R, where this graph lies, is called the extended phase
space.

\ t
Examples.

1. Inertial motion equation X = 0 (x : R — RR3) is equivalent to the system

X]_ZXZ}

. (X1, X2 : R = R3),
X2 =0

which can bewritten as x = Ax, wherex : R — R® and A € (RS, R5), viz.

000000
000000
000000
100000
010000
001000

Here the phase spaceis R® (position-velocity).

2. Pendulum equation X + x = 0O isequivalent to the system

X1 = Xo
Xo = —Xq

which can be written as x = Ax, wherex : R — R2,

_( 0+1 2 2
A_(_l O)e.&f(R R?)

(the operator of rotation by 90° ) The phase spaceis R2.

3. For the exponent equation x = kx the phase spaceisR.
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Fields corresponding to ODE’s

A geometric interpretation of the equation x = f(x,t) is such. At each point of the
extended phase space a DIRECTION is given (the derivative of a
curve at a point “is’ the tangent line to the graph). To find a
solution of the equation means to find an integral curve of this
field of directions, that is, to find a curve, such that at each point
the tangent line coincides with the directions of the field at this
point.
In the special case where f does NOT depend on the t (autonomic ODE’s) another inter-
X pretation is possible, in the phase space itself. Viz., at each point

— x of the phase space a VECTOR f (X) is given (the derivative can
/ . - be considered as avector in X (the velocity)). That is, we have a
i vector field. To find a solution of the equation X = f (x) meansto
/ e find amotion of apoint in the phase space such that the vel ocity at
S each moment of time coincides with the value of the vector field
at the point where we come at this moment.

Examples.

1. Thesmplest equation x = f(t),x : R — R, f : R — R; thefield of directions does
not depend on x. The solution is unique up to vertical trandation

Xt _# 2 :
N of the graph. We know this aready, of course:
J = =227 22 t
NEEEEY & x(t):/ f(r)dr +const  (foranytg e ).
N A X0
I == % 7 (we supposethat f issufficiently “nice”.)
2. X+ x = 0; (X1, X2) = (X2, —X1). The velocity field is drown //, ; N
on the picture. Obviously the solutions are motions along circles P e
with center at 0, e.g., (cost, — sint). Hence, the corresponding R H
solutions of the original equation X + x = 0 are cost and sint. Nood oy,

3. X = kx. The field of directions for k > 0 looks as on the picture. Up to a horizontal

> A trandation of the graph there are just 3 solutions. Of course, we
//‘\V/ know them:
o S oA =
= = ! X = Xoei.
NN >
\T\\ For xp > 0, = 0 or < 0 we obtain the 3 types of solutions.
NEARAVEAR TR RN

Initial conditions
In general the function f in the right-hand side of our equation

X = f(x, 1) 1

is defined only on an open subset & of X x R. Wesay that ¢ : R — X isasolution of (1)
inaninterval (a, b) (—oo < a < b < 4+00), and we write

¢ € Sol(a,p) (1),

if ¢ € Dif((a, b)), {(¢(t), )|t € (a,b)} Cc W andVt € (a,b): ¢(t) = f(g,1).
We say that ¢ isasolution of (1), and we write

¢ € Sol(D),
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if ¢ € Sol(a,p)(1) for somea, b.
Let (xp, to) € W. We say that ¢ isasolution of (1) (in (a, b)) with theinitial condition
(Xo, to), and we write

¢ € Sol(Dtg,xo (resp., ¢ € Sol(a,b)(Ditg,xo)
if o € Sol(1) (resp., ¢ € Sol(g,p) (1)) and
@(to) = Xo.

This condition means physically that at given initial moment tg our process has value Xo,
and means geometrically that the graph of ¢, the integral curve, passes through the point
(%o, t0)-

12.3 Basic Theorem
Here we discuss the questions of existence and uniqueness of a solution of an equation
X = f(x,1), X:R— X, Q)

with agiven initial condition, and dependence of the solution on the initial condition.

Theorem 12.3.1. (Peano) Let X = R", ¥ € Op(R" x R). If f € C(¥, X), then
V(Xo,t0) € W ¢ € SOl(l)to,xo~

In other words, if f is CONTINUOUS then a solution of (1) always exists. (We omit
the proof of this theorem). But in general a solution with a given initial condition is NOT
unique, as the following example shows.

Example. The equation X = 3x%/3, x : R — R, has 2 solution
/107077777117 with theinitial condition (0, 0): ¢1(t) = 0 and @o(t) = t3. The
reason is that the right-hand side x%/2 decrease too quickly as
X — O:

11770777077
oo S X

/// s 3X2/3
7774777777

X

\
If fisof cLassClin x, such apatology cannot occur, aswe shall see.

Picard method
Consider the equation (1) for X = R, f € C(R x R, R). The main idea of the method is:
to find a solution of (1) meansjust to find a fixed point of some operator. More precisely:

@ € Ol (Vg © @ € FiX A,

where A is defined by the formula

t
(Ap) = Xo + /t (p(0), T)dr. @
0
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2 . TR
(AP’ ®) 2 Fp),1); if ¢ € Sol(Digx that is, if ¢ = f(e(t), t) and ¢(to) = Xo,
then (Ag)’ = ¢ and (Ap)(t)) 2 xo = ¢ (to); hence Ap = ¢, that is, ¢ € Fix A. V.v., if
¢ € Fix A thatis, Ap = ¢, theng = (Ap) 2 f(p(t). t) ando(to) = (Ap)(to) 2 xo. >
Picard method isto construct a solution of (1) asafixed point of A, that is, asalimit

of sequence ¢o, ¢1 := Ago, @2 := Agi, ..., Where gg is an initial approximation to the
solution.

Examples.
1. x = f(t), X(tg) = Xo. Field of directions does not depend on x. Put
X z 22 —

z :::%22% vo =2

c 3 =< % Then aready the FIRST approximation

7 - 0

2 Z Z|zzZ77% t

oo p1(t) = (Ap)(t) =0+ | f(r)dr

= zj=227 to
yieldsthe solution ¢ = f, p1(tg) = Xo.

2.% = x, x(0) = Xo. Again put ¢ : =Xo. Then g1(t) = Xo + [ Xodr = Xo(1 + 1),

X, g2(t) = X0+ S Xo(L+tdr = Xo+ (1+t+12/2), ..., gn(t) =
! Xo(L+t +12/2+ ... 4+t"/n!), so that n(t) — Xoe'. And xo€!
Xo ¢, Isindeed thesolution.
To justify Picard method we shall show that in an appropriate
space the Picard operator A isa contraction. We need for thisend
/ U todefine integral of a vVECTOR function of real variable.

Integralsof vector functions
Let X beaBanach space (e.g., R"), and let f € C(R, X). Theintegral

b
/ f(t)dt (e X)
a

is defined just as usually (by means of partial sums).

Lemma 12.3.2. b o
/ f(t)dt / | f (t)||dt‘ .
a a
(Hereit may bea > b!)

< It follows from the corresponding inequality for partial sums:

=<

I3 fai] = S ntwain =S it anal. -
Lemma 12.3.3. g b
E‘t:f/a f(o)dr = (D).

< Just as usually.
Lemma 12.3.4. (Newton-Leibniz Theorem). Let ¢ € CY(R, X). Then

b
/ pMdt = ¢(b) —p(@).
a
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< Asusuadly. >

Basic Theorem

Theorem 12.3.5. (on existence, uniqueness and continuous dependence on initial condi-
tion). Let X € BS, W € Op(x x R), f € CL(W, X), (xo, to) € W, and we consider the
equation

x = f(x,t). (©)

Then there exist an open interval | with the center at tg and an open ball B in X with the
center at Xg, such that

VYx € B HIQOX € &)h (3)t0,X
and for any cLOSED interval J C | the mapping
X = ¢xl3, B — C(J, X)

is continuous.
<1 1° At first we construct a subspace M of of a Banach
space, where a modification of Picard operator is a con-
traction Tekea > 0, b > 0 such that the cylinder

. Ie b I1:= Bp(Xo) x la(to)
Q ’ liesin W. (We denote by 15(t) the closed ball Ba(t) inR.)
!

Put
0
Si= sp [fx DI, (4)
(x,t)ell
L:= sup [ID1f(x. 1) )
(x,t)ell

(whereD1 f = 8f/ax : ¥ — Z(X, X)). These supremums are finite and attained since
1T is compact.

Now choosea’ > Oand b’ > O sothat thecone K’ := {(x,t) : |t —tg] < &, ||[X — Xo|| <
St — tp|} and al its trandations by the vectors
(b, 0), b € By (x0), liesin the cylinder 11:

K:= K + (By(Xg) x {0}) c II. (6)
Consider the “small” cylinder
I’ := By (Xo) x la(to) C IL.

M = {v € CL, X)|V(x, 1) € I': |Jlu(x, t)] < Gt — tol}.

In particular

Yve M: v(-, tg) = 0. (7)

An element of M is shown on the following two pictures (note that on the left picture the
phase space X is represented by a LINE, and on the right one by a PLAIN):
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Thegraph of v. The graph of v(x, -) for fixed x.
Emphasizethat M dependson a’, b’, S.
2° Now define a modified Picard operator A on M by the formula

t
(Av)(X,t) = / f(X+v(x, 1), r)dt ((x, 1) e IT). (8)
to

This definition is correct since, by (6), the argument of f liesin W.

3° Amaps M intoitsalf. < V(x,t) € II':

t
lAv(x, D] = / f(xX+v(x, 1), 7)dt
to
Lm12.3.2. t
= | f(X+v(x, 1), 7)) dr| < St —to|. >t>

to

<S
4° Ais a contraction for sufficiently small &’. Indeed A € Lip, 5, where L is from (5).

<K1Vv1,1)2€ME

t
Avy = vzl = sp (A= Aot < sp | [[E)] e
(x,(geﬂ’ _ x,t)ell’ | Jto N
Py t —
_fto(f(x+v1(x,r),r) f (X4+v2(x,7)))dr M%/TL 01X, T) — va(X, T) |
obv.
=< llvg—v2ll
Lm12.3.2. ,
< sup L[t —tolllvy — vzl < La'|lvy — v2ll. BB
x,pelly ——
<a

5° By Fixed point Theorem (= Contraction Lemma) thereexistsv € M suchthat Av = v.
Put
u(x, t) :== x + v(x, t) ((x,t) e I1).

For any given x € By (Xp) (aninitial value) we have

u(x, -) € Sol(3)tg,xo-

d
< FUOGD = (4 D)
—Av(x,t)

t
@ d—ol (x +/ f (X + v(X, 1), r)dt) Lm1233 £ (x + v(x, 7). 7)
1
= f(u(x, r),ro),
and u(x, tp) = X + v(X, tg) = X. >>
———

(7)=0
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6° Our solution depends continuously on the initial value x since v is a continuous
mapping.

7° Uniqueness. Takeb' := 0, and consider the corresponding set M and operator A. (Now
M consists from functions defined just on 14 (tp).) Obvioudly,

@ € S0l(B)tyxy & ¢ — Xo € FiX A,

but the fixed point of A isunique (by Contraction Lemma). Hence (on the interval Ioa/ (to))
the solution is unique. >

12.4 Methods of solutions

AsLiouville showed, in general it isimpossible to solve agiven ODE in expliciteform (in
“quadratures’), that is, in form of finite combination of elementary and algebraic functions
and of integralsof them. E.g., such asimple equationsasdy/dx = y?— x cannot be solved
in quadratures.

Thereare general methods of APPROXIMATIVE solution of ODE's, in particular methods
based on Picard approximations.

Rather full theory of explicite solution is only for LINEAR ODE’s, which we consider
in the next two sections.

Here we discuss special but important case where solutions can be calculated rather
explicitly.

No dependence on x
x = f(t).
This equation describes a process, the speed of which does not depend on its state, but is

fully determined “from outside’. The solution satisfying aninitial condition X(tg) = Xg is
given by the “classic” formulaof analysis

t
X(t) = xo + f (r)dr.

to

No dependenceon t
x= f(x) (X =R). (1)

This equation describes an “automatic” process where the behavior of the process is
defined entirely by its present state.

Theorem 12.4.1. Let f € CY((a, b)), xo € (&, b), f(Xg) # 0 (-0 < a < b < +00).
Then for any tg € R the solution ¢ of equation (1) with initial condition (o, tg) (which
does exist by Basic Theorem) satisfiesthe relation

o(t) df
t—1ty= _— 2
0 /xo f(&) @)
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In other words, our solution x = ¢(t) can be found by solving of the equation

X d
X t—1tg= &

bt ~ x &)
X ;%;; w.r. to X.
—== - - - JlLet g € S0l(Dyy,x- Then ¢(to) = f(xo) # 0. By inverse

a
> Function Theorem, the inverse function =1 =: v is defined

b Y Jocally (in aneighbourhoodof xo).
We have ¥ (Xg) = to, and
dy| 1
dx | fE)

Since f (Xg) # 0, thefunction1/f (&) iscontinuousin aneighbourhood of xg. By Newton-
Leibniz Theorem,
X (d§)

Y(X) — ¥ (Xo) = . ?5)

Putting here x = ¢(t), we obtain (2). >

Separable variables
90
X = 0 (X =R).

Here x and t enter “separately”. For better symmetry let us write y instead of x and x

instead of t: d W)
y _ 9w
dx  f(x) 3

Theorem 12.4.2. Let f and g are of class C! in some neighbourhoods of points xo and
Yo, resp.; let f(xo) # 0, g(yo) # 0, and let y = F(x) be a solution of (3) with the
initial condition F (xg) = Yo (such solution does exist by Basic Theorem). Then F isgiven

implicitly by the equation
[&_ o
xo 1€ Jy, g’

Thus the solution method is: to rewrite (3) formally as dx/ f (x) = dy/g(y) and to
integrate in the corresponding limits.
<1 Consider two new ODE's
x = f(x), (4)
y=9W. ©)
By Basic Theorem, there exist ¢ € Sol(4)0,xy: ¥ € S0I(5)0,y,, defined on a (w.l.0.g.)
COMMON openinterval I:
) = ), #(0) = xo, (6)

() = F), ¥(0) = Xo. @)

We have ¢(0) = f(Xg) # 0, ¥(0) = g(yo) # 0. By Inverse Function Theorem, there
exist (locally) the inverse functions, ¢ ~1. We claim that

%IW‘ U= o0¢ e SolB)y.
u

X—g—>Y Indeed
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. , _ vO  e.n 9y)
= t 1. = — = _—,
i) ti=p1(x) vOETYe o) y=ux=y ) f(x)

6 7
@0 2Ly

o0 VO gy
[ [
xo @ vo 901

Putting ¢ (t) = X, ¥ (t) = y, weseethatu = Y o o1 : X > y, and

/xd_f_/yd_”/
Xo f(s B Yo g(’])’

u(Xo) = ¥ (¢ (X))
But by Theorem 12.4.1.,

which iswhat we need. >

12.5 Linear equations

By alinear (homogenious) ODE we mean an equation
Xx=AMx (X:l > X, XeNS), (1)
where A(t) for eacht € | isacontinuousLINEAR operator in X, and the mapping
Al > Z(X X)

is sufficiently smooth. Thus the right-hand side of (1) is linear (and continuous) in x. In
the case X = R" the equation (1) takes the form

X1 = an1(O)xg + ... +ant)xn
: 2
Xn = an1(DX1 + ... + ann(t)Xn

so usually one calls (1) alinear ODE with variable coefficients.

Example. Pendulum of variable length: % = —w?(t)x, (X : R —
R). This equation when written in the form (2) is

©)

X1 = X2
Xo = —a)z(t)Xl

/ Intheform (1) it looks as

01

X = A(t)X, where A(t) = <—a)2(t) 0

) , X R— R?.
A very pleasant feature of linear equations is that they have solutions defined in the
wholeinterval | (see (1)):

Theorem 12.5.1. Any solution of (1) can be extended to | .

<1 The idea of the proof is such. Since on any COMPACT subinterval J of | the norm || Al

is bounded (as a continuous function), we have || x| = [|A)X] [|X]] < C|x| on J. It
e e’

<C
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follows that any solution grows not faster than €t (in the norm) on J, and hence cannot
go away to infinity on J. An accurate proof seee.g., in[9, p. 196]. >

NB For non-linear equationsit can be that a solution does not admit
an extension to whole | . E.g., for the equation X = x2 one such
solution x(t) = —1/(t — 1) isshown on the picture.

[ Vector space of solutions

Theorem 12.5.2. The set S of all the solutions of (1) (defined in the whole 1) is a vector
space. This spaceisisomorphic to the phase space X.

. . .1
< 1°1f @1, 92 € S0l (1) thenVag, a2 € R: (191 + a1901) = o191 + o192 (:) a1Ap1 +

-Aislinear
a2 Aps — Aa1p1 + a2¢2), that is, a1¢1 + a2¢2 € Sol(1). Thus, Sis a vector
space.
~ In particular
0 € Sol(2),
a bt and

¢ € Sol(1) = —¢ € Sol(1);

the picture of integral curvesis SYMMETRIC (see the picture).
2° Fixany t € | and consider the mapping

5tS:— X @ = o),

which sends each solution ¢ into its value at the moment t. Obvioudly, §; is linear. The
imageof §; isthewhole X, sinceby Basic Theoremfor any X € X thereexistsasolution ¢
with ¢(t) = x. Thekernel of §; is {0}, since again by Basic Theorem, there existsjust one
solution ¢ with ¢(t) = 0, and this solution is evidently ¢ = 0. Thus §; is both surjective
and injective. >

Fundamental system of solutions
Let X = R". Then, by Theorem 12.5.2., S ~ R". Any basis ¢1, ..., ¢y of Siscaled
afundamental system of solutionsfor (1). Thus:

a) Each Equation (1) (in R") has afundamental system of solutions.

b) If ¢1,..., ¢n isafundamental system of solutions then any solution ¢ is a linear
combinationof ¢1, ..., ¢n.

¢) Any n+ 1 solutionsare linearly depend.

d) Foranyty,ty € | the mapping

X X
. -1.
gtl = (Stz o ((Stl) X=X
o (thetransformation of the phase spacein thetime
1 fromty up to tz isalinear isomorphism.

—~Y

ta ta
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01

Example. For the pendulum equation X = ( 10

)x (x : R — R?) the system

{(cost, —sint), (sint, cost)}

cost —sint

. i ifyl int:
is afundamental system of solutions. (Verify! [Hint: snt cost

=1])

Scalar linear equation of the n-th order
Consider alinear (in x) homogeneousequation of the n-th order with variable coefficients

xM = a;t)x" Y 4+ .+ an(t)x, x:1 - R, a e C(,R)). (%)
We know from Theorem 12.1.1. that (4) is equivalent to an equation
X = A(D)X, X: 1 > R" AeC(, Z®R",R).

In view of this equivalence, it follows from Theorem 12.5.2. that the following result is
true:
Theorem 12.5.3. The set S of all solutions of (4) (defined on the whole 1) is a vector
space, which isisomorphic to R". Thisisomorphismis realized by the mapping

S—R" ¢ (p1), 1), ..., V1)),

wheret isan arbitrary fixed pointin | .
Any basisof thisn-dimensional vector spaceiscalled fundamental systemof solutions
for (4).

Example. For the pendulum equation X 4+ x = 0 the functions cost, sint form a funda-
mental system of solutions (see example above).

Finding solutionswith given initial conditions
Let ¢ beasolution of (4). We say that ¢ satisfies aninitial condition

(Xo,to) e R" x |

if
((to), ¢(to), ..., 9" P(to) = Xo,
that is,
p(to) = Xo1

@(tg) = Xo2
: (5
e D(to) = Xon

Let we know afundamental system of solutionses, . . ., ¢, for (4). If weneed to find
the solution with initial conditions (5), we look for the solution in the form

Then (5) yields
Cip1(to) + ... + Chgn(to) = Xo1
: (6)

(n—=1)

1o Vto) + ... + et P to) = xon
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Solving thislinear algebraic system, we obtain the desired valuescy, . . ., Cy.
Remark. The determinant of the system (6)

p1(to) ... @n(to)
¢1(to) ... @n(to)

-1 -1
2" Pto) ... iV to)

is called Wronskian of the system {¢1, ..., ¢n}. Since the solution of (6) MUST exist for
any Xo we conclude that Wronskian of any fundamental system of solutions of (4) is
NON-zeRO for eacht € T.

Variation of constants
For solving of NON-homogenious linear equations the following METHOD OF VARIATION
OF CONSTANTS s available:
In order to solve an equation

Xx=AMDx+ht), x:1—>R" AeCl, Z®R"R", heCI,R",

supposing we know a fundamental system ¢1, ..., ¢, of solutions of the corresponding
homogenious equation x = A(t)x, we look for the solutionsin the form

() =c1Me1(t) + ... + ca(Oe(t) (@91 11 =R
(with VARIABLE “constants’ ¢;!). Then we obtain for these unknown functions
(c1,...,c):=c: 1 > R"
a“smplest” linear equation of the form
c= f@) (withsome f : | — R™),

which we know to solve.

Example. Consider the equation
X+x=ft) x:1 >R, feCU,R),0¢l, (7)
with initial condition (0, a), a = (a1, ap) € R?, that is
x(0) = ag, X(0) = ay. (8
Reduction to a 1. order system yields

X1 = X2 x10) =a ©)
Xo=—X1+f | %0 =a |

The corresponding homogenious system

X]_ = X2
Xz = —X1

has awell known (Example on page 173) a fundamental system of solutions

{(cost, — sint), (sint, cost)}.
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So look for the solution in the form
(X1, X2) = c1(t)(cost, —sint) + co(t)(sint, cost).
The substitution into (9) gives after smplifications
¢icost + Gpsint = 0} c1(0) = a }
—¢1sint+¢écost=f [” Q) =ax |’
whence we obtain

¢Gi=—fsint, cg(0)=a = ¢ = al—]t f(r)sintdr,
¢ = fceost, c0)=a = cc=ax+ [, f(r)cosrdr.

If followsthat the answer is (x(t) = x1(t)!):

t t
X(t) @ (X(O) — / f(7) Sinl'dl') cost + ()'((O) +/ f(o) COSTdT) sint.
0 0

12.6 Linear equationswith constant coefficients
Here we study an equation
X = AX, x:R—> X, X eNS Aec Z(X, X). (1)

We suppose that the space .Z (X, X) (with the operator norm) is COMPLETE; for example,
itisever truefor X = R".
In the simplest case X = R we have an equation

X = ax, X:R—R,aeR.
The solution is well-known
X = xge™, X0 = X(0).

In the general case the result isjust the same:

Theorem 12.6.1. Any solution x of (1) can be extended to the whole R and is given by the
formula
x = e’xo, Xo = X(0).

Here for any operator A € £ (X, X) we put

M i=id+A+ A2+ IA3 4 e L(X X), AK:= Ao...0 A
]

k-times
This series convergesin £ (X, X), since it is majorized by the converging non-negative
real series 02 I A% /K! (indeed, [| AX|| = || Ao 0 All < [AI%).
k-times

<1 Thetheorem can be proved essentially in the same way asin classic 1-dimensional case
(using member-wise differentiation of series). >

Thus principally we know the solution of (1), but the problem is how to CALCULATE
e’ for concrete A. Even for X = R" it is non-trivial problem.



176 CHAPTER 12. ORDINARY DIFFERENTIAL EQUATIONS

Case of diagonal operators
Let X = R". We shall identify an operator A € Z(R", R") with its matrix. If A is
diagonal, that is,

A 0
A= ... ,
0 An
then it is easy to calculate e
et 0
eM = ..
0 et
A0
< Ak = .. , hence
0 Ak
AKtk
Akt T 0 e 0
K AKtK 0 et
o P
Hence the solution of equation
X = AX, X(0) = xo = (Xo1, - - - , Xon)
is
X = eAtXO = (xo1€', ..., xon€™).

Notethat Ak arejust the EIGENVALUES of our diagonal operator. Thus, each component
of the solution has the form
cet

where A is an eigenvalue of A.
NB In OTHER bases the components of the solutionswill be LINEAR COMBINATIONS of the
exponents ekt

General case
In occursthat in general case each component of the solution of an equation

X = AX, x:R—>R" Aec ZR"R"), 2
is alinear combination of n members of the form
t"Reet  or  tMZImeMt

where A isan eigenvalueof A (A € C) and misanatural number less than multiplicity of
A.
Recall that the eigenvalues of a are roots of the characteristic equation

det(A—1E) =0 (E denotesthe unit matrix)

and that the multiplicity of an eigenvalueis just the multiplicity of the root.
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Case of one scalar equation of n-th order
x™ = a;x™ D 4 4 anx, x:R—C, ajeC.

Aswe know (3) can be considered as a specia case of (2). It follows that:

Any solution of (3) hasthe form

k
xt) =Y e'p,
I=1
where A1, ..., Ak arethe different roots of the characteristic equation

M =a" 1+ +a,

and p; isapolynomial of degree less than the multiplicity of theroot ;.

NB Thisresult remainstruefor non-homogeniousequationsx™ = a;x"D 4. .

f(t), if f(t) hastheform (4).

Examples.

177

©)

(4)

()

+anx+

1.X+x = 0. Thecharacteristic equation 12+ 1 hastheroots +i; we have Ree*t = cost,
Ime*t't = 4 sint. The functions cost, sint form a fundamental system solutions. The

general solutionis c; cost + c2 sint.

2. X — x = 0. The characteristic equation 12 — 1 has the roots +1. The corresponding
functions € and e~ form a fundamental system of solutions. The general solution is

c1€ + coet. (In particular sht and cht are solutions.)

3.% = 0. Thecharacteristic equation A2 = 0 has one 2-multipleroot 0. The corresponding
functionsfrom (4) are 1 and t. They form afundamental system of solutions. The general

solutioniscy + cot (aswell known, of course).
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