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v češtině.
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Introduction
Analysis 3-4 is a generalization of usual, one-dimensional analysis to the case of

arbitrary finite dimensions.
More precisely, instead of functions R→ R we consider functions Rn → Rm .
In fact elements of finite-dimensional analysis were developed already in 18th century,

but an appropriate frame for this analysis are normed spaces. These spaces were introduced
(independently and almost simultaneously (1916–1922))by A. Bennett, F. Riesz, H. Hahn,
S. Banach, N. Wiener. The differentiation operator for mappings between normed spaces
was defined in 1925 by M. Fréchet. (More “weak” notion of differentiability was defined
early (1913) by R. Gâteaux, but for this kind of differentiability the chain rule is not valid.)
This date can be consider as the birthdate of modern analysis.

* * *

Our course contains 12 Chapters. In Chapter 1 we study normed spaces (up to Chapter 5
these spaces are allowed to be infinite-dimensional). In Chapter 2 we consider Fréchet
(and Gâteaux) derivative. Chapter 3 is devoted to the most important theorem of analysis,
Inverse Function Theorem (which can be equivalently reformulated as Implicit Function
Theorem). As a tool for proving this theorem we prove at first so called Contraction
Lemma (this is the main tool also in the final Chapter 12). In Chapter 4 we study higher
derivatives, up to Taylor formula. In Chapter 5 we give some applications of the theory to
optimization problems.

Starting from Chapter 6 we restrict ourselfs just by FINITE-dimensional case.
In Chapter 6 we construct Riemann integral in Rn . Chapter 7 is devoted to two im-

portant technical results. In Chapter 8 we consider differential forms, which are in fact
generalizations of “length element”, “area element” and “volume element” of classical
“old” analysis. Chapters 9 and 10 are devoted to the crown theorem of the theory, Stokes
Theorem, which is a generalization of different known results of “old” analysis (Eu-
ler (1771), Green (1828), Ostrogradskij (1834), Stokes (1854)). For this end we define
manifolds in Rn .

The last two chapters are facultative and written in more compressed style. In Chap-
ter 11 we apply Stokes Theorem for study of analytic complex function, and in Chapter 12
we apply Contraction Lemma for proving of Existence and Uniqueness Theorem for
ordinary differential equations.

* * *

Some remarks on notations.

If we write, e.g., a
A
< b, this means “using A we conclude that a < b”.

Symbols ⊳ and ⊲ denote, resp., the beginning and the end of the proof. If we prove
some “small” assertion inside the proof of a “great” one, we use symbols ⊳⊳ and ⊲⊲ for
this “small” proof, et-cetera.

“Exerc.” over e.g. an equation mark means that to prove this equation is an exercize
for the reader.

The reader has to remember that misprints are POSSIBLE and to use ever his common
sense.
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Chapter 1

Normed spaces

1.1 Norms

Let X be a vector space over R. By a norm on (or in) X we mean a function ‖·‖ : X → R
with the following properties:

(i) ∀x ∈ X
... ‖x‖ ≥ 0 (positivity); ‖x‖ = 0⇔ x = 0 (non-degeneracy);

(ii) ∀x ∈ X ∀t ∈ R
... ‖tx‖ = |t| ‖x‖ (positive homogenity); in particular ‖−x‖ = ‖x‖

(symmetry);

(iii) ∀x, y ∈ X
... ‖x + y‖ ≤ ‖x‖ + ‖y‖ (subadditivity).

||x||

||y||

||x||

||y||

||x+y||
x x+y

0 y

If we interpret ‖x‖ as the LENGTH of the vector x then the
property (iii) expresses the triangle inequality (△-in.).

A normed space X is a vector space equipped with a norm.
(X ∈ NS)

Examples.

1. (R, | · |);
2. (Rn, ‖·‖p), where ‖·‖p is defined for 1 ≤ p < ∞ by the
formula

‖x‖p := (|x1|p + · · · + |xn|p
)1/p

(x = (x1, . . . , xn)).

For p = 2 we obtain the usual Euclidean length.

3. (Rn, ‖·‖∞), where
‖x‖∞ := max {|x1|, · · · , |xn|} .

NB ‖x‖∞ = limp→∞ ‖x‖p .

4. ℓ2. This is the set of all sequences x = (x1, x2, . . .) of real numbers such that
∑∞

i=1 x2
i <

∞, with the norm defined so:

‖x‖2 :=
∞∑

i=1

x2
i .

9



10 CHAPTER 1. NORMED SPACES

5. C([0, 1]). This is the set of all continuous real-valued functions on [0, 1] equipped with
the norm

‖x‖ := max
t∈[0,1]

|x(t)| .

||x−y||

x

0 ||y|| y

||x||

Second Triangle Inequality. Let ‖·‖ be a norm in X . Then

∀x, y ∈ X
... |‖x‖ − ‖y‖| ≤ ‖x − y‖ .

⊳ Without loss of generality we can assume that ‖x‖ > ‖y‖
(since ‖x − y‖ = ‖y − x‖). We need to verify that ‖x‖−‖y‖ ≤
‖x − y‖. But indeed

‖x‖ trick= ‖x − y + y‖ △-in.≤ ‖x − y‖ + ‖y‖ . ⊲

1.2 Balls

Let X be a normed space. Put for x ∈ X , r > 0

Br (x) := {y ∈ X | ‖y − x‖ ≤ r} (the closed ball with the center x and radius r );
◦
Br (x) := {y ∈ X | ‖y − x‖ < r} (the open ball with the center x and radius r );

For balls with center at 0 we write for short

Br := Br (0),
◦
Br := ◦Br (0).

Properties of balls. It is easy to verify (please!) that1

1) Br (x) = x + Br ;
◦
Br (x) = x + ◦Br ;

2) Br = r B1;
◦
Br = r

◦
B1;

3)
◦
Br $ Br ;

4) if r1 < r2, then Br1 $
◦
Br2 ;

5)
◦
Br =

⋃
(0<)α<r

◦
Bα =

⋃
α<r

Bα ;

6) Br =
⋂
α>r

Bα =
⋂
α>r

◦
Bα;

NB Here and below we use the following notations:

A + B := {a + b | a ∈ A, b ∈ B} (A, B ⊂ X),

T A := {ta | t ∈ T, a ∈ A} (T ⊂ R, A ⊂ X).

In particular

x + A := {x} + A = {x + a | a ∈ A} (x ∈ X),

t A := {t}A = {ta | a ∈ A} (t ∈ R).

Notation. For balls in R we write I (“interval”) instead of B. For example

I1 = [−1, 1].

1In 3) and 4) we suppose that our normed space is non-trivial: X 6= {0}.
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1.3 Norm topology

x
G B (x)ε

Let X be a normed space. We define the topology τ generated by the norm so: a set G is
open if for each point x ∈ G there exists a ball Bε(x) that is
contained in G:

G ∈ τ :⇔ ∀x ∈ G ∃ε > 0 : Bε(x) ⊂ G.

The first assertion of the following theorem means that this
definition is correct.

Theorem 1.3.1.
a) So defined τ is a topology.
b) Open balls in X are open sets in this topology, and closed balls are closed sets.
c) Both the open balls and the closed balls with the center at x are bases of neighbour-

hoods of x in this topology.

⊳ a) Gα ∈ τ ⇒
⋃
α Gα ∈ τ . Indeed if x ∈ ⋃Gα then x ∈ Gα0 for some α0, hence

Bε(x) ⊂ Gα0 for some ε > 0; a fortiori Bε(x) ⊂
⋃

Gα.
Further, G1,G2 ∈ τ ⇒ G1 ∩ G2 ∈ τ . Indeed, if x ∈ G1 ∩ G2, then x ∈ G1

and hence Bε1 ⊂ G1 for some ε1 > 0. Analogously Bε2 ⊂ G2 for some ε2 > 0. Put
ε := min(ε1, ε2). Then Bε(x) ⊂ G1 ∩ G2.

Thus τ is a topology.

y} }
x

s

ε−s

B (x)ε

B (y)
δ

b) Let us prove that
◦
Bε(x) ∈ τ . Let y ∈ ◦Bε(x). Then

s := ‖y − x‖ < ε.
Take any δ > 0 such that

(1)δ < ε − s.

Then
z ∈ Bδ(y)⇒ ‖z − y‖ ≤ δ ⇒ ‖z − x‖

△-in.
≤ ‖z − y‖︸ ︷︷ ︸

≤δ

+‖y − x‖︸ ︷︷ ︸
=s

≤ δ + s
(1)
< ε ⇒ z ∈ ◦Bε(x),

which means that Bδ(y) ⊂
◦
Bε(x). Thus,

◦
Bε(x) ∈ τ .

That (Bε(x))c ∈ τ can be proved analogously.
c) If U is an open neighbourhood of x in τ , then (by our definition of τ ), Bε(x) ⊂ U

for some ε > 0; a fortiori
◦
Bε(x) ⊂ U . But

◦
Bε(x) is an open set (by b)) and contains x

(obviously), so
◦
Bε(x) is an open neighbourhood of x , therefore Bε(x) is a (closed by b))

neighbourhood of x . All is proved. ⊲

By a norm topology we mean the topology generated by a norm.
NB Any norm topology is Hausdorff. (Prove!)

Convergence and continuity
Convergence in a normed space X means convergence in the topology generated by

the norm. It follows from the definitions that

xn K
n→∞ x ∈ X ⇔ ‖xn − x‖ K

n→∞ 0.
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Continuity of a mapping f : X → Y (where X,Y are normed spaces) means continuity
in topologies generated by the norms in X and Y . It follows from the definitions that f is
continuous at a point x̂ ∈ X if and only if (iff)

∀ε > 0 ∃δ > 0 :
∥∥x − x̂

∥∥ ≤ δ ⇒
∥∥ f (x)− f (x̂)

∥∥ ≤ ε (2)

(just as in usual analysis, only with ‖·‖ instead of | · |).
For short we write (2) in the form

∥∥x − x̂
∥∥→ 0⇒

∥∥ f (x)− f (x̂)
∥∥→ 0,

or ∥∥ f (x)− f (x̂)
∥∥ K
‖x−x̂‖→0

0.

Theorem 1.3.2. Let X be a normed space. Then the norm ‖·‖ : X → R is a continuous
function
⊳ Continuity of ‖·‖ at a point x̂ means that

∣∣‖x‖ −
∥∥x̂
∥∥∣∣ K
‖x−x̂‖→0

0.

But the latter relation is true, since, by the Second Triangle Inequality,
∣∣‖x‖ −

∥∥x̂
∥∥∣∣ ≤

∥∥x − x̂
∥∥ . ⊲

1.4 Equivalent norms

Let ‖·‖1 and ‖·‖2 be two norms on a vector space X . We say that the norm ‖·‖1 is stronger
than the norm ‖·‖2, and write

‖·‖1 ≻ ‖·‖2 ,
if the topology τ1 generated by ‖·‖1 is FINER than the topology τ2, generated by ‖·‖2:

‖·‖1 ≻ ‖·‖2 :⇔ τ1 ⊃ τ2.

Theorem 1.4.1. The following conditions are equivalent (TFAE):
a) ‖·‖1 ≻ ‖·‖2 ;
b) ∃r1, r2 > 0 :

◦
B‖·‖1r1 ⊂

◦
B‖·‖2r2 ;

c) ∃r1, r2 > 0 : B‖·‖1r1 ⊂ B‖·‖2r2 ;
d) ∃r1, r2 > 0 : r1 ‖·‖1 ≥ r2 ‖·‖2. (Which means that ∀x ∈ X

... r1 ‖x‖1 ≥ r2 ‖x‖2.).

⊳ 1◦ (a)⇒ (b):

◦
B‖·‖2r1

1.3∈ τ2
τ1⊃τ2⇒ ◦

B‖·‖21 ∈ τ1
def. of τ1⇒ ∃ε > 0 :

◦
B‖·‖21 ⊃ B‖·‖1ε ⇒ ◦

B‖·‖21 ⊃ ◦B‖·‖1ε ;

thus, we can put r1 = ε, r2 = 1.
2◦ (b)⇒ (c):

B‖·‖1r1

1.2=
⋂

r>r1

◦
B‖·‖1r

1.2=
⋂

α>0

α
◦
B‖·‖1r1

(b)⊂
⋂

α>0

α
◦
B‖·‖2r2

1.2=
⋂

r>r2

◦
B‖·‖2r

1.2= B‖·‖2r2 .
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3◦ (c)⇒ (d): Let (c) is true. We need to verify that ∀x ∈ X
... r2 ‖x‖1 ≥ r1 ‖x‖2. Without

loss of generality x 6= 0. We have‖r1x/‖x‖1‖1 = r1 ⇛ r1x/‖x‖1 ∈ B‖·‖1r1

(c)
⇛ r1x/‖x‖1 ∈

B‖·‖2r2 ⇛ ‖r1x/‖x‖1‖2 ≤ r2 ⇛ r1 ‖x‖2 ≥ r2 ‖x‖1.
4◦ (d)⇒ (a): Let (d) is true. We need to verify that τ1 ⊃ τ2. Let U ∈ τ2 and let x be an
arbitrary point in U . By the definition of τ2, for some ε > 0

◦
B‖·‖2ε (x) ⊂ U. (1)

Now, ‖x‖1 < r1
(d)⇒ ‖x‖2 < r2, which means that

◦
B‖·‖1r1 ⊂

◦
B‖·‖2r2 . Multiplying by ε/r2 we

obtain
◦
B‖·‖1εr1/r2

⊂ ◦B‖·‖2ε . And the translation by x yields (by the property 2 of balls, see 1.2)
◦
B‖·‖1εr1/r2

(x) ⊂ ◦B‖·‖2ε (x)
(1)⊂ U . Thus U ∈ τ1. ⊲

Example. In ℓ2

‖·‖2 ≻ ‖·‖∞ , ‖·‖∞ 6≻ ‖·‖2 ,
where

‖x‖∞ := sup
i∈{1,2,...}

|xi | (x = (x1, x2, . . .)).

(Prove!)

Equivalent norms
We say that two norms ‖·‖1 and ‖·‖2 on a vector space X are equivalent and write

‖·‖1 ∼ ‖·‖2 ,

if each norm is stronger than the other, that is, if they generate one and the same topology:

‖·‖1 ∼ ‖·‖2 :⇔ (‖·‖1 ≻ ‖·‖2 , ‖·‖2 ≻ ‖·‖1)⇔ τ1 = τ2.

B1

|| ||. 8

B1

|| ||.
2

B1

|| ||.
1

Theorem 1.4.2. In Rn

‖·‖1 ∼ ‖·‖2 ∼ ‖·‖∞
⊳ 1◦ ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞ (prove!), hence (by
Theorem 1.4.1.) ‖·‖1 ≻ ‖·‖2 ≻ ‖·‖∞.
2◦ n ‖x‖∞ ≥

√
n ‖x‖2 ≥ ‖x‖1 (prove!), hence

‖·‖∞ ≻ ‖·‖2 ≻ ‖·‖1. ⊲

NB In fact ALL norms in Rn are equivalent (see
1.9).

1.5 Bounded sets

A set A in a normed space X is called bounded if A is contained in the ball Br for some
r > 0.
NB A set A is bounded iff the number set {‖x‖ | x ∈ A} ⊂ R is bounded.

Example. Each ball (closed or open), with any center, is bounded. (Prove!)
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Theorem 1.5.1. For equivalent norms the set of all bounded sets is one and the same, that
is, if ‖·‖1 ∼ ‖·‖2, then

A is bounded in ‖·‖1 ⇔ A is bounded in ‖·‖2 .

⊳ This follows from equivalence (a)⇔ (d) in Theorem 1.4.1. ⊲

Remark. The theorem suggests that boundedness can be expressed in terms of the TOPO-
LOGY τ generated by the norm. And indeed A is bounded iff for each neighbourhood U
of zero in τ there exists δ > 0 such that δA ⊂ U .

1.6 Product

Let X1, . . . , Xn be normed spaces. The vector space X1× · · ·× Xn can be equipped with
the norm

‖(x1, . . . , xn)‖ := ‖ (‖x1‖X1
, . . . , ‖xn‖Xn )︸ ︷︷ ︸
∈Rn

‖p, (1)

where 1 ≤ p ≤ ∞, and ‖·‖p is the norm in Rn defined in 1.1. Just as in Theorem 1.4.2.,
it can be verified that for p = 1, 2 and∞ we obtain equivalent norms. (In fact, the norms
(1) are equivalent for ALL p ∈ [1,∞], since all norms IN Rn are equivalent, see 1.9.)
Remark. The norm ‖·‖p in Rn is a special case of this construction (Rn = R× · · · ×R).
NB The topology generated by the norms (1) coincides with the product topology in
X1 × · · · × Xn , each X i being supplied with the topology generated by the norm.
Criterion. Let X1, . . . , Xn be normed spaces. Then

(x1, . . . , xn)→ (x̂1, . . . , x̂n) ∈ X1 × · · · × Xn ⇔ ∀i
...
∥∥xi − x̂i

∥∥→ 0.

⊳ This follows at once from the definitions. ⊲

Theorem 1.6.1. For each normed space the algebraical operations

· : X × R→ X, (x, t) 7→ tx (multiplication)

and
+ : X × X → X, (x, y) 7→ x + y (addition)

are continuous.
⊳ 1◦

0 ≤
∥∥tx − t̂ x̂

∥∥ △-in≤
∥∥tx − t x̂

∥∥+
∥∥t x̂ − t̂ x̂

∥∥ = |t|︸︷︷︸
K

t→t̂
|t̂ |

∥∥x − x̂
∥∥+ |t − t̂|

∥∥x̂
∥∥ K
‖x−x̂‖→0
|t−t̂|→0

0,

(t,x)

 t,x)> >(

hence
∥∥tx − t̂ x̂

∥∥ → 0 as (x, t) 7→ (x̂, t̂). Thus, the multiplication is
continuous.
2◦

0 ≤
∥∥(x + y)− (x̂ + ŷ)

∥∥ △-in.≤
∥∥x − x̂

∥∥+
∥∥y − ŷ

∥∥ K
‖x−x̂‖→0
‖y−ŷ‖→0

0,

hence
∥∥(x + y)− (x̂ + ŷ)

∥∥→ 0 as (x, y)→ (x̂, ŷ). Thus, the addition is continuous. ⊲
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1.7 Natural topology in Rn

The topology generated by the equivalent norms ‖·‖1 , ‖·‖2 , ‖·‖∞ in Rn (see 1.4) is
called the natural topology.
NB We ever consider Rn with the natural topology.

Theorem 1.7.1. The natural topology τnat in Rn coincides with the product topology τprod
(that is, the topology of the product R × · · · × R (n times), where R is equipped with its
standard topology).

In particular the natural topology in R is its standard topology.
⊳ For short consider the case n = 2.
0◦ Since the neighbourhoods of x are translations by x of the neighbourhoods of 0 (by
Property 1 of balls, see 1.2), it is sufficient to verify that each neighbourhood of 0 in τnat
contains a neighbourhood of 0 in τprod and vice versa. Below the notation U ∈ Nbx means
that U is a neighbourhood of x .
1◦ Let U ∈ Nb0(τprod). Then by the definition of the product topology there exist ε1 >

0, ε2 > 0 such that

U ⊃ Iε1 × Iε2 ⊃
ε:=min(ε1,ε2)

Iε × Iε︸ ︷︷ ︸
={(x,y)||x |≤ε, |y|≤ε}

= B‖·‖∞ε ∈ Nb(τnat). O.K.

2◦ Let U ∈ Nb0(τnat). Then (since τnat is generated by ‖·‖∞) there exists ε > 0 such that
U ⊃ B‖·‖∞ε = Iε × Iε ∈ Nb0(τprod). O.K. ⊲

1.8 Bounded sets and compact sets in Rn

A set A ⊂ Rn is called bounded if it is bounded in one of the norms ‖·‖1 , ‖·‖2 , ‖·‖∞
(then, by Theorem 1.5.1., it it bounded also in the two others; in essence it is boundedness
with respect to the natural topology, see Remark in 1.5).

Theorem 1.8.1. A set K ⊂ Rn is compact (in the natural topology) iff it is bounded and
closed.
⊳ For simplicity of notations consider the case n = 2.
0◦ We need the following important theorem of general topology:

Tichonov Theorem. The product
∏

i X i of (arbitrary many) topologicalspa-
ces (equipped with the product topology) is a compact space iff each X i is a
compact space.

K

K1

K2

x1

x2

1◦ Let K be compact (in R2). Then K is closed (as a compact set in a Hausdorff topological
space). Now the projections K1 and K2 of K onto the axes x1
and x2 are compact (in R) as the images of a compact set by
continuous mappings. Hence, as is known from one-dimensional
analysis, K1 and K2 are bounded. So there exists a > 0 such that
Ki ⊂ Ia , i = 1, 2, . . . whence it follows that

K1 × K2 ⊂ Ia × Ia = B‖·‖∞a .

Thus K1×K2 is bounded. A fortiori K ⊂ K1×K2 is bounded.
2◦ Vice versa, let K be a closed bounded set in R2. Then K ⊂ B‖·‖∞a for some a > 0.
But B‖·‖∞a = Ia × Ia is compact by Tichonov Theorem, hence K is compact as a closed
subset of a compact set. ⊲
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1.9 Uniqueness of the norm topology in Rn

Up to equivalence there exists just one norm in Rn — all norms in Rngenerate one and
the same topology:

Theorem 1.9.1. All the norms in Rn are equivalent.
⊳ Let ‖·‖ be a norm in Rn . Show that ‖·‖ ∼ ‖·‖1.
1◦ ‖·‖1 ≻ ‖·‖: Consider the canonical basis {e1, . . . , en} of Rn , (ei = (0, . . . , 0, 1,

i
0, . . . , 0)). For any point x = (x1, . . . , xn) ∈ Rn it holds

‖x‖ = ‖x1e1 + · · · + xnen‖
△-in.
≤ ‖x1e1‖ + · · · + ‖xnen‖

= |x1| ‖e1‖ + · · · + |xn| ‖en‖
≤

M :=max{‖e1‖,···,‖en‖}
M(|x1| + · · · + |xn|) = M ‖x‖1 .

Hence, by Theorem 1.4.1., ‖·‖1 ≻ ‖·‖.
2◦ ‖·‖ ≻ ‖·‖1: Consider the unit sphere S in the norm ‖·‖1:

S := {x ∈ Rn | ‖x‖1 = 1}.

This set is compact (in the natural topology). Indeed, S is obviously bounded, and S is
closed as the pre-image of the closed set {1} ⊂ R by the continuous mapping ‖·‖1 (see
Theorem 1.3.2.).

Now we claim that ‖·‖ is a continuous function on Rn (with the natural topology).
Indeed, ‖·‖ is continuous with respect to the topology τ generated by ‖·‖ (once again by
Theorem 1.3.2.) and τnat is FINER than τ by 1◦.

We conclude that ‖·‖ attains its MINIMAL value m on S, that is,

‖x‖1 = 1⇒ ‖x‖ ≥ m,
‖x0‖ = m for some x0 with ‖x0‖1 = 1.

(1)

This value m must be greater than 0, since otherwise x0 = 0 and ‖x0‖1 = 0. It follows
from (1) that

x0

B1

|| ||. 1

S

Bm

|| ||. ‖x‖1 > 1⇒ ‖x‖ = ‖x‖1︸︷︷︸
>1

∥∥∥∥
x

‖x‖1

∥∥∥∥
︸ ︷︷ ︸
≥m

> m.

Hence

‖x‖ ≤ m ⇒ ‖x‖1 ≤ 1,

that is,

B‖·‖m ⊂ B‖·‖11 .

Thus, by the same Theorem 1.4.1., ‖·‖ ≻ ‖·‖1. ⊲

1.10 Linear mappings

For a linear mapping l we usually write lx or l · x instead of l(x):

lx ≡ l · x ≡ l(x).
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The set of all linear mappings from a vector space X into a vector space Y is a vector
space with respect to operations

(l + m)x := lx + mx, (tl)x := t (lx) (t ∈ R),

and we denote this vector space by
L(X,Y ).

The vector subspace of all CONTINUOUS linear mappings, in the case where X and Y are
normed spaces, we denote by

L (X,Y ).

Theorem 1.10.1. Let X and Y be normed spaces and let l ∈ L(X,Y ). Then l is continuous
iff l is continuous at 0.
⊳ “Only if”: obvious.

“If”: Let l be continuous at 0, that is, ‖h‖ → 0⇒ ‖lh‖ → 0. Then for an arbitrary
x ∈ X it holds

‖ l(x + h)︸ ︷︷ ︸
=lx+lh

−lx‖ = ‖lh‖ K
‖h‖→0

0,

which means that l is continuous at x . ⊲

Operator norm
Let X,Y be normed spaces. We define the norm of a mapping l ∈ L(X,Y ) as

‖l‖ := sup
‖x‖≤1

‖lx‖ .

Very often one says “operators” for linear mappings, that is why this norm is usually
named operator norm. (Below we will see that this is really a norm.)

Example. For any k ∈ R the linear mapping R→ R, x 7→ kx has the norm |k|.
Basic Inequality (BI). ∀l ∈ L(X,Y ) ∀x ∈ X

... ‖lx‖ ≤ ‖l‖ ‖x‖ .
⊳ If x = 0 then our inequality is trivially true. If x 6= 0 then

‖lx‖ =
∥∥∥∥l

(
‖x‖ x

‖x‖

)∥∥∥∥ =
∥∥∥∥‖x‖ l

x

‖x‖

∥∥∥∥ = ‖x‖
∥∥∥∥l

x

‖x‖

∥∥∥∥
︸ ︷︷ ︸
≤

‖x/‖x‖‖=1
‖l‖

≤ ‖l‖ ‖x‖ . ⊲

Criteria of continuity. Let l ∈ L(X,Y ). The following conditions are equivalent:

a) l is continuous;
b) the image l B1 of the unit ball in X is bounded in Y ;

c) ∃k > 0 ∀x ∈ X
... ‖lx‖ ≤ k ‖x‖ (the norm of lx admits an estimation linear in

‖x‖);
d) ‖l‖ <∞ (the operator norm is finite).

⊳ (a)⇒(b): Since l is continuous at 0, there exists δ > 0 : l BX
δ ⊂ BY

1 . Multiplying by
δ−1 we obtain (by linearity of l) l BX

1 ⊂ BY
δ−1 , which just means that the image l BX

1 is
bounded.
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(b)⇒(c): If l BX
1 ⊂ BY

k , then (without loss of generality x 6= 0)

‖lx‖
wlog
x 6=0= ||

∈BY
k︷ ︸︸ ︷

l
x

‖x‖︸︷︷︸
∈BX

1

|| ‖x‖ ≤ k ‖x‖ .

(c)⇒(d): If ‖lx‖ ≤ k ‖x‖ for all x , then sup‖x‖≤1 ‖lx‖︸︷︷︸
≤k ‖x‖︸︷︷︸

≤1

≤ k, that is, ‖l‖ ≤ k.

(d)⇒(a): If ‖l‖ <∞ then 0 ≤ ‖lx‖ BI≤ ‖l‖ ‖x‖ K
‖x‖→0

0, hence ‖lx‖ K
‖x‖→0

0, that

is, l is continuous at 0. But then, by Theorem 1.10.1., l is continuous everywhere. ⊲

Remark. ‖l‖ = inf{k > 0 | ∀x ∈ X
... ‖lx‖ ≤ k ‖x‖}.

Theorem 1.10.2. The mapping L (X,Y )→ R, l 7→ ‖l‖ is a norm.
⊳ That ‖l‖ ≥ 0 is obvious. If ‖l‖ = 0 then ‖lx‖ = 0 for all x with ‖x‖ ≤ 1 and hence,
by linearity of l, for all x , which means that l = 0. Further

‖tl‖ = sup
‖x‖≤1

‖(tl)x‖ = sup
‖x‖≤1

‖t (lx)‖ = |t| sup
‖x‖≤1

‖lx‖ = |t| ‖l‖ .

At last

‖l1 + l2‖ = sup
‖x‖≤1

‖(l1 + l2)x‖ = sup
‖x‖≤1

‖l1x + l2x‖ ≤ sup
‖x‖≤1

‖l1x‖︸ ︷︷ ︸
≤‖l1‖ ‖x‖︸︷︷︸

≤1

+ ‖l2x‖︸ ︷︷ ︸
≤‖l2‖ ‖x‖︸︷︷︸

≤1

≤ ‖l1‖ + ‖l2‖ . ⊲
NB We EVER consider L (X,Y ) as a normed space with this norm.

The case X = Rn

Theorem 1.10.3. Any linear mapping from Rn (with the natural topology) into a normed
space Y is continuous:

L(Rn,Y ) =L (Rn,Y ).

⊳ Let l ∈ L(Rn,Y ). Each element x = (x1, . . . , xn) of Rn can be written as x1e1 + · · · +
xnen , where {e1, . . . , en} is the canonical basis, so if we put lei =: ai , then, by linearity
of l,

lx = x1a1 + · · · + xnan. (1)

In view of Theorem 1.10.1. it is sufficient to verify that l is continuous at 0, that is, that
x → 0⇒ lx → 0. But x → 0 means that all xi → 0 (since the natural topology coincides
with the PRODUCT topology), whence it follows (by continuity of algebraical operations
in a normed space, see Theorem 1.6.1.) that

x1a1 + · · · + xnan → 0.

Thus, by (1), lx → 0.
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(ANOTHER PROOF:
‖lx‖ = ‖l(x1e1 + · · ·)‖ ≤ |x1|‖ le1︸︷︷︸

ai

‖ + · · · ≤ max ‖ai‖︸ ︷︷ ︸
=:k

(|x1| + · · ·)︸ ︷︷ ︸
=‖x‖1

≤ k ‖x‖1,

so l is continuous by Criterium (c) of continuity.) ⊲

Evaluation at a point
Let X,Y be vector spaces, and let h be a FIXED element of X . The evaluation at h (or
delta-function at h) is the mapping

evh ≡ δh : L(X,Y )→ Y, l 7→ lh.

This mapping is (obviously) LINEAR.

Theorem 1.10.4. Let X,Y be normed spaces. Then for each h ∈ X the evaluation at h is
CONTINUOUS:

evh ∈L (L (X,Y ),Y ).

⊳ ‖evh‖ = sup
‖l‖≤1

‖
lh︷︸︸︷

evh l ‖︸ ︷︷ ︸
BI≤ ‖l‖︸︷︷︸
≤1

‖h‖

≤ ‖h‖, hence by Criteria (d) of continuity, evh is continuous. ⊲

“Lemma” from Functional Analysis
Mappings into R are usually called functionals in the case where the “first” space is
infinite-dimensional. (The name “Functional Analysis” originates from this word.) The
vector space of all linear (resp., continuous linear) functionals on a given vector space
(resp., normed space) X we shall denote by X ′ (resp., X∗):

X ′ := L(X,R), X∗ :=L (X,R).

Later we at least two times shall use the following:

Theorem 1.10.5. (“Lemma” from Functional Analysis) Let X be a normed space. Then
for each vector x ∈ X there exists a functional l ∈ X∗ of the unit norm such that its value
at x is just the norm of x:

‖l‖ = 1, lx = ‖x‖ .
⊳ We give the proof for X = Rn only. If x = 0 then we can take as l ANY functional of
the norm 1. Let x 6= 0. Put (below ‖·‖ denotes ‖·‖2)

e := x

‖x‖ and ly := e · y (y ∈ Rn)

(where the latter point means scalar product). It is clear that ‖e‖ = 1, so

‖l‖ = sup
‖y‖≤1

|e · y|︸ ︷︷ ︸
≤

prop.
of scal.
prod.

‖e‖︸︷︷︸
=1

‖y‖︸︷︷︸
≤1

≤ 1, |le| = | e · e︸︷︷︸
=1

| = 1.

Since e belongs to the unit ball, over which we take the supremum, we conclude that
‖l‖ = 1.

At last

lx = e · x = x

‖x‖ · x =
x · x
‖x‖ =

‖x‖2
‖x‖ = ‖x‖ . ⊲





Chapter 2

First derivative

2.1 Fréchet and Gâteaux derivatives

The classic definition of the derivative

f ′(x) := lim
h→0
(h 6=0)

f (x + h)− f (x)

h

can be written in the form (below we drop for short “h 6= 0”)

r(h)

h
K

h→0
0,

where
r(h) := f (x + h)− f (x)− f ′(x)h.

So we can reformulate the definition as follows: a function f : R→ R is differentiable at
a point x if there exists a number l (= f ′(x)) such that f admits the representation

∀h ∈ X
... f (x + h) = f (x)+ lh + r(h),

where r is a mapping R→ R, that satisfies the conditions r(0) = 0 and

r(h)

h
K

h→0
0. (1)

Such a mapping we call small.
A key point to generalize this definition is the idea that l can be considered as a

(continuous) LINEAR MAPPING R→ R:

l : R→ R, h 7→ lh

(we identify a number l with the linear function with the (slope) coefficient l). This leads
to the following definition:

A mapping f : X → Y between normed spaces X and Y is differentiable (in a given
sense) at a point x ∈ X (notation: f ∈ Dif(x)) if there exists a continuous linear mapping
l : X → Y such that f admits the representation

∀h ∈ X
... f (x + h) = f (x)+ lh + r(h), (2)

21
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where r is a mapping X → Y , that is SMALL (in this sense). There are two basic kinds of
smallness for mappings between normed spaces:

A mapping r : X → Y is Fréchet-small (F-small) if r(0) = 0 and

‖r(h)‖
‖h‖ K

‖h‖→0
0; (3)

r is Gâtteaux-small (G-small) if r(0) = 0 and

∀h ∈ X
...

r(th)

t
K

t→0
0 (t ∈ R). (4)

NB For X = Y = R both (3) and (4) are equivalent to (1) (verify!).
Accordingly we speak about F-differentiability and G-differentiability. Very often we

drop the symbol “F”, so “differentiability” means ever “Fréchet differentiability” and
“ f ∈ Dif(x)” means “ f ∈ F- Dif(x)”.
Remark. Both our differentiabilities do not depend on the choice of EQUIVALENT norms
in X and Y . (Verify!)

The mapping l in the representation (2) is called the derivative of f at x and it is
denoted by f ′(x).

l 1.
l

1 R

f(t
) f  (t)

Y

Y
Examples.

1. If X = R (“time”) then we can identify a linear mapping
l : R → Y with the element l · 1 of Y and it is easy to see that
F-differentiability is equivalent to G-differentiability, and

f ′(t) · 1 = lim
1t→0

f (t +1t)− f (t)

1t
(the limit in Y ).

Below we shall denote the last limit by ḟ (t) and call ḟ (t)
(which is a vector in Y ) the usual derivative of f at t (it is the
velocity of a point that moves in Y by the “law” f ).

2. Any CONSTANT function is differentiable everywhere, with zero derivative.
⊳ If f ≡ c, then f (x + h) = f (x)+ 0.h+ 0, and 0 is small (in any reasonable sense!) ⊲

3. Any continuous linear mapping l is differentiable, and its derivative at each point is
equal to this mapping itself:

l ′ ≡ l (that is, ∀x ∈ X
... l ′(x) = l).

⊳ l(x + h) = lx + lh + 0. ⊲

4. The function f : Rn → R, f (x) = ‖x‖22 = x2
1 + · · · + x2

n (x = (x1, . . . , xn)) is
differentiable everywhere, and

f ′(x) · h = 2x · h,

where the point to the right means scalar product. (Prove!)

1

0

5. Let the function f : R2 → R is equal to 1 on the right branch of the
parabola {(t, t2)} WITHOUT the origin (t > 0) and is equal to 0 at all rest
points of the plane. Then f is G-differentiable at 0(= (0, 0)), with f ′(0) = 0
(∈L (R2,R)), but is NOT F-differentiable. (Verify!)
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Theorem 2.1.1. F-differentiability implies G-differentiability, with the same derivative.
⊳ It is sufficient to show that if r : X → Y is F-small, then r is G-small. Let r(0) = 0
and ‖r(h)‖

‖h‖ K
‖h‖→0

0. (5)

Then for each fixed ĥ ∈ X \ 0 (for short we write X \ 0 instead of X \ {0})
∥∥∥∥∥

r(t ĥ)

t

∥∥∥∥∥ =

∥∥∥r(t ĥ)
∥∥∥

∥∥∥t ĥ
∥∥∥
‖ĥ‖ K

t→0
0,

since ‖t ĥ‖ = |t|
∥∥∥ĥ
∥∥∥ K

t→0
0 and hence, by (5),

∥∥∥r(t ĥ)
∥∥∥/
∥∥∥t ĥ

∥∥∥ K
t→0

0. But this just means

that
r(t ĥ)

t
K

t→0
0.

Thus, r is G-small. ⊲

Theorem 2.1.2. G-derivative is defined uniquely.
⊳ We need to verify that if for a given x ∈ X

∀h ∈ X
... f (x)+ l1h + r1(h) = f (x)+ l2h + r2(h), (6)

where l1, l2 ∈ L (X,Y ) and r1, r2 are G-small, then l1 = l2, that is, for each h ∈ X it
holds l1h = l2h. But indeed (for t 6= 0)

l1h − l2h
trick= l1(th) − l2(th)

t
(6)= r2(th)− r1(th)

t
= r2(th)

t
− r1(th)

t
K

t→0
0,

whence it follows that l1h − l2h = 0. ⊲

Corollary 2.1.3. F-derivative is defined uniquely.
⊳ It follows from Theorems 2.1.1. and 2.1.2. ⊲

Theorem 2.1.4. If f is differentiable at x, then f is continuous at x.
⊳ By the condition, f (x+h) = f (x)+ lh+r(h), where l ∈L (X,Y ) and r is small. We
need to verify that if h → 0 then lh + r(h)→ 0. Since l is a continuous linear mapping,
lh → 0 as h → 0. Now, for h 6= 0

‖r(h)‖ = ‖r(h)‖‖h‖︸ ︷︷ ︸
→0

‖h‖ K
‖h‖→0

0

(for h = 0 we have r(0) = 0), which just means that r(h)→ 0 if h → 0. ⊲

NB G-differentiability does NOT imply continuity (see Example 5).

2.2 Computation Rule and directional differentiability.

For practical computation of derivatives it is convenient to use the following
Computation Rule. Let f : X → Y be G-differentiable at a given point x , and let h ∈ X
be given. Put for t ∈ R

ϕ(t) := f (x + th) ,
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so that ϕ : R→ Y . Then ϕ is differentiable at 0, and

f ′(x)h = ϕ̇(0) = ∂

∂ t

∣∣∣∣
t=0

f (x + th) .

(As to ϕ̇(0) see Example 1).)

f

x x+h

ϕ(0)=f(x) ϕ(1)=f(x+1h)

Y

t0 1

ϕ

⊳ Let f ′(x) = l. We have ϕ(t) = f (x + th) = f (x)+ l(th)+ r(th), so (for t 6= 0)

ϕ(t)− ϕ(0)
t

=
ϕ(0)= f (x)

l(th) + r(th)

t
=

l∈Lin
lh + r(th)

t︸ ︷︷ ︸
→0

→ lh

as t → 0, which does mean that ϕ̇(0) = lh. ⊲

The Computation Rule suggests the following definition. We say that a mapping
f : X → Y is differentiable at a point x in a direction h if the function

ϕ : R→ Y, t 7→ f (x + th)

is differentiable at 0. In such a case we call the vector ϕ̇(0) ∈ Y the differential of f at x
by the increment h, and we denote this differential by Dh f (x). Thus

Dh f (x) := ϕ̇(0) = ∂

∂ t

∣∣∣∣
0

f (x + th) = lim
t→0

f (x + th)− f (x)

t
. (1)

Corollary 2.2.1. If f : X → Y is G-differentiable at x then f is differentiable at x in
each direction, and

∀h ∈ X
... Dh f (x) = f ′(x)h .

Vice versa, if f is differentiable at x in each direction and the mapping

l : h 7→ Dh f (x), X → Y

is LINEAR and CONTINUOUS, then f is G-differentiable at x, and f ′(x) = l.
Remark. The mapping l in Corollary 2.2.1. is ever HOMOGENUOUS. More precisely, if f
is differentiable at x in a direction h, then for any real number c it is differentiable at x in
the direction ch, and

Dch f (x) = cDh f (x) .

(This follows at once from the last expression for Dh f (x) in (1).) But this mapping l can
be non-linear (that is, non-additive), as the following example shows.
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Example. The function f : R2 → R given (in the polar coordi-
nates) by the formula

f (̺, θ) = ̺ sin 3θ,

the graph of which is shown on the picture (from: M. Krupka,
Matematická Analýza III, Opava 1999), is differentiable at EACH

point in EACH direction, but is NOT G-differentiable at the origin.
(Verify!)

The next lemma is an extension of (1).

Lemma 2.2.2. (on f (x + th)). Let f : X → Y . Put for given x, h ∈ X

ϕ(t) := f (x + th) (t ∈ R).

Then
ϕ̇(t) = Dh f (x + th) .

(If one side is defined then the other one is also defined, and they are equal.)

⊳ Dh f (x + th)
(1)= lim

τ→0

f ((x + th)+ τh)− f (x + th)

τ

= lim
τ→0

ϕ(t + τ )− ϕ(t)
τ

= ϕ̇(t). ⊲

2.3 Rules of differentiation

First of all, differentiation is a linear operation:
Linearity of differentiation.(a) If f ∈ Dif(x) then for each c ∈ R we have also c f ∈
Dif(x), and

(c f )′(x) = c f ′(x) .

(b) If f1, f2 ∈ Dif(x), then f1 + f2 ∈ Dif(x), and

( f1 + f2)
′(x) = f ′1(x)+ f ′2(x) .

⊳ (a) We have (c f )(x + h) = c( f (x + h)) = c( f (x) + f ′(x)h + r(h)) = (c f )(x) +
(c f ′(x))h + (cr)(h), so we need to verify that cr is small. But indeed (for h 6= 0)

‖(cr)(h)‖
‖h‖ = ‖c(r(h))‖‖h‖ = |c| ‖r(h)‖‖h‖︸ ︷︷ ︸

r is small
K0

K
‖h‖→0

0.

(b) We have analogously (in obvious notations)

( f1 + f2)(x + h) = ( f1 + f2)(x)+ ( f ′1(x)+ f ′2(x))h + (r1 + r2)(h),

so we just need to verify that r1 + r2 is small. But indeed
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‖(r1 + r2)(h)‖
‖h‖ = ‖r1(h)+ r2(h)‖

‖h‖ ≤ ‖r1(h)‖ + ‖r2(h)‖
‖h‖

= ‖r1(h)‖
‖h‖ +

‖r2(h)‖
‖h‖

r1,r2 are small
K

‖h‖→0
0. ⊲

Product Rule. Let X,Y1, . . . ,Ym be normed spaces, and let fi : X → Yi , i = 1, . . . ,m.
We denote by ( f1, . . . , fm ) the product mapping X → Y1 × · · · × Ym defined by the
formula

Y1
f1ր

X
...

fm
ց

Ym

X
( f1,..., fm)

K Y1 × . . .× Ym

( f1, . . . , fm)(x) := ( f1(x), . . . , fm(x)).

The mapping ( f1, . . . , fm) is differentiable (resp., G-dif-
ferentiable, differentiable in a direction h) at x ∈ X iff each
mapping fi is differentiable (resp., G-differentiable, differen-
tiable in h) at x, and

( f1, . . . , fm)
′(x) = ( f ′1(x), . . . , f ′m(x))

Dh( f1, . . . , fm)(x) = (Dh f1(x), . . . ,Dh fm(x))
(component-wise
differentiation).

⊳ Consider, e.g., the case of F-differentiation. We have

( f1, . . . , fm)(x + h) = ( f1(x + h), . . . , fm (x + h))
= ( f1(x)+ f ′1(x)h + r1(h), . . . , fm(x)+ f ′m(x)h + rm(h))
= ( f1(x), . . . , fm(x))+ ( f ′1(x)h, . . . , f ′m(x)h)+ (r1(h), . . . , rm(h))
= ( f1, . . . , fm)(x)+ ( f ′1(x), . . . , f ′m (x))h + (r1, . . . , rm)(h).

Now, ( f ′1(x), . . . , f ′m(x)) ∈ L (X,Y1 × · · · × Ym) iff each fi ∈ L (X,Yi ) (by the
definitions of product vector space and product topology), and (r1, . . . , rm) is small iff
each ri is small. Indeed

(r1, . . . , rm)(h)

‖h‖ =
(

r1(h)

‖h‖ , . . . ,
rm(h)

‖h‖

)
K

‖h‖→0
0⇔ ∀i ... ri (h)

‖h‖ K
‖h‖→0

0,

since convergence in a product space is just convergence of each component. ⊲

Chain Rule. Let f : X → Y be differentiable at a point x ∈ X, and let g : Y → Z be

X
f
K Y

g
K Z

x 7→ y

X
f ′(x)

K Y
g′(x)

K Z

differentiable at the point y := f (x). Then the composition g ◦ f
is differentiable at x, and the derivative of g ◦ f is equal to the
composition of derivatives of f and g:

(g ◦ f )′(x) = g′(y) ◦ f ′(x) .

⊳ 1◦ Put f ′(x) =: l, g′(y) =: m, g(y) =: z. We have, by the conditions,

∀1x ∈ X
... f (x +1x) = y + l 1x + r f (1x), (1)

∀1y ∈ Y
... g(y +1y) = z + m1y + rg(1y), (2)

where ∥∥r f (1x)
∥∥

‖1x‖ K
‖1x‖→0

0, (3)
∥∥rg(1y)

∥∥
‖1y‖ K

‖1y‖→0
0. (4)
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We need to verify that

∀1x ∈ X
... (g ◦ f )(x +1x) = z + (m ◦ l)1x + r(1x), (5)

where ‖r(1x)‖
‖1x‖ K

‖1x‖→0
0. (6)

2◦ But
r(1x) = mr f (1x)+ rg(1y), (7)

where
1y := l 1x + r f (1x). (8)

Indeed

(g ◦ f )(x +1x) = g( f (x +1x))
(1)= g(y + l 1x + r f (1x)︸ ︷︷ ︸

(7)=1y

)

(2)= z + m(l 1x + r f (1x))+ rg(1y)
(7)= z + (m ◦ l)1x + r(1x).

3◦ Now,

‖r(1x)‖
‖1x‖

(7)=
∥∥mr f (1x)+ rg(1y)

∥∥
‖1x‖ ≤

∥∥mr f (1x)
∥∥+

∥∥rg(1y)
∥∥

‖1x‖
BI≤ ‖m‖

∥∥r f (1x)
∥∥

‖1x‖︸ ︷︷ ︸
(3)

K
‖x‖→0

0

+
∥∥rg(1y)

∥∥
‖1y‖

trick

trick
‖1y‖
‖1x‖ .

So all will be proved if we show that
(a) rg(1y)/‖1y‖ → 0 as ‖x‖ → 0;
(b) ‖1y‖/‖1x‖ is bounded for sufficiently small ‖1x‖.

4◦ Proof of (a): r f is equal to 0 at 0 and is continuous (since f and l are). So ‖1y‖ → 0
if ‖1x‖ → 0, and (a) is true by (4).
5◦ Proof of (b): we have

‖1y‖
‖1x‖

(8)=
∥∥l 1x + r f (1x)

∥∥
‖1x‖ ≤ ‖l 1x‖ +

∥∥r f (1x)
∥∥

‖1x‖
BI≤ ‖l‖ ‖1x‖ +

∥∥r f (1x)
∥∥

‖1x‖ = ‖l‖ +
∥∥r f (1x)

∥∥
‖1x‖︸ ︷︷ ︸
(3)

K
‖1‖x→0

0

≤ c

for some c > 0 and sufficiently small ‖1x‖. ⊲

Important special cases.

1) If f = l ∈L (X,Y ) then (g ◦ l)′(x) = g′(lx) ◦ l .

2) If g = l ∈ L (Y, Z) then (l ◦ f )′(x) = l ◦ f ′(x) (we can “transfer” l◦ through
the brackets).

3) If X = R, then (g ◦ f )̇(t) = g′( f (t)) · ḟ (t) (recall that ḟ (t) is an element of Y ).

4) In particular, if X = R and f = l then (g ◦ l)′(t) = g′(lt) · (l · 1) , and
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5) if X = R and g = l then (l ◦ f )̇(t) = l · ḟ (t) .

⊳ All this follows from the facts that l ′ ≡ l and that ḟ (t) = f ′(t) · 1. ⊲

Below we refer to Special Cases 1), 2), 4), 5) as to l-Rule.
NB For G-differentiability Chain Rule is NOT valid, as the following example shows.

g fo 
1

Example. Let f : R→ R2, t 7→ (t, t2), and let g be the function from
5) in (2.1) (where we used the letter f for it). Then f is G- (and even
F-)differentiable at 0, g is G-differentiable at f (0) = (0, 0), but g ◦ f
is NOT G-differentiable at 0.

Lemma 2.3.1. (on evaluation). Let X,Y, Z be normed spaces, and let a mapping f : X →
L (Y, Z) be differentiable at a point x . Let k be a fixed vector in Y , and let g : X → Z
be defined by the formula

g(x) := f (x) · k (the VALUE of f (x) at k).

Then g is differentiable at x, and

∀h ∈ X
... g′(x)h = ( f ′(x)h)k.

⊳ Obviously, g = evk ◦ f (recall that evk : l 7→ l · k, see Chapter 1), hence, by l-Rule
(evk ∈L (L (Y, Z), Z)),

g′(x)h = (evk ◦ f ′(x))h = evk( f ′(x)h) = ( f ′(x)h)k. ⊲

2.4 Partial derivatives

Here we consider two related things: differentiation in a (vector) subspace and partial
differentiation.

Differentiation in a subspace
Let f : X → Y be a mapping between normed spaces and let X1 be a vector subspace

in X (the notation X1 ⋐ X). We say that f is F- (resp., G-)differentiable at a point x ∈ X
in the subspace X1 if f admits in x + X1 the representation

∀h1 ∈ X1
... f (x + h1) = f (x)+ l1h1 + r1(h1),

where l1 ∈L (X1,Y ) and r1 : X1 → Y is F- (resp., G-) small. In such a case we write

f ∈ Dif X1(x) (resp., f ∈ G- Dif X1(x))

and we call l1 the derivative of f at x in the subspace X1:

l1 =: f ′X1
(x).

Example. A mapping f : X → Y is differentiable at a point x in a (non-zero) direction
h iff f is differentiable at x in the one-dimensional subspace Rh (= lin{h} ≡ span{h}),
generated by h, and in such a case

f ′
Rh(x) · th = tDh f (x) (t ∈ R).



2.4. PARTIAL DERIVATIVES 29

(Verify!)

Theorem 2.4.1. If f : X → Y is F- (resp., G-)differentiable at x, then f is F- (resp.,
G-)differentiable at x in each subspace X1 ⋐ X, and the derivative in X1 is just the
restriction of the “total” derivative:

f ′X1
(x) = f ′(x)|X1 .

⊳ This follows at once from the obvious facts, that the restriction of a continuous linear
mapping onto a vector subspace is also a continuous linear mapping, and the restriction
of a small mapping is also small. ⊲

Partial differentiation
Let X1, . . . , Xn and Y be normed spaces. We say that a mapping f : X1×. . .×Xn →

Y is F- (resp., G-)differentiable at a point x = (x1, . . . , xn) in the i -th coordinate if the
mapping

f (x1, . . . , xi−1, ·, xi+1, . . . , xn) : X i → Y, x̃i 7→ f (x1, . . . , xi−1, x̃i , xi+1, . . . , xn)

(that is, the mapping with all other coordinates FIXED) is F- (resp., G-)differentiable at
the point xi . We denote the corresponding derivative by

∂ f (x)

∂X i
(∈L (X i ,Y ))

and call it the partial derivative in X i at the point x .

Theorem 2.4.2. A mapping f : X1 × · · · × Xn → Y is differentiable (F- or G-) at x in
the i -th coordinates iff f is differentiable (in the same sense) at x in the subspace

0× · · · × 0× X i × 0× · · · × 0,

and

∀hi ∈ X i
...

∂ f (x)

∂X i
· hi = f ′0×···×X i×···×0(x) · (0, . . . , 0, hi , 0, . . . , 0).

⊳ This follows immediately from the definitions. ⊲

Theorem 2.4.3. (on total and partial derivatives). If a mapping f : X1 × · · · × Xn → Y
is G-differentiable at a point x = (x1, . . . , xn) then f is G-differentiable at x in each
coordinate, and

∀h = (h1, . . . , hn) ∈ X1 × · · · × Xn
... f ′(x) · h =

n∑

i=1

∂ f (x)

∂X i
· hi ,

or, more short,

f ′(x) = ∂ f (x)

∂X1
⊕ · · · ⊕ ∂ f (x)

∂Xn
≡

n⊕

i=1

∂ f (x)

∂X i
.

Here l1 ⊕ · · · ⊕ ln , for li ∈ L (X i ,Y ), denotes the direct sum of the mappings li ,
defined by the formula

l1 ⊕ · · · ⊕ ln : X1 × · · · × Xn → Y, (h1, . . . , hn) 7→ l1 · h1 + · · · + ln · hn.
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⊳ f ′(x) · h = f ′(x) · (h1, . . . , hn) = f ′(x) ·
n∑

i=1

(0, . . . , 0, hi , 0, . . . , 0)

Theorem 2.4.1.=
n∑

i=1

f ′(x)(0, . . . , 0, hi , 0, . . . , 0)

·
n∑

i=1

f ′0×...×X i×...×0(x) · (0, . . . , 0, hi , 0, . . . , 0)

Theorem 2.4.2.=
n∑

i=1

∂ f (x)

∂X i
· hi . ⊲

2.5 Finite-dimensional case

We ever denote by e1, . . . , en the standard basis in Rn:

ei := (0 . . . , 0, 1
i-th place

, 0, . . . 0) ∈ Rn.

For a mapping f : Rn = R × . . .× R → Y the partial derivative in the i -th coordinate
applied to the “vector” 1 ∈ R (that is, the “usual” partial derivative in the i-th coordinate)
is traditionally denoted by

∂ f

∂xi
(∈L (R,Y ) ≈ Y ).

By Theorem 2.4.2. (with hi = 1), and by the Example in 2.4 (with h = ei and t = 1),

∂ f (x)

∂xi
= Dei f (x) . (1)

(Emphasize that ∂ f (x)/∂xi is an element of Y .)

Jacobi matrix

Theorem 2.5.1. (on representation). Let a mapping f = ( f1, . . . , fm ) : Rn → Rn be G-
differentiable at a point x ∈ Rn . Then f ′(x) is represented as a linear mapping Rn → Rm

by the matrix of partials derivatives

J f (x) :=




∂ f1(x)
∂x1

· · · ∂ f1(x)
∂xn

...
. . .

...
∂ fm(x)
∂x1

· · · ∂ fm(x)
∂xn


 .

This matrix is called Jacobi matrix of f at x .
⊳ By linear algebra, we need to verify that the i -th column of the matrix represents the
vector f ′(x) · ei . But indeed

f ′(x) · ei
Prod. Rule= ( f ′1(x), . . . , f ′m(x)) · ei = ( f ′1(x) · ei , . . . , f ′m(x) · ei ),

and

f ′j (x) · ei = Dei f j (x)
(1)= ∂ f j (x)

∂xi
. ⊲
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Corollary 2.5.2. In conditions of Chain Rule, for mappings between finite-dimensional
spaces, Jacobi matrix of the composition is equal to the matrix product of Jacobi matrices
of the composed mappings:

Jg◦ f (x) = Jg( f (x))J f (x).

⊳ This follows from Chain Rule and the fact that the matrix of a composition of two linear
mappings is equal to the product of the matrices of these mappings. ⊲

Example. How to compute the derivative of the function f (x) = x x (x > 0)? Represent f
as a composition: f = g ◦△, where△ : R→ R2, t 7→ (t, t), g : R2 → R, (x, y) 7→ x y .
By l-Rule,

ḟ (t) = g′(t, t) · (1, 1)
Theorem 2.5.1.=

(
∂g(t, t)

∂x
,
∂g(t, t)

∂y

)(
1
1

)
= ∂g(t, t)

∂x
+ ∂g(t, t)

∂y

= yx y−1
∣∣∣
x=y=t

+ (ln x)x y
∣∣
x=y=t = (ln t + 1)t t .

Gradient
In the special case of SCALAR functions f : Rn → R Jacobi matrix is the row

(
∂ f (x)

∂x1
· · · ∂ f (x)

∂xn

)
.

The corresponding vector in Rn is called the gradient of f at x and is denoted by grad f (x):

grad f (x) :=
(
∂ f (x)

∂x1
, . . . ,

∂ f (x)

∂xn

)
(∈ Rn).

In this situation Theorem 2.5.1. (Theorem on representation) says:

f ′(x) · h = grad f (x) · h , (2)

where the point to the right means scalar product. Indeed

(
∂ f (x)

∂x1
· · · ∂ f (x)

∂xn

)



h1
...

hn


 =

n∑

i=1

∂ f (x)

∂xi
hi .

For any UNIT vector Eν ∈ Rn (‖Eν‖2 = 1), the differential of a mapping f : Rn → R at
a point x by the increment Eν is called the derivative at x in the direction Eν and is denoted
traditionally by ∂ f (x)/∂ν:

∂ f (x)

∂ν
:= DEν f (x).

Theorem 2.5.3. If a function f : Rn → R is G-differentiable at a point x , then for any
unit vector Eν ∈ Rn it holds

∂ f (x)

∂ν
= grad f (x) · Eν

(where the point means the scalar product).
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⊳ ∂ f (x)/∂ν = DEν f (x) = f ′(x) · Eν (2)= grad f (x) · Eν. ⊲

x

grad f(x)

Corollary 2.5.4. The gradient vector of f at x yields the direction
of the greatest growth of f at x and is orthogonal to the level line
of f passing through x.
⊳ The scalar product grad f (x) · Eν is maximal for the unit vector
Eν that has the SAME direction as grad f (x) and is equal to 0 for Eν
orthogonal to the gradient. ⊲

2.6 Mean Value Theorem

In classic differential calculus, the following result plays an important role:

Theorem 2.6.1. (Lagrange). If a function f : R→ R is continuous in the closed interval
[0, 1] and is differentiable in the open interval (0, 1), then there exists θ ∈ (0, 1) such that

f (1)− f (0) = ḟ (θ).

This result is NOT true for functions with vector values, as the following example
shows.

t=0
t=1

Example. Let f : R→ R2, t 7→ (cos 2π t, sin 2π t). Then f (1)−
f (0) = (0, 0), but

ḟ (t)
Prod. Rule= (−2π sin 2π t, 2π cos 2π t),

hence
∥∥ ḟ (t)

∥∥
2 = 2π , which is never zero.

But the following ESTIMATE of the increment is true:

Theorem 2.6.2. (Mean Value Theorem, (MVT)). Let a function ϕ : R→ Y (where Y is
a normed space) be continuous on [0, 1] and differentiable in (0, 1). Then

‖ϕ(1)− ϕ(0)‖ ≤ sup
0<t<1

‖ϕ̇(t)‖ .

⊳ 1◦ Put y := ϕ(1)− ϕ(0). By Theorem 1.10.5. (Lemma from FA (see Chapter 1)) there
exists l ∈L (Y,R) such that

‖l‖ = 1, ly = ‖y‖ . (1)

2◦ Consider the composition

R
ϕ→ Y

l→ R.

It is differentiable in (0, 1) by Chain Rule.

3◦ We have ‖y‖ (1)= ly = l(ϕ(1)− ϕ(0)) = (l ◦ ϕ)(1)− (l ◦ ϕ)(0). By Theorem 2.6.1. for
some θ ∈ (0, 1) it holds

(l ◦ ϕ)(1)− (l ◦ ϕ)(0) = (l ◦ ϕ)̇(θ) l-Rule= l · ϕ̇(θ) BI≤ ‖l‖︸︷︷︸
=1

‖ϕ̇(θ)‖ ≤ sup
0<t<1

‖ϕ̇(t)‖ . ⊲
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ϕ(1)

ϕ(0) sup||ϕ(t)||
0<t<1

.

CAR-INTERPRETATION. If Y = R2 and we consider t ∈ R
as time, then ϕ describes a motion of a “car” in the plane, and
ϕ̇(t) is the velocity of this car. The inequality in Theorem 2.6.2.
(MVT) means that our car in one hour will be INSIDE the circle
with the center at the original point, the radius of which is equal
to the maximal value of the velocity of the car during this hour.

ϕ(t)

ϕ(1)-ϕ(0)

ϕ(0)

sup||ϕ(t)||
0<t<1

ϕ(1)

.

.

Remark. In fact the following much more strong result is true:
By the conditions of MVT, the increment ϕ(1) − ϕ(0) lies in
the closed convex hull of the set {ϕ̇(t) | 0 < t < 1} (shadowed
on the picture).

Corollary 2.6.3. Let X,Y be normed spaces, let x, h ∈ X and
let a mapping f : X → Y has the following properties:
a) the restiction of f onto the closed interval [x, x + h] (:=
{x + th | t ∈ [0, 1]}) is continuous and
b) f is differentiable in the direction h in the open interval
(x, x + h) (:= {x + th | t ∈ (0, 1)}). Then

‖ f (x + h)− f (x)‖ ≤ sup
y∈(x,x+h)

‖Dh f (y)‖ .

⊳ Put ϕ(t) := f (x + th), t ∈ R. By Lemma 2.2.2. (on f (x + th)), it holds ϕ̇(t) =
Dh f (x + th). So our assertion follows from MVT (Theorem 2.6.2.). ⊲

Corollary 2.6.4. In the situation of Corollary 2.6.3., let f has the following properties:
a) the restiction of f onto the interval [x, x + h] is comtinuous and
b) f is G-differentiable in (x, x + h). Then

‖ f (x + h)− f (x)‖ ≤ ‖h‖ sup
y∈(x,x+h)

∥∥ f ′(y)
∥∥ .

⊳ This follows from Corollary 2.6.3. and the fact that

‖Dh f (y)‖ =
∥∥ f ′(y) · h

∥∥ BI≤
∥∥ f ′(y)

∥∥ ‖h‖ . ⊲

2.7 Continuous differentiability

Let X,Y be normed spaces, let x ∈ X , and let f : X → Y be G-differentiable in an open
neighbourhood U of x . We say that f is continuously G-differentiable at x and we write

f ∈ C1
G(x),

if the derivative mapping

f ′ : U →L (X,Y ), y 7→ f ′(y)

is continuous at x . Thus

f ∈ C1
G(x) :⇔

∥∥ f ′(x + h)− f ′(x)
∥∥ K
‖h‖→0

0. (1)

Theorem 2.7.1. (on Continuous Derivative). If f : X → Y is continuously G-differenti-
able at a point x ∈ X, then f is F-differentiable at x.
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⊳ 1◦ We have

f (x + h) = f (x)+ f ′(x)h + r(h), f ′(x) ∈L (X,Y ), r ∈ G-small.

Put for t ∈ R
ψ(t) := r(th) = f (x + th)− f (x)− t f ′(x)h. (2)

Then
r(h) = ψ(1)− ψ(0). (3)

2◦We want to apply MVT, so compute the derivative ofψ . By Lemma 2.2.2. (on f (x+th)),

ψ̇(t) = Dh f (x + th)︸ ︷︷ ︸
= f ′(x+th)h

− f ′(x)h = ( f ′(x + th) − f ′(x))h. (4)

3◦ Now,

‖r(h)‖
‖h‖

(3)= ψ(1)− ψ(0)
‖h‖

MVT≤ 1

‖h‖ sup
0<t<1

∥∥ψ̇(t)
∥∥

(4)= 1

‖h‖ sup
0<t<1

∥∥( f ′(x + th)− f ′(x))h
∥∥

︸ ︷︷ ︸
BI≤‖( f ′(x+th)− f ′(x))‖‖h‖

≤ sup
0<t<1

∥∥( f ′(x + th)− f ′(x))
∥∥ (1)

K
‖h‖→0

0,

since ‖th‖ = |t| ‖h‖ K
‖h‖→0

0 uniformly in 0 < t < 1. Thus r is F-small, so f is

F-differentiable at x . ⊲

Class C1

Let X,Y be normed spaces and let U be an open set in X . We say that f : X → Y is
of class C1 in U an we write

f ∈ C1(U)

if f is differentiable at each point of U (that is, in U ), and the derivative mapping

f ′ : U →L (X,Y ), x 7→ f ′(x)

is continuous.

Theorem 2.7.2. (C1-Theorem on Continuous Derivative). Let f : X → Y be continuously
G-differentiable at each point of an open set U in X. Then f is of class C1 in U.
⊳ This is an immediate corollary of Theorem 2.7.1. (on continuous derivative) ⊲

2.8 Continuous partial derivatives

At first we prove one result on continuous differentiability in n fixed directions.

Continuous differentials

Lemma 2.8.1. Let X,Y be normed spaces, and let h1, . . . , hn be fixed vectors in X. Let a
mapping f : X → Y be differentiable in the directions h1, . . . , hn in some neighbourhood
U of a point x , and let all the mappings

Dhi f : x̃ 7→ Dhi f (x̃), U → Y (i = 1, . . . , n)
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be continuous at x. Then f is G-differentiable at x in the vector subspace H in X,
generated (spanned) by the vectors hi (H = lin{h1, . . . , hn} ≡ span{h1, . . . , hn}).
⊳ 1◦ If f IS G-differentiable at x in H , then

f ′H (x) · hi = Dhi f (x) (i = 1, . . . , n),

so we must have ∀c1, . . . , cn ∈ R

f ′(x)·(c1h1+. . .+cnhn) = c1 f ′(x)h1+. . .+cn f ′(x)hn = c1Dh1 f (x)+. . .+cnDhn f (x).
(1)

(Since H is finite-dimensional, the so defined linear mapping f ′H (x) is CONTINUOUS.) We
have to verify that for this f ′H (x) it holds

∀h ∈ H
... f (x + h) = f (x)+ f ′(x)h + r(h),

r(th)

t
K

t→0
0,

that is, that

∀h ∈ H
...

f (x + th)− f (x)− t f ′H (x)h
t

K
t→0

0.

This means by (1) that we need to verify that ∀c1, . . . , cn ∈ R
...

f (x + t (c1h1 + . . .+ cnhn))− f (x)− t (c1Dh1 f (x)+ . . .+ cnDhn f (x))

t
K

t→0
0.

By homogeneity of Dh f (x) in h, it holds ci Dhi f (x) = Dci hi f (x) so without loss of
generality we can assume that c1 = . . . = cn = 1 (take ci hi as NEW hi ). Further, by
induction argument, it is sufficient to consider the case n = 2. Thus we need to verify that

f (x + t (h1 + h2))− f (x)

t
− (Dh1 f (x)+ Dh2 f (x)) K

t→0
0. (2)

2◦ Adding and subtracting f (x + th1) in the numerator, we can write the left-hand side
of (2) as the sum 1 + 2 , where

1 = f (x + th1)− f (x)
t − Dh1 f (x),

2 = f (x + th1 + th2)− f (x + th1)− tDh2 f (x)
t .

So it is sufficient to verify that 1 → 0 and 2 → 0 as t → 0.

3◦ 1 → 0 as t → 0 by the definition of Dh .
x+th +th

x+th +θh
1 2

1   2

x+th1x

4◦ Putting (see the picture)

(3)ϕ(θ) := f (x + th1 + θ th2)− θ tDh2 f (x) (θ ∈ R),

we can write 2 in the form

2 = ϕ(1)− ϕ(0)
t

. (4)

5◦ By Lemma 2.2.2. (on f (x + th)), we obtain from (3)

ϕ̇(θ) = Dth2 f (x + th1 + θ th2)− tDh2 f (x)

homog.
of Dh= t (Dh2 f (x + th1 + θ th2)− Dh2 f (x)). (5)



36 CHAPTER 2. FIRST DERIVATIVE

6◦ At last, ∥∥∥ 2
∥∥∥ (4)= 1

|t| ‖ϕ(1)− ϕ(0)‖
MVT≤ 1

|t| sup
0<θ<1

‖ϕ̇(θ)‖

(5)= sup
0<θ<1

∥∥Dh2 f (x + th1 + θ th2)− Dh2 f (x)
∥∥ K

t→0
0,

since ‖th1 + θ th2‖ ≤ |t|(‖h1‖ + θ ‖h2‖) ≤
0<θ<1

|t|(‖h1‖ + ‖h2‖) K
t→0

0 uniformly in θ

and Dh2 f is continuous at x . Thus, 2 → 0 as t → 0. ⊲

Continuous partial derivatives

Theorem 2.8.2. Let X1, . . . , Xn and Y be normed spaces and let a mapping f : X1 ×
. . .× Xn → Y have all the partial derivatives ∂ f/∂X i in an open set U ⊂ X1× . . .× Xn

and these partial derivatives be continuous in U. Then f is of class C1 in U.
⊳ For simplicity we consider only the case X1 = · · · = Xn = Y = R (that is, f : Rn →
R), which is the most important for us. In this case continuity of the partial derivatives
∂ f/∂X i means just continuity of the partial derivatives ∂ f/∂xi = Dei f . By Lemma on
Continuous Differentials we conclude that f is G-differentiable in U . By Theorem on
Representation,

f ′(x) =
(
∂ f (x)

∂x1
, . . . ,

∂ f (x)

∂xn

)
.

Since each component of this vector continuously depends on x , we conclude, that f ′

continuously depends on x . Hence by Theorem 2.7.2. (C1-Theorem on Continuous Deri-
vative), f is of class C1 in U . ⊲

Corollary 2.8.3. Let f = ( f1, . . . , fm) : Rn → Rm , and let all the partial derivatives
∂ f j/∂xi (i = 1, . . . , n; j = 1, . . . ,m) be continuous in U ⊂ Rn . Then f is of class C1

in U.
⊳ By the Product Rule, ∂ f/∂xi = (∂ f1/∂xi , . . . , ∂ fm/∂xi), so ∂ f/∂xi are continuous if
all ∂ f j/∂xi are. ⊲



Chapter 3

Inverse Function Theorem

3.1 Lipschitz functions

Let X,Y be normed spaces, and let A ⊂ X . We say that a mapping f : X → Y is Lipschitz
on A with a constant k > 0, and we write

f ∈ LipA k

if

∀x1, x2 ∈ A
... ‖ f (x1)− f (x2)‖ ≤ k ‖x1 − x2‖ .

We say that f is Lipschitz on A and we write f ∈ LipA if f is Lipschitz with some constant
k. If A = X or if it is clear what A we mind, we omit A and write simply f ∈ Lip.

Examples.

1. | · | : R→ R, x 7→ |x |, is Lipschitz with the constant 1.

2. For any normed space X , the norm ‖·‖ is Lipschitz with the constant 1.

3. If f ∈L (X,Y ), then f ∈ Lip ‖ f ‖.
⊳ ‖ f x1 − f x2‖ = ‖ f (x1 − x2)‖ ≤ ‖ f ‖ ‖x1 − x2‖. ⊲

x

x

4. The function x 7→ √|x |,R→ R, is NOT Lipschitz.

Theorem 3.1.1. If f is Lipschitz on an open set U then f is continuous
in U.
⊳ ‖ f (x + h)− f (x)‖ ≤ k ‖h‖ K

‖h‖→0
0. ⊲

x

x

1

x2

Theorem 3.1.2. If f ∈ C1
G(x), then (for any ε > 0), f is Lipschitz in

some neighbourhood of x with the constant
∥∥ f ′(x)

∥∥+ ε.
⊳ By the definition of C1

G(x), there exists δ > 0 such that for any
y ∈ Bδ(x) it holds

∥∥ f ′(y)− f ′(x)
∥∥ ≤ ε and hence

∥∥ f ′(y)
∥∥ =

∥∥ f ′(y)− f ′(x)+ f ′(x)
∥∥ ≤

∥∥ f ′(y)− f ′(x)
∥∥

︸ ︷︷ ︸
≤ε

+
∥∥ f ′(x)

∥∥ ≤ ε+
∥∥ f ′(x)

∥∥=: k.

(1)

37
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Then ∀x1, x2 ∈ Bδ(x) it holds

‖ f (x1)− f (x2)‖
MVT≤

≤k by (1)︷ ︸︸ ︷
sup

y∈[x1,x2]

∥∥ f ′(y)
∥∥ ‖x1 − x2‖ ≤ k ‖x1 − x2‖ . ⊲

3.2 Banach spaces

We say that a normed space X is a Banach space (in honour of a Polish mathematician
Stefan Banach), and we write

X ∈ BS

if X is complete as a metric space (with the metric ̺(x, y) := ‖x − y‖), that is, if any
Cauchy sequence in X converges.

Note that in a normed space

{xn} ∈ Cauchy ⇔ ‖xm − xn‖ K
m,n→∞ 0.

Examples.

1. R,Rn,C([0, 1]), ℓ2 are Banach spaces.

2. The vector subspace k in ℓ2 which consists from all FINITE sequences, that is, sequences
of the form x = (x1, . . . , xn, 0, 0, . . .) (n depends on x), equipped with the norm form ℓ2,
is NOT a Banach space.

3.3 Contraction Lemma

It is the name of the following

Theorem 3.3.1. Let X ∈ BS, let A be a CLOSED subset in X, and let f be a mapping from
A into itself, f : A . If f ∈ LipA k with k < 1 (strictly!), then the operator f has one
and just one FIXED POINT x̂ , that is, a point such that

x1x2 x0x

v

f

id

Ax2x1

x0

k a
2

x 3 x4

ka
a k a

3

(1)f (x̂) = x̂ .

(Note that we can rewrite (1) as f (x̂) = id(x̂).) In this
case we write

x̂ ∈ Fix f .

⊳ 0◦ The idea of the proof is clear from the picture: the
broken line leads to x̂ .
1◦ Take an ARBITRARY point x0 ∈ A and put

x1 = f (x0), x2 = f (x1), . . . , xn+1 = f (xn), . . . .

We have

‖x1 − x0‖ =: a

‖x2 − x1‖ = ‖ f (x1)− f (x0)‖ ≤ k ‖x1 − x0‖ = ka, (2)

‖x3 − x2‖ = ‖ f (x2)− f (x1)‖ ≤ k ‖x2 − x1‖
(2)
≤ k2a,
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...

‖xn+1 − xn‖ ≤ kna. (3)

2◦ {xn} ∈Cauchy.

⊳⊳ ‖xm − xn‖ trick=
suppose

m>n

‖ xm − xm−1︸ ︷︷ ︸+ xm−1 − xm−2︸ ︷︷ ︸+ · · · + xn+1 − xn︸ ︷︷ ︸ ‖

≤ ‖xm − xm−1‖︸ ︷︷ ︸
≤akm−1 by (3)

+ · · · + ‖xn+1 − xn‖︸ ︷︷ ︸
≤akn by (3)

≤ a(kn + · · · + km−1)

∑
kn<∞

K
m,n→∞ 0. ⊲⊲

3◦ Put x̂ := lim xn (the limit exists since X ∈ BS). Then x̂ ∈ A, since A is closed. Further,
since f is continuous (by Theorem 3.1.1.) it holds

f (x̂) = lim
n→∞ f (xn)︸ ︷︷ ︸

=xn+1

= lim
n→∞ xn+1

obv.= lim
n→∞ xn = x̂,

hence x̂ is a fixed point for f .
4◦ This fixed point is unique. ⊳⊳ If x1 and x2 are both fixed points for f , then

‖ f (x1)︸ ︷︷ ︸
=x1

− f (x2)︸ ︷︷ ︸
=x2

‖ ≤ k︸︷︷︸
<1

‖x1 − x2‖ ⇒ ‖x1 − x2‖ = 0⇒ x1 = x2. ⊲⊲ ⊲

3.4 Isomorphisms

Let X,Y ∈ NS, and let l ∈L (X,Y ). We say that l is an isomorphism and we write

l ∈ Iso(X,Y ) (or simply l ∈ Iso)

if l is a bijection, and if the inverse mapping l−1 (which is automatically linear, verify!) is
also continuous.

We say that X and Y are isomorphic (as normed spaces) and we write

X ≈ Y

if there exists an isomorphism from X onto Y .

Examples.

1. If ‖·‖1 and ‖·‖2 are two equivalent norms on a vector space X , then id : (X, ‖·‖1)→
(X, ‖·‖2) is an isomorphism.

2. Rn × Rm ≈ Rn+m .

3. L (R, X) ≈ X .

4. L (Rn,R) ≈ Rn .

NB ∃X ∈ NS
...L (X,R) 6≈ X .

5. L (ℓ2,R) ≈ ℓ2.

6. If l ∈L (R,R), then l ∈ Iso⇔ l 6= 0.

7. If l ∈L (Rn,Rn), then l ∈ Iso⇔ det l 6= 0 (as is known from linear algebra).
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3.5 Inverse Function Theorem

Here is a generalization of the classic Inverse Function Theorem:

Theorem 3.5.1. Let X,Y ∈ BS, f : X → Y, x̂ ∈ X, ŷ := f (x̂). If f ∈ C1
G(x̂)

and f ′(x̂) ∈ Iso(X,Y ), then there exists a neighbourhood U of x̂ such that f is a
HOMEOMORPHISM of U onto f (U). The inverse mapping f −1 is differentiable at ŷ, and

( f −1)′(ŷ) = ( f ′(x̂))−1. (1)

⊳ 1◦ Reduction to the case f (0) = 0, f ′(0) = id. Without loss of generality we can
assume that X = Y, x̂ = ŷ = 0, f ′(0) = id. ⊳⊳ Put f̃ (h) := f (x̂ + h) − f (x̂).
It is clear that f̃ : X → Y satisfies the condition f̃ (0) = 0 and has at 0 the same
differentiability property as f has at x̂ . Thus, without loss of generality x̂ = 0, ŷ = 0.

Now put l := f ′(0) and f̃ := l−1 ◦ f (recall that l−1 ∈ L (Y, X), since l ∈ Iso).
By Chain Rule, f̃ ′(0) = l−1 ◦ f ′(0)︸ ︷︷ ︸

=l

= id. If the theorem is true for f̃ , then it is true for

f = l ◦ f̃ (since f −1 = ( f̃ )−1◦l−1). Thus, without loss of generality X = Y, f ′(0) = id.

X K
L

f

g
Y ⊲⊲

So, the decomposition f (x̂ + h) = f (x̂)+ f ′(x̂)h + r(h), ‖r(h)‖‖h‖ K
‖h‖→0

0, reduces

to
f (h) = h + r(h), or f = id+r, (2)

where r satisfies the conditions

r(0)
as always= 0, r ′(0)

as always= 0, r ′
f ∈C1

G(0)∈ Cont(0),
‖r(h)‖
‖h‖ K

‖h‖→0
0. (3)

2◦ Reduction to the fixed point problem. Now note that to find the inverse function to f
means to solve the equation

f (x) = y

with respect to y. But for a FIXED y,

f (x) = y ⇔ x ∈ Fix(id− f︸ ︷︷ ︸
(2)= −r

+y). (4)

⊳⊳ (id− f + y)(x) = x ⇔ f (x) = y. ⊲⊲

g=−r+y

id
f

y

x

−r=id−f

}

}

So (in view of Contraction Lemma) our goal is to find a set, where the mapping

(5)g := −r + y

is Lipschitz.
3◦ By Theorem 3.1.2. applied to r , there exists ε > 0
such that r ∈ LipBε

1
2 . Put

U := ( f |Bε )
−1

(Bε/2) (⊂ Bε).

(Here −1 denotes the pre-image, not the inverse mapping!)
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y−r

X

X

r

x

id

y
U

f
ε/2

ε

ε

4◦ f ∈ Bij(U,Bε/2). ⊳⊳ Let y ∈ Bε/2. Consider the
mapping

y − r : x 7→ y − r(x), X → X.

This mapping is Lipschitz on Bε with the constant 1
2 ,

since r is Lipschitz. Moreover, y − r maps Bε into itself;
indeed,

‖x‖ ≤ ε⇒ ‖y − r(x)‖ ≤ ‖y‖︸︷︷︸
≤ε/2

+ ‖r(x)‖︸ ︷︷ ︸
≤ 1

2 ‖x‖︸︷︷︸
≤ε

≤ ε.

By Contraction Lemma, there exists one and just one fixed point of y− r . But by (4)
this means that there exists one and just one point x ∈ Bε such that f (x) = y, that is, by
the definition of U , there exists one and just one point x ∈ U such that f (x) = 0. ⊲⊲

5◦ Let now f −1 denotes the (existing!) inverse mapping to f : U → Bε/2. For conveni-
ence introduce the following notation: for x ∈ U, y ∈ Bε/2,

x ↔ y :⇔ f (x) = y ⇔ x = f −1(y).

6◦ f −1 ∈ Lip 2. ⊳⊳ Let x1 ↔ y1, x2 ↔ y2. It holds

‖x1 − x2‖ id= f−r= ‖( f (x1)︸ ︷︷ ︸
=y1

−r(x1))− ( f (x2)︸ ︷︷ ︸
=y2

−r(x2))‖ ≤ ‖y1 − y2‖ + ‖r(x2)− r(x1)‖︸ ︷︷ ︸
(3)
≤ 1

2 ‖x2 − x1‖
≤ ‖y1 − y2‖ + 1

2 ‖x1 − x2‖ .
We conclude that ‖x1 − x2‖ ≤ 2 ‖y1 − y2‖, that is,

∥∥ f −1(y1)− f −1(y2)
∥∥ ≤ 2 ‖y1 − y2‖.

⊲⊲

7◦ f ∈ Homeo(U,Bε/2). ⊳⊳ f = id+r
3◦∈ Cont; f −1 6◦∈ Cont. ⊲⊲

8◦ ( f −1)′(0) = id (= ( f ′(0))−1). ⊳⊳ We need to verify that the mapping

s := f −1 − id

is small (recall that f −1(0) = 0, since f (0) = 0), that is, that
∥∥∥ f −1(k)− k

∥∥∥
‖k‖ K

‖k‖→0
0,

or
‖h − k‖
‖k‖ K

‖k‖→0
0 if h ↔ k.

But indeed
‖h − k‖
‖k‖ = ‖h − k‖

‖h‖︸ ︷︷ ︸
r= f−id= ‖r(h)‖/‖h‖ K

‖h‖→0
0

‖h‖
‖k‖︸︷︷︸
6◦≤2

K
‖k‖→0

0,

since ‖k‖ → 0⇒ ‖h‖︸︷︷︸
6◦≤2‖k‖

→ 0. ⊲⊲ ⊲



42 CHAPTER 3. INVERSE FUNCTION THEOREM

Corollary 3.5.2. Let f = ( f1, . . . , fn) : Rn → Rn be continuously G-differentiable
at x (this will be so, e.g., if all the partial derivatives ∂ f j/∂xi are continuous in some
neighbourhood of x), and let Jacobi matrix J f (x) have non-zero determinant. Then there
exists a neighbourhood U of x such that f is a homeomorphism of U onto f (U), the
inverse mapping f −1 is differentiable at y := f (x), and

J f −1(y) = (J f (x))
−1.

⊳ Rn is a Banach space, and f ′(x) is an isomorphism iff det J f (x) 6= 0. ⊲

3.6 Implicite Function Theorem

An important corollary of the Inverse Function Theorem (3.5.1.) is:

Theorem 3.6.1. Let X,Y, Z ∈ BS, F : X × Y → Z. Put

M := F−1(0).

Let m := (x̂, ŷ) ∈ M, that is, F(x̂, ŷ) = 0, and let F ∈ C1
G(m), ∂F/∂Y (m) ∈ Iso(Y, Z)

(so that Y and Z are isomorphic). Then there exists a neighbourhood U of x̂ in X, a
mapping f : U → Y and a neighbourhood Nof m in X × Y such that

gr f = M ∩ N. (1)

This mapping f is differentiable at x̂ , and

f ′(x̂) = −
(
∂F(m)

∂Y

)−1

◦ ∂F(m)

∂X
. (2)

N

gr f
m

Y

X

y

v
x

U
M

v

In other words, since the condition gr f ⊂ M means that F(x, f (x)) = 0 (for x ∈ U ),
the theorem asserts that the equation

F(x, y) = 0

can be solved with respect to y:

y = f (x),

the resulting (“implicite”) function f being differentia-
ble at x̂ , and its derivative at x̂ can be expressed in terms
of partial derivatives of F at m.

Before the proof consider a model example.

Example. Let X = Y = Z = R, F(x, y) = x2 + y2 − 1, m = (0, 1). Here M is the
unit circle with the center at 0. We have ∂F/∂x |(0,1) = 0, ∂F/∂y|(0,1) = 2 6= 0. The set
M ∩ N (see the picture below) is the graph of the function
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F=1

y

z

x

G

G -1

F=1

x

3/4
1/2
1/4
0

−3/4

−1/4
−1/2

−1

z

y

x

−1
−3/4
−1/2

−1/4
0

1/4
1/2

3/4
F=1

3/4

3/4
1/2

1/2
1/4

1/4

0

0
-1/4

-1/2
-3/4

m

N
gr f

M

the view
from above

the front view

f (x) =
√

1− x2 (x ∈ U = (− 1
2 ,

1
2 )),

and

f ′(0) = −
∂F
∂x

∣∣∣∣
(0,1)

∂F
∂y

∣∣∣∣
(0,1)

= 0.

For the proof we need some lemmas.

Lemma 3.6.2. Let X1, . . . , Xn be Banach spaces. Then their product X1 × . . . × Xn is
also a Banach space.
⊳ Completeness of all X i implies completeness of the product, since convergence in the
product is just convergence in each component. ⊲

Lemma 3.6.3. Let f = ( f1, . . . , fm) : X1 × . . . × Xn → Y1 × . . . × Ym , and let
x ∈ (x1, . . . , xn) ∈ X1 × . . .× Xn . Then

∂ f j (x)

∂X i
= (π j ◦ f ◦ ιi )′(x),

where ιi and π j are resp. the following imbeddings and projections:

ιi : X i → X1 × . . .× Xn, x̃ 7→ (x1, . . . , xi−1, x̃i , xi+1, . . . , xn),

π j : Y1 × . . .× Ym → Y j , (y1, . . . , ym) 7→ y j .
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⊳ This follows from the facts that

f j = π j ◦ f

and f j ◦ ιi is just the mapping f j with all the arguments but i -th one FIXED to be equal
the corresponding components of x . ⊲

Lemma 3.6.4. Let X,Y, Z be normed spaces, Y and Z being isomorphic, and let

A : X × Y → X × Z

be the linear mapping represented by the matrix

(
id 0
a b

)
:

A ∼
(

id 0
a b

)
,

where id = idX , 0 ∈L (Y, Z), a ∈L (X, Z), b ∈ Iso(Y, Z). Then A ∈ Iso(X × Y, X ×
Z), and

A−1 ∼
(

id 0
−b−1 ◦ a b−1

)
.

Here

A ∼
(

a11 a12
a21 a22

)
(ai j ∈ L(X j ,Yi )),

means of course that

Ah ∈ Y1 × Y2 is represented by

(
a11 a12
a21 a22

)(
h1
h2

)
:=
(

a11h1 + a12h2
a21h1 + a22h2

)
,

if

h ∈ X1 × X2 is represented by

(
h1
h2

)
(hi ∈ X i ).

⊳ The direct computation yields
(

idX 0
a b

)
◦
(

idX 0
b−1 ◦ a b−1

)
=
(

id ◦ id−0 ◦ b−1 ◦ a id ◦0+ 0 ◦ b−1

a ◦ id−b ◦ b−1 ◦ a a ◦ 0+ b ◦ b−1

)

=
(

idX 0
0 idY

)
∼ idX×Y ,

and analogously
(

idX 0
−b−1 ◦ a b−1

)
◦
(

idX 0
a b

)
=
(

idX 0
0 idY

)
∼ idX×Y . ⊲

Proof of Theorem 3.6.1.
⊳ 0◦ The idea is to extend F to a mapping G, to which we can apply the Inverse Function
Theorem (see the picture in Example!).
1◦ Put

G := (π1, F) : X × Y → X × Z , (x, y) 7→ (x, F(x, y)).

Note that G does NOT change the first coordinate! (On the picture vertical lines remain
vertical!)
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2◦ We have

G′ Prod. Rule= (π ′1, F ′)
F∈C1

G(m)∈ C1
G(m)

(the projection π1 : X × Y → X is of course of class C1 as a continuous linear mapping),
and

G′(m)
Theorem 2.5.1.
on represent.∼



∂π1(m)
∂X

∂π1(m)
∂Y

∂F(m)
∂X

∂F(m)
∂Y


 =

(
idX 0
∂F(m)
∂X

∂F(m)
∂Y

)
.

3◦ By Lemma 3.6.4., G′ ∈ Iso, and

(G′(m))−1 ∼
(

idX 0

−
(
∂F(m)
∂Y

)−1
◦ ∂F(m)

∂X

(
∂F(m)
∂Y

)−1

)
.

4◦ By Lemma 3.6.2., both X × Y and X × Z are Banach spaces, and we can apply the
Inverse Function Theorem. We conclude that there exists a neighbourhood Ñ of m in

N

U

G

G -1

m (x,0)
v

U
UxW

W

N
G(N)

X × Y such that G is a homeomorphism of Ñ onto G(Ñ ), G−1 is differentiable at

F(m) = (x̂, 0),

and

(G−1)′((x̂, 0)) = (G′(m))−1.

Note that G−1 does NOT change the first coor-
dinate, since G does not.

5◦ By properties of product topology, there exist a neighbourhood U of x̂ in X and a
neighbourhood W of 0 in Z , such that U ×W ⊂ G(Ñ ). Put

N := G−1(U ×W ).

6◦ At last put
f := π2 ◦ G−1 ◦ ι1,

where π2 is the projection X × Y → X, (x, y) 7→ x , and ι1 is the imbedding X →
X × Z , x 7→ (x, 0).

X × Y
G−1

L X × Z
π2 ↓ ↑ ι1

Y
f

L X

7◦ By Change Rule, f is differentiable at x̂ , and

f ′(x̂) = (π2 ◦ G−1 ◦ ι1)′(x̂) Lemma 3.6.3.= ∂(G−1)2((x̂, 0))

∂X
.

8◦ The latter partial derivative is just the (21)-element of the matrix representing

(G−1)′((x̂, 0))
4◦= (G′(m))−1.

9◦ By 3◦, this element is equal to

−
(
∂F(m)

∂Y

)−1

◦ ∂F(m)

∂X
.
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Thus, (2) is proved.
10◦And, by the very construction, gr f = M∩N . [Formal verification: Let (x, y) ∈ M∩N
(so that x ∈ U ). Then

(x, y) ∈ M ⇒ F(x, y) = 0⇒ G(x, y) = (x, 0)⇒ (x, y) = G−1(x, 0)
⇒ y = (π2 ◦ G−1 ◦ ι1︸ ︷︷ ︸

= f

)(x)⇒ (x, y) ∈ gr f.

Thus N ∩ M ⊂ gr f . Inverting the argument, we can analogously obtain the inverse
inclusion.] ⊲

NB Vice versa, Inverse Function Theorem can be deduced from Implicite Function The-
orem. [HINT: the equation y = f (x) can be written in the form F(x, y) = 0 with
F(x, y) := y − f (x).]



Chapter 4

Higher derivatives

4.1 Multilinear mappings

Let a mapping f : X → Y is differentiable (everywhere). Its derivative is a mapping from
X into L (X,Y ):

f ′ : X →L (X,Y ), x 7→ f ′(x).

It is natural to define f ′′(x) as ( f ′)′(x), so

f ′′(x) ∈L (X,L (X,Y )).

It is also natural to consider the mapping

(h1, h2) 7→ ( f ′′(x) · h1︸ ︷︷ ︸
∈L (X,Y )

) · h2, X × X → Y.

This mapping is BILINEAR, that is, linear in h2 for fixed h1 (evidently) and linear in h1 for
fixed h2 (since f ′′(x) is a linear mapping from X into L (X,Y )).

Analogously higher derivatives lead to MULTILINEAR mappings. Let X1, . . . , Xn and
Y be vector spaces. We say that a mapping u : X1 × . . . × Xn → Y is mutilinear (or
n-linear), and we write

u ∈ L(X1, . . . , Xn; Y ),
if u is linear in each separate variable for fixed others, that is, if

∀i ∈ {1, . . . , n} ... u(x1, . . . , xi−1, αxi + βyi , xi+1, . . . , xn)

= αu(x1, . . . , xi , . . . , xn)+ βu(x1, . . . , yi , . . . , xn) (α, β ∈ R).

(For 2-linear mappings we say bilinear.)
For multilinear mappings one uses one of the following notations:

u(x1, . . . , xn) ≡ u · x1 . . . xn ≡ ux1 . . . xn ≡ 〈u | x1, . . . , xn〉.

Examples.

1. The usual multiplication R× R→ R, (x, y) 7→ xy is bilinear.

2. The multiplication R×R×R→ R, (x, y, z) 7→ xyz is 3-linear.

3. The scalar product Rn×Rn → R, (x, y) 7→∑n
i=1 xi yi , where x = (x1, . . . , xn), y =

(y1, . . . , yn), is bilinear.

47
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4. The vector product R3 ×R3 → R3, (Ex, Ey) 7→ Ex × Ey is bilinear.

5. The COMPOSITION

comp : L(X,Y )× L(Y, Z)→ L(X, Z), (l,m) 7→ m ◦ l

and the EVALUATION

ev : X × L(X,Y )→ Y, (x, l) 7→ lx

are bilinear.

6. The DETERMINANT mapping

det : R3 ×R3 × R3 → R, (Ex, Ey, Ez) 7→

∣∣∣∣∣∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣

(Ex = (x1, x2, x3), . . .) is 3-linear.
It is easy to verify(!) that L(X1, . . . , Xn; Y ) is a VECTOR SPACE.

Operator norm
Now let X i and Y be normed spaces. Then the vector subspace of L(X1, . . . , Xn; Y )

consisting from all CONTINUOUS n-linear mappings we denote by

L (X1, . . . , Xn; Y ).
Put for each u ∈ L(X1, . . . , Xn; Y )

‖u‖ := sup
‖x1‖≤1
...

‖xn‖≤1

‖ux1 . . . xn‖ (operator norm).

Examples.
1. ‖multiplication‖ = 1;

2. ‖scalar product‖ = 1;

3. ‖vector product‖ = 1;

4. ‖comp‖ ≤ 1;

5. ‖ev‖ ≤ 1;

6. ‖det‖ = 1.

Basic inequality. Let u ∈ L(X1, . . . , Xn; Y ). Then for any (x1, . . . , xn) ∈ X1× . . .× Xn

‖ux1 . . . xn‖ ≤ ‖u‖ ‖x1‖ . . . ‖xn‖ (basic inequality (BI)).

⊳ If xi = 0 for some i then both sides are 0. Let none of xi is 0. Then

‖ux1 . . . xn‖ =
u is

multilinear

∣∣∣
∣∣∣u x1

‖x1‖︸︷︷︸
∈B

X1
1

. . .
xn

‖xn‖︸︷︷︸
∈BXn

1︸ ︷︷ ︸
≤

def of
‖u‖

‖u‖

∣∣∣
∣∣∣ ‖x1‖ . . . ‖xn‖ ≤ ‖u‖ ‖x1‖ . . . ‖xn‖ . ⊲

Normed space L (X1, . . . , Xn; Y )
Theorem 4.1.1. Let u ∈ L(X1, . . . , Xn; Y ). Then the following conditions are equivalent:
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a) u ∈L (X1, . . . , Xn; Y ), that is, u is continuous;
b) u is continuous at 0;
c) ‖u‖ <∞.

⊳ 0◦ For short consider the case n = 2 : u ∈ L(X; Y ; Z).
1◦ (a)⇒(b): obviously.
2◦ (b)⇒(a): Let (x, y) be an arbitrary point in X×Y . We need to show that u is continuous
at (x, y). We have

||u(x + h, y + k)︸ ︷︷ ︸
u is

multilin.=
u(x,y)+u(x,k)
+u(h,y)+u(h,k)

−u(x, y)|| = ‖uxk + uhy + uhk‖ ≤ ‖uxk‖︸ ︷︷ ︸
1

+‖uhy‖︸ ︷︷ ︸
2

+‖uhk‖︸ ︷︷ ︸
3

.

So it is sufficient to verify that 1 , 2 , 3 → 0 as ‖h‖ , ‖k‖ → 0. If k = 0 then 1 = 0,
if k 6= 0 then

1 =
∥∥∥∥u
(√
‖k‖x

)( k√‖k‖

)∥∥∥∥ .

If ‖k‖ → 0 then
√‖k‖ → 0 and hence

√‖k‖x → 0; further
∥∥k/
√‖k‖

∥∥ = ‖k‖/√‖k‖ =√‖k‖ → 0. Thus 1 → 0 as ‖k‖ → 0, by (b).

Quite analogously 2 → 0 as ‖h‖ → 0. At last 3 → 0 as ‖h‖ → 0, ‖k‖ → 0, by
(b).
3◦ (b)⇒(c): By (b), there exists δ > 0 such that

‖x‖ ≤ δ, ‖y‖ ≤ δ ⇒ ‖uxy‖ ≤ 1. (1)

Then
‖u‖ = sup

‖x‖≤1
‖y‖≤1

‖uxy‖︸ ︷︷ ︸
=δ−2‖u(δx)(δy)‖︸ ︷︷ ︸

(1)
≤ 1 if ‖x‖≤1,‖y‖≤1

≤ δ−2 <∞.

4◦ (c)⇒(b): If ‖x‖ , ‖y‖ → 0 then ‖uxy‖ BI≤ ‖u‖︸︷︷︸
(c)
<∞

‖x‖ ‖y‖ → 0. ⊲

Note that all the multilinear mappings from Examples 1)–6) are continuous (since all
they have norms ≤ 1). As to mappings from 1)–4) and 6), their continuity follows also
from

Theorem 4.1.2. In finite-dimensional case all the multilinear mappings are continuous.
⊳ Analogously to the case of linear mappings. ⊲

Theorem 4.1.3. The operator norm is really a norm in L (X1, . . . , Xn; Y ).
We EVER consider L (X1, . . . , Xn; Y ) as a normed space with the operator norm!
⊳ By Theorem 1, the operator norm is FINITE on the whole space L (X1, . . . , Xn; Y ), and
it is easy to verify that all 3 axioms of a norm are fulfilled. ⊲

Canonical isomorphisms

Theorem 4.1.4. For any natural k and n, k < n, it holds

L (X1, . . . , Xn; Y ) ≈L (X1, . . . , Xk;L (Xk+1, . . . , Xn; Y ))
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(the isomorphism of normed spaces), and the CANONICAL ISOMORPHISM

L (X1, . . . , Xn; Y )→L (X1, . . . , Xk ;L (Xk+1, . . . , Xn; Y )), u 7→ ũ,

ũ(x1, . . . , xk) := u(x1, . . . , xk, ·, . . . , ·︸ ︷︷ ︸
n−k “free′′
arguments

)

conserves the norm:
‖u‖ = ‖ũ‖ .

⊳ 0◦ For short consider the case n = 2, k = 1. We need to verify that

L (X1, X2; Y ) ≈L (X1,L (X2,Y )).

1◦ ALGEBRAICAL ISOMORPHISM:

L(X1, X2; Y )
alg.
≈ L(X1,L(X2,Y )). (2)

Put for u ∈ L(X1, X2; Y )

ũ(x1) := u(x1, ·) (∈ L(X2,Y )),

and for v ∈ L(X1.L(X2,Y ))

ṽ(x1, x2) := (v · x1) · x2 (∈ Y ).

It is easy to see that the mapping

ũ : X1→ L(X2,Y )

is linear, that is, ũ ∈ L(X1,L(X2,Y )), and the mapping

ṽ : X1 × X2 → Y

is bilinear, that is, ṽ ∈ L(X1, X2; Y ), and that the mappings

u 7→ ũ and v 7→ ṽ

are linear and mutually inverse (
≈
u= u,

≈
v= v). Hence u 7→ ũ is a linear bijection of

L(X1, X2; Y ) onto L(X1,L(X2; Y )), that is, (1) is true.

2◦ TOPOLOGICAL ISOMORPHISM: If u ∈ L (X1, X2,Y ) then ∀x1 ∈ X1
... ũ(x1) =

u(x1, ·) ∈L (X2,Y ) (since u is continuous). Now the (linear) mapping

ũ : X1 →L (X2,Y )

is continuous since it has a finite norm equal to the norm of u:

‖ũ‖ = sup
‖x‖≤1

‖ũx1‖ = sup
‖x1‖≤1

sup
‖x2‖≤1︸ ︷︷ ︸

obv= sup‖x1‖≤1, ‖x2‖≤1

|| (̃ux1) · x2︸ ︷︷ ︸
=u(x1,x2)

|| = ‖u‖ .

Thus, ũ ∈L (X1,L (X2,Y )).
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Quite analogously it can be verified that if v ∈L (X1,L (X2,Y )) then ṽ ∈L (X1, X2; Y ).
We conclude that u 7→ ũ is a linear bijection of L (X1, X2; Y ) onto L (X1,L (X2,Y )).
Since ‖u‖ = ‖ũ‖, both u 7→ ũ and v 7→ ṽ have the norm 1 and hence are continuous.
Thus they are isomorphisms of our normed spaces. ⊲

Remark. For X1 = X2 = Rn and Y = R, (1) is in fact the well-known (from linear
algebra) isomorphism between bilinear forms and linear operators in Rn .

Differentiation of multilinear mappings

Theorem 4.1.5. (Quasi-Leibniz Theorem (QL)). Any mapping u ∈L (X1, . . . , Xn; Y ) is
differentiable, and its derivative is given by the formula

u′(x1, . . . , xn) · (h1, . . . hn) =
n∑

i=1

u(x1, . . . , xi−1, hi , xi+1, . . . , xn),

or, more shortly

u′(x1, . . . , xn) =
n⊕

i=1

u(x1, . . . , xi−1, ·, xi+1, . . . , xn). (3)

(The definition of the DIRECT SUM ⊕n
i=1li ≡ l1 ⊕ . . .⊕ ln see in Chapter 2.)

⊳ This follows at once from Theorem on continuous partial derivatives. Indeed, u is linear

and continuous in each its argument, hence ∀i ∈ {1, . . . , n} ...
∂u

∂X i
(x1, . . . , xn) := u(x1, . . . , xi−1, ·, xi+1, . . . , xn) (∈L (X i ,Y )).

Now, each partial derivative ∂u/∂X i : X1 × . . .× Xn →L (X i ,Y ) is continuous as the
composition of two continuous mappings:

∂u

∂X i
= ui ◦ πi ,

where

πi : X1 × . . .× Xn → X1 × . . .× X i × . . .× Xn, (x1, . . . , xn) 7→ (x1, . . . , xi , . . . , xn),

ui : X1 × . . .× X i × . . .× Xn →L (X i ,Y ),

(x1, . . . , xi , . . . , xn) 7→ u(x1, . . . , xi−1, ·, xi+1, . . . , xn);
πi is continuous as any projection, and ui is continuous by Theorem on canonical isomor-
phism (since u is). ⊲

Remark. We can rewrite (3) so:

u′ = ⊕ ◦ (u1 ◦ π1, . . . , un ◦ πn),

where ⊕ denote the following mapping:

⊕ : L (X,Y )× . . .×L (Xn,Y )→L (X1 × . . .× Xn,Y ), (l1, . . . , l2) 7→
n⊕

i=1

li .
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It is evident that this mapping⊕ is linear, and it is easy to verify (!) that it is continuous.

Corollary 4.1.6. (Leibniz Theorem). Let f : X → Y and g : X → Z be differentiable at
a point x , and let u ∈L (Y, Z;W ). Then the composition u ◦ ( f, g) is differentiable at x,
and

(u ◦ ( f, g))′(x) = u
(

f ′(x)h, g(x)
)
+ u

(
f (x), g′(x)h

)
.

X
( f,g)

K Y × Z
u
K W.

⊳ This follows at once from Chain Rule and Quasi-Leibniz Theorem (QL):

(u ◦ ( f, g))′(x)h
Chain
rule= (u′( ( f, g)(x)︸ ︷︷ ︸

=( f (x),g(x))

) ◦ ( f, g)′(x)︸ ︷︷ ︸
=( f ′(x),g′(x))

) · h

= u′( f (x), g(x)) ◦ ( f ′(x)h, g′(x)h)
QL= u( f ′(x)h, g(x))+ u( f (x), g′(x)h). ⊲

Examples.

1. If u is the usual multiplication R×R→ R, and if X = R, we obtain the classic Leibniz
rule: ( f g)′ = f ′g + f g′.
2. For the mapping q : Rn → R, x 7→ x2

1 + . . . + x2
1 = x · x ≡ x2, we have (here

f = g = id, u = scalar product)

g′(x) · h = x · h + h · x = 2x · h

(the first point denoting the application of a linear mapping, the other points denoting the
scalar product!), so

g′(x) = 2x,

if we identify a vector x with the linear function h 7→ x · h. (Compare with the usual rule
(x2)′ = 2x .)

4.2 Higher derivatives

Let a mapping f : X → Y be differentiable everywhere (or in an open set U ⊂ X). Then
we can consider the derivative map

f ′ : X ′ →L (X,Y ), x 7→ f ′(x).

We say that f is two times differentiable at a point x , and we write

f ∈ Dif2(x),

if f ′ is differentiable at x ; we define the second derivative f ′′(x) of f at x as the derivative
of f ′ at x :

f ′′(x) := ( f ′)′(x) (∈L (X,L (X,Y ))).

By induction, we put

f (n+1)(x) :=
(

f (n)
)′
(x),

and we use in evident sense the notations

Difn(x), Difn(U), Difn .
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Besides we put

Dif1 := Dif, Dif∞ :=
∞⋂

n=1

Difn .

Thus we have

f : X → Y
f ′ : X →L (X,Y )
f ′′ : X →L (X,L (X,Y ))

...

f (n) : X →L (X,L (X, . . . ,L (X,Y ) . . .))
...

The space L (X,L (X, . . . ,L (X,Y ) . . .)) of values of the n-th derivative f (n) is
isomorphic (by repeatedly applied Theorem on isomorphism, see 4.1) to the space of
n-LINEAR mappings from X × . . .× X (n times) into Y :

L (X,L (X, . . . ,L (X,Y ) . . .)) ≈L (X, . . . , X︸ ︷︷ ︸
n times

; Y ) =: L (n X; Y ).

The multilinear mapping, corresponding to f (n)(x), is given by the rule

f̃ (n)(x)(h1, . . . , hn) := (. . . (( f n(x) · h1) · h2) . . .) · hn .

Usually we IDENTIFY f (n)(x) and f̃ (n)(x), drop the wave and write

f (n)(x)h1, . . . , hn .

Example. For q : Rn → R, x 7→ x2 := x · x (see 4.1) we have q ′′ ≡ (2 scalar product),

that is, ∀x ∈ Rn
... q ′′(x)h1h2 = 2h1 · h2. (Prove!)

4.3 Rules of differentiation

They are in essence the same as for the first derivative.

Linearity. If f, g ∈ Difn(x) then ∀α, β ∈ R
... α f + βg ∈ Difn(α), and

(α f + βg)(n)(x) = α f (n)(x)+ βg(n)(x).

⊳ By induction. ⊲

Product Rule. Let f = ( f1, . . . , fn) : X → Y1× . . .×Ym . Then f ∈ Difn(x) iff each
fi ∈ Difn(x), and

f (n)(x) =
(

f (n)1 (x), . . . , f (n)m (x)
)
.

⊳ By induction. ⊲

Chain Rule. If f ∈ Difn(x) and g ∈ Difn( f (x)), then g ◦ f ∈ Difn(x). (The explicite
formula for (g ◦ f )(n)(x) is very cumbersome, and we drop it.)
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⊳ For simplicity we consider only the case n = 2. By Chain Rule for the first derivative,

(g ◦ f )′ = comp( f ′, g′ ◦ f ),

where
comp : L (X,Y ) ◦L (Y, Z)→L (X, Z), (l,m) 7→ m ◦ l.

Since f and g are 2 times differentiable at x and at f (x), resp., the mappings f ′ and g′

are differentiable at x and f (x), resp. The mapping comp is differentiable (everywhere)
by Quasi-Leibniz Theorem. So (g ◦ f )′ is differentiable at x by Chain and Product Rules
for the first derivative. But this means that g ◦ f is 2 times differentiable at x . ⊲

Computation Rule. Let f : X → Y be n times differentiable at x. Then for any
h1, . . . , hn ∈ X

f (n)(x)h1, . . . , hn =
∂n

∂ t1 . . . ∂ tn

∣∣∣∣
t1=...=tn=0

f (x + t1h1 + . . .+ tnhn)

:= ∂

∂ t1

∣∣∣∣
t1=0

(
∂

∂ t2

∣∣∣∣
t2=0

(
. . .

(
∂

∂ tn

∣∣∣∣
tn=0

f (x + t1h1 + . . .+ tnhn)

)
. . .

))
.

For short we shall write the last expression as

∂

∂ t1

∣∣∣∣
0
. . .

∂

∂ tn

∣∣∣∣
0

f (x + t1h1 + . . .+ tnhn).

⊳ For simplicity consider the case n = 2. It holds

∂

∂ t1

∣∣∣∣
0

∂

∂ t2

∣∣∣∣
0

f (x + t1h1 + t2h2)

︸ ︷︷ ︸
=

C.R. for
the 1. der.

f ′(x+t1h1)h2
trick= evh2 ·( f ′(x+t1h1))

= ∂

∂ t1

∣∣∣∣
0

(
evh2 · f ′(x + t1h1)

) l−Rule= evh2 ·
∂

∂ t1

∣∣∣∣
0

f ′(x + t1h1)

︸ ︷︷ ︸
C.R. for

the 1. der.= ( f ′)′(x)·h1

= evh2 ·( f ′′(x)h1) =
(

f ′′(x)h1
)
· h2 = f ′′(x)h1h2. ⊲

(Recall that evh denotes the (continuous linear) mapping of evaluation at a given point
h, see Chapter 1.)

l-Rules.

a) Let X
f
K Y

l
K Z , f ∈ Dif p(x), l ∈L (Y, Z). Then

(l ◦ f )(p)(x)h1 . . . h p = l ·
(

f (p)(x)h1 . . . h p

)
,

or, shortly,
(l ◦ f )(p)(x) = l ◦ ( f (p)(x)),

where we consider the p-th derivative f (p)(x) as a p-linear mapping.
In particular, if X = R then

(l ◦ f )(p)(x) = l · f (p)(x),

where we consider f (p)(x) as an element of Y .
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b) Let X
l
K Y

f
K Z , l ∈L (X,Y ), f ∈ Dif(p)(lx). Then

( f ◦ l)(x)h1 . . . h p = f (p)(lx)(lh1) . . . (lh p).

⊳ For short consider p = 2.
a)

(l ◦ f )′′(x)h1h2
Comp. Rule= ∂

∂ t1

∣∣∣∣
0

∂

∂ t2

∣∣∣∣
0
(l ◦ f )(x + t1h1 + t2h2)

l−rule for 1. der.= ∂

∂ t1

∣∣∣∣
0

(
l · ∂
∂ t2

∣∣∣∣
0

f (x + t1h1 + t2h2)

)

l−rule for 1. der.= l ·
(
∂

∂ t1

∣∣∣∣
0

∂

∂ t2

∣∣∣∣
0

f (x + t1h1 + t2h2)

)

Comp. Rule= l · f ′′(x)h1h2.

b)

( f ◦ l)′′(x)h1h2
Comp. Rule= ∂

∂ t1

∣∣∣∣
0

∂

∂ t2

∣∣∣∣
0
( f ◦ l)(x + t1h1 + t2h2)︸ ︷︷ ︸
l is linear= f (lx+t1lh1+t2lh2)

Comp. Rule= f ′′(lx)(lh1)(lh2). ⊲

4.4 Higher partial derivatives

Let f : X1 × . . . × Xn → Y . Of course we define partial derivatives of higher orders
inductively:

∂ p f (x)

∂X i1 . . . ∂X ip

:= ∂

∂X i1

(
∂

∂X i2

(
. . .

(
∂ f

∂X ip

)
. . .

))
(x),

or, shortly,

∂ p

∂X i1 . . . ∂X ip

:= ∂

∂X i1
◦ · · · ◦ ∂

∂X ip

(i1, . . . , i p ∈ {1, . . . , n}).

So
∂ p f (x)

∂X i1 . . . ∂X ip

∈L (X i1 ,L (X i2 , . . . ,L (X ip ,Y ) . . .))

≈
Th. on
isom.

L (X i1 , . . . , X ip ; Y ),

and we have identity ∂ p f (x)/∂X i1 . . . ∂X ip with the corresponding p-linear mapping:

∂ p f (x)

∂X i1 . . . ∂X ip

h1 . . . h p ≡
(
. . .

((
∂ p f (x)

∂X i1
h1

)
h2

)
. . .

)
h p

(
hk ∈ X ik

)
.

As in the case of the first order, if each X i = R (that is, X1 × . . .× Xn = Rn), we put

∂ f (x)

∂X i1 . . . ∂X ip

:=
(
. . .

((
∂ p f (x)

∂X i1 . . . ∂X ip

· 1
)
· 1
)
. . .

)
· 1 (∈ Y ) .
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Lemma 4.4.1. Let a mapping f : X1× . . .× Xn → Y be p times differentiable at x. Then
for any i1, . . . , i p ∈ {1, . . . , n} and for any hk ∈ X ik , k = 1, . . . , p, it holds

∂ p f (x)

∂X i1 . . . ∂X ip

h1 . . . h p = f (p)(x)ĥ1 . . . ĥ p,

where
ĥk := (0, . . . , 0, hk

ik
, 0, . . . , 0),

that is, the partial derivative applied to the vectors h1, . . . , h p is just the “total” derivative
applied to their images hath1, . . . , ĥ p by the canonical imbeddings of X ik into the product
space X1 × . . .× Xn .
⊳ 1◦ We use below the following result: If f : X → L (Y, Z) is differentiable at x then
for any fixed h ∈ Y the mapping g : x 7→ f (x)h, X → Z is also differentiable at x , and

∀k ∈ X
... g′(x)k =

(
f ′(x)k

)
h.

(See Chapter 2.)
2◦ For short let p = 2. We have

f ′′(x)(0, . . . , h
i1
, . . . , 0)(0, . . . , h

i2
, . . . , 0)

Comp.
Rule= ∂

∂ t1

∣∣∣∣
0

∂

∂ t1

∣∣∣∣
0

f (x + t1(0, . . . , h, . . . , 0)+ t2(0, . . . , k, . . . , 0))

︸ ︷︷ ︸
Comp.Rule= (∂ f (x+t1(0,...,h,...,0))/∂X i2 )k

0◦=
(
∂

∂ t1

∣∣∣∣
0

∂ f (x + t1(0, . . . , h, . . . , 0))

∂X i2

)
k

Comp.
Rule=

((
∂

∂X i1

∂

∂X i2

)
(x)h

)
k

def= ∂2 f (x)

∂X i1 · ∂X i2
hk. ⊲

Theorem 4.4.2. (on representation). Let a mapping f : X1 × . . .× Xn → Y be p-times
differentiable at x. Then its p-th derivative at x can be represented by the matrix of the
partial derivatives:

f (p)(x) ∼
(

∂ p f (x)

∂X i1 . . . ∂X ip

)

i1,...,ip∈{1,...,n}

in sense that

∀h1, . . . , h p ∈ X1 × . . .× Xn, hk = (hk
1, . . . , hk

n)
...

f (p)(x)h1 . . . h p =
n∑

i1,...,ip=1

∂ p f (x)

∂X i1 . . . ∂X ip

h1
i1 . . . h

p
ip
.

⊳ In notations of the previous lemma,

f (p)(x)h1 . . . h p = (ĥ1
1 + ĥ1

n) . . . (ĥ
p
1 + ĥ p

n )



4.5. CLASS C p 57

f (p)(x) is
multilinear=

n∑

i1,...,ip=1

f (p)(x)ĥ1
i1
+ ˆh1

ip︸ ︷︷ ︸
4.4.1.= (∂ p( f (x))/∂(X i1 ...X i p ))h

1
i1
...h p

ip

. ⊲

Corollary 4.4.3. Let f : Rn → Y be p-times differentiable at x. Then f (p)(x) can be
represented by the following matrix with elements in Y :

f (p)(x) ∼
(

∂ p f (x)

∂X i1 . . . ∂X ip

)

i1,...,ip∈{1,...,n}
,

in the sense that for any h1, . . . h p ∈ Rn (hk = (hk
1, . . . , hk

n))

f (p)(x)h1 . . . h p =
n∑

i1,...,ip=1

h1
i1 . . . h

p
ip︸ ︷︷ ︸

∈R

∂ p f (x)

∂X i1 . . . ∂X ip︸ ︷︷ ︸
∈Y

(∈ Y ).

Here all hk
ik

are real numbers, and h1
i1
. . . h p

ip
is just the usual product of real numbers.

Remark. For the case p = 2 and Y = R we obtain as the representative of f ′′(x) a
“usual” n × n-matrix (

∂2 f (x)

∂xi∂x j

)

i, j∈{1,...,n}
.

This matrix is called the Hesse matrix of f at x (and its determinant is called the Hessian
of f at x).

Example. For the mapping q : Rn → R, x 7→ x2 ≡ x · x we have

∀x ∈ Rn ... f ′′(x) ∼




2 0
. . .

0 2


 = 2 · 1

where 1 denotes the unit matrix. It corresponds of course with the fact we know that
f ′′ ≡ 2 id.

4.5 Class C p

We say that a mapping f : X → Y is p-times continuously differentiable (resp., p times
continuously differentiable in an open set U ⊂ X or at a point x ∈ X) or that f is of class
C p (resp., is of class C p in U or at x), and we write

f ∈ C p ( resp., f ∈ C p(U) or f ∈ C p(x)
)
,

if f is p times differentiable everywhere (resp., in U or in a neighbourhood of x) and the
derivative f (p) is continuous (resp., continuous in U or at x).

Thus,

f ∈ C p :⇔ f (p) ∈ Cont .
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We put also

C0 := Cont, C∞ :=
∞⋂

p=0

C p.

The mappings of class C p we call also, for short, C p-mappings.

Example. Any continuous linear mapping is of class C∞. (Indeed, the first derivative is
a constant mapping, and all the other derivatives are zeros.)

Lemma 4.5.1.

C0 ⊃ C1 ⊃ C2 ⊃ . . . ⊃ C p ⊃ . . . ⊃ C∞ = Dif∞ .

⊳ 1◦ Dif p+1 ⊂ C p . ⊳⊳ f ∈ Dif p+1 ⇒ f (p) ∈ Dif ⇒ f (p) ∈ Cont⇒ f ∈ C p. ⊲⊲

2◦ C p+1 ⊂ C p. ⊳⊳ f ∈ C p+1 ⇒ f ∈ Dif p+1 1◦⇒ f ∈ C p . ⊲⊲

3◦ C∞ ⊂ C p ⊳⊳ Obviously. ⊲⊲

4◦ C∞ ⊂ Dif∞ ⊳⊳ Obviously. ⊲⊲

5◦ Dif∞ ⊂ C∞ ⊳⊳ f ∈ Dif∞ ⇒ ∀p ∈ N
... f ∈ Dif p+1 1◦⇒ ∀p ∈ N

... f ∈ C p ⇒ f ∈
C∞. ⊲⊲ ⊲

Lemma 4.5.2. For any k ∈ {0, 1, . . . , p}

f ∈ C p ⇔ f (k) ∈ C p−k .

⊳
(

f (k)
)(p−k) = f (p). ⊲

Theorem 4.5.3. Any continuous multilinear mapping is of class C∞.
⊳ Use induction. For linear mappings the assertion is true, by Example above. Let our
assertion is true for k-linear mappings with k ≤ n − 1, and let

u ∈L (X1, . . . , Xn; Y ).

By Remark after Quasi-Leibniz Theorem,

u′ = ⊕ ◦ (u1 ◦ π1, . . . , un ◦ πn),

where ui are continuous (n − 1)-linear mappings, and ⊕ and πi are continuous linear
mappings. All these mappings are of class C∞, by the inductive assumption and hence are
infinitely differentiable. By Product and Chain Rules, u′ is also infinitely differentiable.
Hence u is infinitely differentiable and therefore (by Lemma 4.5.1.) is of class C∞. ⊲

Remark. In fact the n-th derivative of a continuous n-linear mapping is a CONSTANT

mapping, and hence all the subsequent derivatives are ZEROS:

u(n) = const, u(n+1) = 0, u(u+2) = 0, . . .

Viz., if u ∈L (X1, . . . , Xn; Y ) then ∀x ∈ X1 × . . .× Xn
...

u(n)(x)h1 . . . hn =

=
∑

σ∈Sn

uhσ(1)1 . . . hσ(n)n

(
hk = (hk

1, . . . , hk
n) ∈ X1 × . . .× Xn

)
(1)
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where Sn denotes the group of all permutations of the set {1, . . . , n}. [This can be proved
by using Computation Rule. (Prove!)] E.g., for bilinear u

u′′(x)hk = uh1k2 + uk1h2. (2)

Note that in the case of MULTIPLICATION (u : R2 → R, (x, y) 7→ xy), Equation (1)
follows at once from Representation Theorem:

u′′(x) ∼
(

0 1
1 0

)
, hence u′′(x)hk = (h1 h2)

(
0 1
1 0

)(
k1

k2

)
= h1k2 + k1h2.

Note also that it follows from (1) that u(n)(x)h1 . . . hn does NOT change by any permu-
tation of the vectors h1, . . . , hn (for bilinear case it is quite obvious, see(2)). This is no
accident! See the next section.

Product

Theorem 4.5.4. ( f1, . . . , fn) ∈ C p ⇔ f1, . . . , fm ∈ C p.

⊳ This follows at once from Product rule for higher derivatives and from the topological

fact that
(

f (p)
1 , . . . , f (p)

m

)
is continuous iff each f (p)

i is. ⊲

Composition

Theorem 4.5.5. f, g ∈ C p ⇒ g ◦ f ∈ C p.

⊳ By induction. For p = 0 all is O.K. (the composition of continuous mappings is
continuous). Let our assertion is true for p − 1. We have, by Chain Rule,

(g ◦ f )′ = comp ◦( f ′, g′ ◦ f ).

The mapping comp : (l,m) 7→ m ◦ l is a continuous bilinear mapping (see 4.1) and hence
is of class C∞ (by Theorem 4.5.3.). A fortiori it is of class C p−1, by Lemma 4.5.1. The
derivatives f ′ and g′ are both of class C p−1, by Lemma 4.5.2., and f is of class C p−1

by Lemma 4.5.1. Hence g′ ◦ f is of class C p−1 by the induction assumption. Then, by
Theorem 4.5.4. (on product), ( f ′, g′ ◦ f ) is of class C p−1. So, once again by the inductive
assumption, the mapping comp ◦( f ′, g′ ◦ f ) is of class C p−1. Thus, (g ◦ f )′ ∈ C p−1,
which means, by Lemma 4.5.2., that g ◦ f ∈ C p. ⊲

Case Rn → Rn

Criterion. A mapping ( f1, . . . , fm) : Rn → Rm is of class C p iff all the partial derivatives
of the order ≤ p of each function f j exist and are continuous.
⊳ Analogously to the case p = 1. ⊲

4.6 Symmetry of higher derivatives

Here we prove that for C p-mappings the derivative f (p)(x) is a symmetrical multilinear
mapping.

A mapping f : Xn → Y (for arbitrary sets X and Y ) is called symmetrical if its value
does not change by any permutation of its arguments:

f ∈ Sym :⇔ ∀x1, . . . , xn ∈ X ∀σ ∈ Sn
... f (xσ(1), . . . , xσ(n)) = f (x1, . . . , xn).
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(Recall that Sn denotes the group of permutations of the set {1, . . . , n}.) The set of all
symmetrical n-linear mappings from Xn → Y (for vector spaces X and Y ) we denote by

Lsym(
n X; Y ).

(Respectively, for continuous case we use the letter L .)

Lemma 4.6.1. Let for a mapping ϕ : R2→ R the second partial derivative ∂2ϕ/∂y∂x is
continuous at the origin. Then

∂2ϕ(0, 0)

∂y∂x
= lim

t↓0

12ϕ(0; (t, 0), (0, t))

t2 .

Here12ϕ denotes the SECOND DIFFERENCE ofϕ. Recall that the first difference1ϕ(x; h)
of ϕ at x by h is defined so:

1ϕ(x; h) ≡ 1hϕ(x) := ϕ(x + h)− ϕ(x). (1)

Higher differences 1nϕ(x; h1, . . . , hn) of ϕ at x by h1, . . . , hn are defined inductively.
E.g.,

12ϕ(x; h1, h2) := 1h2(1h1ϕ)(x) = 1h1ϕ(x + h2)−1h1ϕ(x)
1= ϕ(x + h1 + h2)− ϕ(x + h2)− ϕ(x + h1)+ ϕ(x). (2)

x

x+h1

x+h +h1 2

x+h2

Note that (as it is clear from (2)) the second difference is
SYMMETRICAL in the increments:

(3)12ϕ(x; h1, h2) = 12ϕ(x; h2, h1).

⊳ t−212ϕ(0; (t, 0), (0, t)) = t−21(t,0)(1(0,t)ϕ)(0, 0)

trick: g(x):=
1(0,t)ϕ(x,0)=
ϕ(x,t)−ϕ(x,0)= t−2(g(t)− g(0))

Lagr. Th.;
for some
θ∈(0,t)= t−2g′(θ)t

g′(x)=
∂ϕ(x,t)
∂x −
∂ϕ(x,0)
∂x= t−1

(
∂ϕ(θ, t)

∂x
− ∂ϕ(θ, 0)

∂x

)

Lagr. Th.;
for some
τ∈(0,t)= t−1 ∂

∂y

∂ϕ

∂x
(θ, τ )t

= ∂2ϕ(θ, τ )

∂y∂x
K

t↓0

∂2ϕ(0, 0)

∂y∂x
,

since ∂2ϕ/∂y∂x is continuous at (0, 0) and (θ, τ )→ (0, 0) as t ↓ 0. ⊲
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Corollary 4.6.2. Let for a function ϕ : R2 → R the partial derivatives ∂2ϕ/∂y∂x and
∂2ϕ/∂x∂y are both continuous at (0, 0). Then they are equal there:

∂2ϕ

∂y∂x

∣∣∣∣
(0,0)
= ∂2ϕ

∂x∂y

∣∣∣∣
(0,0)

.

⊳ This follows from Lemma 4.6.1., by symmetry of the second difference in the incre-
ments. ⊲

Lemma 4.6.3. Let for a mapping ϕ : R2 → Y (where Y is a normed space) the partial
derivatives ∂2ϕ/∂x1∂x2 and ∂2ϕ/∂x2∂x1 are continuous at a point x̂ . Then

∂2ϕ

∂x1∂x2

∣∣∣∣
x̂
= ∂2ϕ

∂x2∂x1

∣∣∣∣
x̂
.

⊳ 1◦ Without loss of generality we can assume that x̂ = 0, since our function ϕ has the
same differentiability properties at x̂ , as the function

ϕ̃ : h 7→ ϕ(x̂ + h),R2 → Y

at 0. (This follows at once from Chain Rule, since the mapping h 7→ x̂ + h has at each
point the derivative equal to id.)
2◦ Put

y := ∂2ϕ

∂x1∂x2

∣∣∣∣
0
− ∂2ϕ

∂x2∂x1
(∈ Y ).

Our aim is to show that y = 0.
3◦ By Lemma from Functional Analysis (see Chapter 1), there exist l ∈ L (Y,R) such
that ‖l‖ = 1 and ly = ‖y‖. Then

‖y‖ = ly = l

(
∂2ϕ

∂x1∂x2

∣∣∣∣
0
− ∂2ϕ

∂x2∂x1

∣∣∣∣
0

)
l−Rule= ∂2(l ◦ ϕ)

∂x1∂x2

∣∣∣∣
0
− ∂2(l ◦ ϕ)

∂x2∂x1

∣∣∣∣
0

4.6.2.= 0,

since the second partial derivative

∂2(l ◦ ϕ)
∂xi∂x j

=
l−Rule for

X=R

l ◦ ∂2ϕ

∂xi∂x j
(i, j = 1, 2)

is continuous at 0 together with ∂2ϕ/∂xi∂x j . ⊲

Lemma 4.6.4. Let ϕ : Rn → Y be of class C p . Then for any σ ∈ Sn and any i1, . . . , i p ∈
{1, . . . , n} it holds

∂ pϕ

∂xiσ(1) . . . xiσ(p)

= ∂ pϕ

∂xi1 . . . xip

.

In other words, partial derivatives do not depend on the order in which we differentiate.
⊳ 1◦ It is sufficient to prove this for p = 2, since then we can TRANSPOSE any two
NEIGHBOUR partial differentiations, and by such transpositions we can obtain any permu-
tation.
2◦ for p = 2 our assertion follows from Lemma 4.6.3., since all partial derivatives at the
second order of a C2-mapping are continuous. ⊲

Theorem 4.6.5. Let f : X → Y be of class C p . Then for each x ∈ X the p-th derivative
f (p)(x) is symmetrical.



62 CHAPTER 4. HIGHER DERIVATIVES

⊳ f (p)(x)hσ(1) . . . hσ(p)

Comp.
Rule= ∂ p

∂ tσ(1) . . . ∂ tσ(n)

∣∣∣∣
0

f (x + tσ(1)hσ(1) + . . .+ tσ(p)hσ(p)︸ ︷︷ ︸
obv= t1h1+...+tph p

)

4.6.4.= ∂ p

∂ t1 . . . ∂ tn

∣∣∣∣
0

f (x + t1h1 + . . .+ tph p)

Comp.
Rule= f (p)(x)h1 . . . h p. ⊲

(We can apply Lemma 4.6.4., since the mapping (t1, . . . , tn) 7→ f (x + t1h1 + . . . +
tnhn),Rn → Y is of class C p as the composition of the C∞-mapping (t1, . . . tn) 7→
x + t1h1 + . . .+ tnhn (a constant plus a (continuous) linear mapping) and f ∈ C p .)

Corollary 4.6.6. Let f : X1 × . . .× Xn → Y be of class C p . Then partial derivatives

∂ p f

∂X i1 . . . X ip

(i1, . . . , in ∈ {1, . . . , n})

do NOT depend on the order in which we differentiate.
This means, e.g., that ∂2 f (x)/∂X1∂X2 and ∂2 f (x)/∂X2∂X1 define one and the same

bilinear mapping X1 × X2→ Y :

∀h1 ∈ X1, h2 ∈ X2
...
∂2 f (x)

∂X1∂X2
h1h2 =

∂2 f (x)

∂X2∂X1
h2h1.

⊳ This follows from Theorem in view of Lemma 4.4.1. ⊲

Remark. This corollary justifies notations of the type

∂3

∂X2
1∂X2

.

4.7 Polynomials

Let X,Y be vector spaces. We say that a mapping p : X → Y is a homogeneous
polynomial of degree n, and we write

p ∈ Pn(X,Y ),

if there exists an n-linear mapping

u ∈ L(n X; Y ) (= L(X, . . . , X︸ ︷︷ ︸
n

; Y ))

such that
p = u ◦ △,

where △ ≡ △n is the diagonal mapping, defined so:

0 x

(x,
x)

∆

△ : X → Xn := X × . . .× X︸ ︷︷ ︸
n

, x 7→ (x, . . . , x).

In other words,

p(x) = u(x, . . . , x).
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In the case where X,Y are NORMED spaces, we say that p is a continuous homoge-
neous polynomial of degree n, and we write

p ∈ Pn(X,Y ),

if there exists u ∈L (n X; Y ) with the same property.
If p = u ◦ △ we say that u generates p, or that p is generated by u.
We put also

P0(X,Y ) := {all the CONSTANT mappings X→ Y}

(the polynomials of degree 0).
In what follows we consider only homogeneous polynomials, and we will drop

“homogeneous”.

Examples.

1. Each linear mapping is a polynomial of degree 1, that is, P1 = L.

2. The power mapping x 7→ xn,R→ R is a continuous polynomial of degree n.

3. The maping (x, y) 7→ x3 + 4xy2,R2 → R is a continuous polynomial of degree 3.
⊳ This polynomial is generated, e.g., by the following two 3-linear mappings (R2)3→ R:

((x1, y1), (x2, y2), (x3, y3)) 7→ x1x2x3 + 4
3 (x1y2 y3 + x2y3y1 + x3y1y2),

((x1, y1), (x2, y2), (x3, y3)) 7→ x1x2x3 + 4x1y2y3,

the former being symmetrical, and the latter being not. ⊲

4. Each n-linear mapping is a continuous polynomial of degree n.
⊳ For n = 2, e.g., a bilinear mapping u : X1 × X2 → Y is generated by the following
bilinear mapping U : (X1 × X2)

2→ Y :

U : ((x1, y1), (x2, y2)) 7→ 1
2 (u(x1, y2)+ u(x2, y1)). ⊲

5. The function q : Rn → R, x 7→ x2 ≡ x · x = x2
1 + . . .+ x2

n is a continuous polynomial
of degree 2 (generated by the scalar product).

6. More generally, for any linear operator A : Rn → Rn , with the matrix (ai j ), the
mapping (quadratic form)

Rn → R, x 7→ (Ax)
scal.
prod.· x =

n∑

i, j=1

ai j xi x j (x = (x1, . . . , xn))

is a polynomial of degree 2. (Prove!)

7. The function C([0, 1])→ R, x 7→
∫ 1

0 x2(t) dt is a polynomial of degree 2. (Prove!)

Symmetrization

For any mapping f : Xn → Y , where Y is a VECTOR SPACE (Xn :=
n︷ ︸︸ ︷

X × . . .× X),
we define its SYMMETRIZATION sym f by the formula

∀x1, . . . , xn ∈ X
... (sym f )(x1, . . . , xn) := 1

n!

∑

σ∈Sn

f (xσ(1), . . . , xσ(n)) .
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Example. Let f : R2 → R, (x, y) 7→ x − 2y. Then

(sym f )(x, y) = 1
2 ( f (x, y)+ f (y, x)) = 1

2 ((x − 2y)+ (y − 2x)) = − x + y
2 .

Lemma 4.7.1. Let u ∈ L(n; Y ). Then
a) sym u ∈ Lsym(

n X; Y );
b) u ∈ Lsym(

n X; Y )⇔ sym u = u.
⊳ a) For any τ ∈ Sn it holds

(sym u)
(
xτ (1), . . . , xτ (n)

) def=
we replace 1
by σ(1) etc

1

n!

∑

σ∈Sn

u(xτ (σ (1))︸ ︷︷ ︸
=(τ◦σ)(1)

, . . . , xτ (σ (n))︸ ︷︷ ︸
=(τ◦σ)(n)

)

̺:=τ◦σ=
if σ runs over Sn,

τ◦σ also runs over Sn

1

n!

∑

̺∈Sn

u(x̺(1), . . . , x̺(n))

def= (sym u)(x1, . . . , xn),

which means that sym u is symmetrical.
b) ”⇒”: if u is symmetrical then

(sym u)h1 . . . hn
def= 1

n!

∑

σ∈Sn

uhσ(1) . . . hσ(n)︸ ︷︷ ︸
=uh1...hn

= 1

n!
uh1 . . . hn = uh1 . . . hn,

hence sym u = u.
”⇐”: if sym u = u then u is symmetrical by a). ⊲

Lemma 4.7.2. If a polynomial is generated by u then it is also generated by sym u.
⊳ Let p = u ◦ △. Then

((sym u) ◦ △) = (sym u)(x, . . . , x) = 1

n!

∑

σ∈Sn

u(x, . . . , x) = u(x, . . . , x) = p(x),

that is, p = (sym u) ◦ △. ⊲

Lemma 4.7.3. Each polynomial is generated by an UNIQUE symmetrical multilinear
mapping.

In other words, if u1 ◦ △ = u2 ◦ △ and u1, u2 ∈ Sym, then u1 = u2.
⊳ For CONTINUOUS mappings this follows at once from Theorem on differention of
polynomials it the next subsection, which says that if p = u ◦ △ and u ∈ Lsym, then
u = 1/n! · p(n)(0). For ”algebraical case” we give below a scetch of the proof (you may
omit it).

For any given h1, . . . , hn put

π(t1, . . . , tn) : = u(t1h1 + . . .+ tnhn, . . . , t1h1 + . . . , tnhn)

= tn
1 uh1 . . . h1 + . . .+ tn

n uhn . . . hn .

Then ∂nπ/∂ t1 . . . ∂ tn |0 is equal to the coefficient by t1t2 . . . tn . This coefficient is equal,
by symmetry of u, to n!uh1 . . . hn . Hence uh1 . . . hn is uniquely defined by π . But π is
uniquely defined by p, since π(t1, . . . , tn) = p(t1h1 + . . .+ tnhn). ⊲

Corollary 4.7.4. If a polynomial is generated by two multilinear mappings then they have
one and the same symmetrization:

u1 ◦ △ = u2 ◦ △ ⇒ sym u1 = sym u2.
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⊳ It follows from Lemmas 4.7.1.–4.7.3. ⊲

Differentiation of polynomials
The following theorem is a generalization of the fact that

(xn)(k) = n(n − 1) . . . (n − k + 1)xn−k .

Theorem 4.7.5. Let p ∈ Pn(X,Y ), p = u ◦ △, u ∈Lsym(
n X,Y ). Then

a) p is of class C∞;
b) for any k ∈ {1, . . . , n} it holds

p(k) ∈ Pn−k(X,Lsym(
k X; Y )),

viz., for k < n
p(k) = n(n − 1) . . . (n − k + 1)uk ◦ △n−k, (1)

where
uk(x1, . . . , xn−k) := u(x1, . . . , xn−k, ·, . . . , ·︸ ︷︷ ︸

k

), (2)

that is,

p(k)(x)h1 . . . hk = n(n − 1) . . . (n − k + 1)u(x, . . . , x︸ ︷︷ ︸
n−k

, h1, . . . , hk), (3)

and for k = n
p(x) ≡ n!u.

c) For any natural k > n
p(k) = 0.

⊳ 1◦ p ∈ C∞ by Theorem on composition of C p-mappings, since p = u ◦ △, and
both u (as a continuous multilinear mapping) and△ (as a continuous linear mapping) are
C∞-mappings.
2◦ We have

p′(x)h = (u ◦ △)′(x)h
Chain
Rule= u′(△x) · △h = u′(x, . . . , x) ◦ (h, . . . , h)

Quasi−
Leibniz= u(h, x, . . . , x)+ . . .+ u(x, . . . , x, h)

u∈Sym= nu(x, . . . , x, h),

which means that for k = 1 the formula (1) is true. Let us fix this:

(u ◦ △n)
′ = nu1 ◦ △n−1. (4)

3◦ Let (1) is true for 1, . . . , k. Then

p(k) = n(n − 1) . . . (n − k)uk ◦ △n−k .

Hence

p(k+1) = (pk)′ = n(n − 1) . . . (n − k + 1)(uk ◦ △n−k)
′

(4),applied to
uk◦△n−k= n(n − 1) . . . (n − k + 1)(n − k) (uk)1︸ ︷︷ ︸

(2)= uk+1

◦△(n−k)−1︸ ︷︷ ︸
=△n−(k+1)

,
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which means that (1) is true for k + 1, and, by induction, b) is true.
4◦ Since p(n) = const, all the subsequent derivatives are zero. ⊲

Remark. You can obtain (1) using Computation Rule. (Do it!)

Corollary 4.7.6. Let pbe a continuous polynomial of degree n, generated by a (continuous)
symmetrical n-linear mapping u. Then p(0) = 0 and

p(k)(0) =
{

0, if k 6= n,
n!u, if k = n.

4.8 Taylor Formula

At first a lemma:

Lemma 4.8.1. Let a mapping r : X → Y be k times differentiable at 0, and let

r(0) = 0, r ′(0) = 0, r ′′(0) = 0, . . . , r (k)(0) = 0.

Then

r(h) = o
(
‖h‖k

)(
:⇔ r(h)

‖h‖k
K

‖h‖→0, ‖h‖6=0
0

)
.

⊳ By induction. 1◦ For k = 1 we have

r(0+ h︸ ︷︷ ︸
=h

) = r(0)︸︷︷︸
=0

+ r ′(0)h︸ ︷︷ ︸
=0

+r(h)

(that is, r is equal to its rest term), so r(h) = o(‖h‖) by the definition of differentiability.
2◦ Let for k − 1 our assertion is true. Then

‖r(h)‖
‖h‖k

= ‖r(h)− r(0)‖
‖h‖k

MVT= 1

‖h‖k
sup

0<t<1

∥∥r ′(th)
∥∥ ‖h‖

trick= sup
0<t<1

tk−1

∥∥r ′(th)
∥∥

‖th‖k−1 K
‖h‖→0

0,

by the induction assumption; indeed if ‖h‖ → 0 then ‖th‖ = |t| ‖h‖ → 0 uniformly
in t ∈ (0, 1), and hence

∥∥r ′(th)
∥∥ /‖th‖k−1 → 0, since r ′ satisfies the conditions of the

lemma for k − 1. ⊲

Taylor Formula

Theorem 4.8.2. Let f : X → Y be of class Ck in U ⊂ X. Then for x ∈ U

f (x + h) = f (x)+ f ′(x)+ 1
2 f ′′(x)h2 + . . .+ 1

k! f (k)(x)hk + r(h), (1)

where
f (s)(x)hs := f (s)(x) h . . .h︸ ︷︷ ︸

s times

,

and
r(h) = o(‖h‖k).
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⊳ 0◦ We can rewrite (1) in the form

x

f

f
(2)

r = f̃ −
k∑

i=1

1

i !
pi ,

where

f̃ (h) := f (x + h)− f (x),

and pi denotes the polynomial generated by f (i)(x) (which
is a continuous symmetrical i -linear mapping, since f is of
class

C p in U ). Thus the graph of f (see the picture) is also the graph of f̃ when considered
with respect to the translated (on the picture dotted) axes. By Lemma 4.8.1., all we need
is to verify that r(0) = 0, r ′(0) = 0, . . . , r (k)(0) = 0.
1◦ r(0) = 0, since f̃ (0) = 0 and each polynomial is equal to 0 at 0.
2◦ For any j = 1, . . . , k

r ( j )(0)
(2)= f̃ ( j )(0)︸ ︷︷ ︸

obv= f ( j)(x)

−
k∑

i=1

1

i !
p( j )

i (0)︸ ︷︷ ︸
4.7.6.=

{
j ! f ( j)(x) if i = j
0 if i 6= j

= 0. ⊲

Case Rn → R

Corollary 4.8.3. Let a function Rn → R have continuous partial derivatives up to order
k in an open set U ⊂ Rn . Then for any x ∈ U

f (x + h) = f (x)+
n∑

i=1

∂ f (x)

∂xi
hi +

1

2!

n∑

i, j=1

∂2 f (x)

∂xi∂x j
hi h j + . . .

+ 1

k!

n∑

i1,...,ik=1

∂k f (x)

∂xi1 . . . ∂xik
hi1 . . . hik + r(h),

(h = (h1, . . . , hn) ∈ Rn)

where r(h) = o(‖h‖k).
Here ‖·‖ is ANY norm in Rn . (If ‖·‖1 is another norm in Rn , then r(h) = o(‖h‖k1)

also, since any two norms in Rn are equivalent.)





Chapter 5

Extreme Problems

I. PROBLEMS WITHOUT CONSTRAINTS

5.1 Generalized theorem of Fermat

Definition. Let X be a topological space, and let f be a functional on X, f : X → R. We
say that f has a local minimum at a point x̂ ∈ X , and we write

x̂ ∈ Locmin f,

if f attains at x̂ its minimal value in some neighbourhood of x̂ . Thus,

x̂ ∈ Locmin f :⇔ ∃U ∈ Nbx̂ ∀x ∈ U
... f (x) ≥ f (x̂).

Theorem 5.1.1. Let X be a normed space, and let a functional f : X → R has a local
minimum at a point x̂ .

a) If for some h ∈ X there exists Dh f (x̂), then Dh f (x̂) = 0.
b) If f is G-differentiable at x̂ , then f ′(x̂) = 0.

⊳ a) If x̂ ∈ Locmin f then 0 ∈ Locminϕ, where ϕ : R → R, t 7→ f (x̂ + th). By the
classic Fermat’s theorem, ϕ̇(0) = 0; but Dh f (x̂) = ϕ̇(0).

b) It follows from a), since f ′(x̂)h = Dh f (x). ⊲

Example. If X = Rn and f has the partial derivatives of the first order at the point
x̂ ∈ Locmin f , then all these partial derivatives are equal to 0:

∂ f (x̂)

∂x1
= . . . = ∂ f (x̂)

∂xn
= 0.

5.2 Necessary and sufficient conditions of locmin

Theorem 5.2.1. (on necessary conditions and sufficient conditions of the second order).
Let X ∈ NS, f : X → R, f ∈ C2(x̂).

69
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a) (Necessary conditions) If x̂ ∈ Locmin f then f ′(x̂) = 0, and

∀h ∈ X
... f ′′(x̂)h2 ≥ 0. (1)

b) (Sufficient conditions) If f ′(x̂) = 0 and ∃α > 0 such that

∀h ∈ X
... f ′′(x̂)h2 ≥ α ‖h‖2 , (2)

then x̂ ∈ Locmin f .

⊳ By Taylor formula,

f (x̂ + h) = f (x̂)+ f ′(x̂)h + 1

2
f ′′(x̂)h2 + r(h), (3)

where
r(h) = o(‖h‖2). (4)

a) Let x̂ ∈ Locmin f . Then f ′(x̂) Theorem 5.1.1.= 0. Further let h ∈ X . It holds f (x̂ + th) ≥
f (x̂) for all sufficiently small t ∈ R. Hence,

1
2 t2 f ′′(x̂)h2+r(th) = 1

2 f ′′(x̂)(th)2+r(th)
(3)= f (x̂ + th) − f (x̂)︸ ︷︷ ︸

≥0

− f ′(x̂)︸ ︷︷ ︸
0

(th) ≥ 0 (5)

for all sufficiently small t . But
r(th) = o(t2), (6)

since (without loss of generality h 6= 0)

|r(th)|
t2 = ‖h‖2 |r(th)|‖th‖2

︸ ︷︷ ︸
(4)→

t→0
0

K
t→0

0.

So (5) is possible, only if f ′′(x)h2 ≥ 0.
b) Let f ′(x̂) = 0, and let (2) be fulfilled. Then

f (x̂ + h)− f (x̂)
(3)= 1

2 f ′′(x̂)h2
︸ ︷︷ ︸
(2)
≥ α‖h‖2

+r(h) ≥ α
2 ‖h‖2 + o(‖h‖2) ≥ 0

for all sufficiently small ‖h‖. Hence, x̂ ∈ Locmin f . ⊲

Conditions (1) and (2) in (5.2.1.) are, respecively, the condition of non-negativity
and the condition of strict positivity of the second derivative f ′′(x̂) in the sense of the
following definition:
Definition. Let X ∈ NS, u ∈ L(X, X;R) (bilinear functional).

a) u is said to be non-negative if the corresponding polynomial is non-negative, that
is, if

∀h ∈ X
... u(h, h) ≥ 0, (7)

and positive if the corresponding polynomial is positive at any non-zero vector, that
is, if

∀h ∈ X\0 ... u(h, h) > 0. (8)
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b) u is said to be strictly positive if

∃α > 0 ∀h ∈ X
... u(h, h) ≥ α ‖h‖2 . (9)

It is evident that
strict positivity⇒ positivity⇒ non-negativity

In general the inverse implications are not true:

(Counter-) examples.
1. The functional R2 × R2 → R, ((x1, y1), (x2, y2)) 7→ x1x2 is non-negative, but is not
positive.
2. The functional ℓ2 × ℓ2 → R, (x, y) 7→ ∑∞

i=1(1/i !)xi yi is (evidently) positive, but is
not strictly positive (verify!).

Finite-dimensional case
In FINITE-DIMENSIONAL case positivity is equivalent to strict positivity: If u ∈

L(Rn,Rn;R) is positive, then u is strictly positive.
⊳ Denote by S the unit sphere in Rn (defined by the equation ‖x‖ = 1), put p := u ◦ △,
and consider the restriction p|S . It is clear that this restriction is continuous (since in
finite dimensional case any bilinear functional is continuous). Further, S is compact, being
closed (S = ‖·‖−1 (1)) and bounded. Hence, p|S attains its minimal value, say α. Since u
is positive, we have α > 0. Thus,

‖x‖ = 1⇒ u(x, x) ≥ α > 0. (10)

So for any h 6= 0

u(h, h) = u

(
‖h‖ h

‖h‖ , ‖h‖
h

‖h‖

)
= ‖h‖2 u

(
h

‖h‖ ,
h

‖h‖

)

︸ ︷︷ ︸
(10)
≥ α

≥ α ‖h‖2 ,

which means that u is strictly positive. ⊲

Further, in FINITE-DIMENSIONAL case the positivity condition (2) takes the form

∀h = (h1, . . . , hn) ∈ Rn\0 ...
n∑

i, j=1

∂2 f (x̂)

∂xi∂x j
hi h j > 0. (11)

This condition is none more then the condition of positive definiteness of Hesse matrix of
the function f at the point x̂ . Thus, by 1.9, for f : Rn → R, strict positivity of f ′′(x̂) is
equivalent to positive-definiteness of Hesse matrix of f at x̂ . The latter may be established
with the aid of SILVESTER CRITERION from algebra:

SILVESTER CRITERION. A symmetric square matrix A is positive definite iff all its
principal minors det Ak (k = 1, . . . , n) are positive.

A a    a     a      ...    a
11 12 13 1n1

A a    a     a      ...    a
21 22 23 2n2

A a    a     a      ...    a31 32 33 3n3

A=A a    a     a      ...    an1 n2 n3 nnn

... ... ... ... ......
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Remark. For the case of local MAXIMUM we have to replace all “>” in (1) and (2) by “<”.
The strict NEGATIVITY of f ′′(x) is equivalent to NEGATIVE definiteness of the Hesse matrix
A; the latter is equivalent to the conditions: det A1 < 0, det A2 > 0, det A3 < 0, det A4 >

0, . . .
⊳ Apply Silvester criterion to −A. ⊲

II. PROBLEMS WITH CONSTRAINTS

5.3 Setting of the problem

Definition. Consider the following EXTREME PROBLEM WITH CONSTRAINTS (for definite-
ness, the case of minimum): for a given function f : X → R (X ∈ NS) and a given set
A ⊂ X (the constraints), to find all points in A, where the RESTRICTION f |A has its local
minimum:

Locmin( f |A) =? (1)

Of course, we equippe A with the induced topology, so that

a ∈ Locmin f |A ⇔ ∃U ∈ Nba(X)∀x ∈ U ∩ A
... f (x) ≥ f (a) (a ∈ A).

If A = X , we obtain a problem without constraints.
Definition. By smooth (extreme) problem we shall mean a problem (1) with A given by
an equation

A = g−1(0), (2)

where g : X → Y is a (sufficiently) smooth (e.g., of class C1) mapping from our normed
space X into some another normed space Y . In other words,

A = {x ∈ X | g(x) = 0}. (3)

Example. The problem with the constraints A ⊂ R2 given as follows: A = {(x, y}| x = 1}
is a smooth problem with Y = R and g(x) = x − 1.

5.4 General (non-smooth) problems: necessary condition
of locmin

y

x
A

grad faυ

At first consider a motivating example. Let f : R2 → R, A = {(x, y)|x ≥ 0}, f ∈ Dif,
and let a = (x̂, ŷ) ∈ Locmin f |A. Then

f ′(a) = 0 if a ∈ int A (that is, if x̂ > 0),
∂ f (a)
∂x ≥ 0, ∂ f (a)

∂y = 0 if a ∈ fr A (that is, if x̂ = 0).

This follows from a general theorem to be proved below,
but it is clear by itself: in the first case we have in fact, locally
(that is, in some neighbourhood of a), a problem without
constraints, so Fermat theorem is applicable.

In the second case (x̂ = 0) our function f cannot have a strictly negative derivative in x
at a, since it would mean that f STRICTLY decreases at a in x-direction, which contradicts
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to local minimality at a. The conditions ∂ f (a)/∂x ≥ 0, ∂ f (a)/∂y = 0 mean that the
gradient (∂ f (a)/∂x, ∂ f (a)/∂y) of f and the unit outer NORMAL vector Ev = (−1, 0) to
A at a have opposite directions. In general, as we shall see, the vector opposite to the
gradient at a point of local minimum, must lie in the NORMAL CONE to A at this point.

Tangent vectors
Definition. Let X be a normed space, A ⊂ X, a ∈ A. We say that a vector h ∈ X is
tangent to A at a, and we write h ∈ Ta A, if there exist a sequence {an} of points in A
and a sequence {tn} of positive real number, such that an converges to a and t−1

n (an − a)
converges to h:

h ∈ Ta A :⇔ ∃{tn} ⊂ (0,+∞)∃{an} ⊂ A : an → a,
an − a

tn
→ h.

a

A
a

h

t  (a −a)2       2
-1

t  (a −a)1       1
-1

 2

a 1

It is obvious that always 0 ∈ Ta A (take an = a) and that if h ∈ Ta A then th ∈ Ta A
for any t > 0 (take tn = t−1tn). This means that Ta A is
a CONE with the vertex at 0 (the vertex belonging to the
cone).

Examples.

1. For a motion f : R
“time′′
→ R3 the velocity f ′(t) at a

moment t is tangent to the trajectory at the point f (t).

x

f

f’(x)

2. For a differentiable function f : R→ R any vector of
the graph of the derivative at a point x (considered as an
element of L (R,R)) is tangent to the graph of f at the
point (x, f (x)).

3. If A is open then ANY vector is tangent to A at each
point:

∀a ∈ A
... Ta A = X (verify!).

In particular

∀x ∈ X
... Tx X = X.

4. T0{0} = {0}.
5. If Y ⋐ X (this notation means that Y is a vector subspace in X), then

∀y ∈ Y
... Ty Y = Y.

Lemma 5.4.1. Let f : X → Y be differentiable at a point a, and let

an → a,
an − a

tn
K

n→∞ h (an, h ∈ X,Tn > 0). (1)

Then
f (an)− f (a)

tn
K

n→∞ f ′(a)h. (2)
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⊳
f (an)− f (a)

Tn

f ∈Dif(a)= ( f (a)+ f ′(a)(an − a)+ r(an − a))− f (a)

Tn
trick= f (a)

an − a

Tn︸ ︷︷ ︸
(1)
Kh

︸ ︷︷ ︸
f ′(a)∈Cont

K f ′(a)h

+ r(an − a)

‖an − a‖︸ ︷︷ ︸

‖an−a‖
(1)
K0

r∈Small
K0

‖an − a‖
Tn︸ ︷︷ ︸
(1)
K‖h‖

︸ ︷︷ ︸
→0

→ f ′(a)h. ⊲

Normal vectors
NORMAL vectors to a set A ⊂ X are not “in reality” vectors in X , they are COvectors,

that is, elements of the space
X∗ :=L (X,R)

(which is called the DUAL space to X ; recall that R∗ ≈ R, (Rn)∗ ≈ Rn).
Definition. Let X ∈ NS, A ⊂ X, a ∈ A. We say that an element h∗ ∈ X∗ is normal to A
at a, and we write

h∗ ∈ Na A,

if h∗ (as a linear function on X) is NON-POSITIVE on the tangent cone to A at a:

h∗ ∈ Na A :⇔ ∀h ∈ Ta A
... h∗ · h ≤ 0. (3)

(Recall that we write lh ≡ l · x ≡ l(h) for linear l.)
In the case X = Rn you can IDENTIFY a linear function

l(x1, . . . , xn) = l1x1 + . . .+ ln xn

with the vector (l1, . . . , ln) (in the SAME Rn!) and think about l · h as about the SCALAR

PRODUCT.
Once again, it is clear that Na A is a cone, containing 0 as the vertex.

Examples.

1. For a (smooth) curve in R3, the normal cone at a point is the normal plane to the curve
at this point.

K -

K+

0

2. Let K+ and K− be the positive and the negative quadrants in R2,
resp. Then

N0 K+ = K−, N0 K− = K+.

3. For an OPEN set A the normal cone at any point is trivial:

∀a ∈ A
... Na A = {0} (verify!).

In particular ∀x ∈ X
... Nx X = {0}.

4. N0{0} = X .
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Necessary condition of locmin

Theorem 5.4.2. Let X ∈ NS, f : X → R, a ∈ A ⊂ X, f ∈ Dif(a). If a ∈ Locmin f |A
then

− f ′(a) ∈ Na A.

⊳ Let us suppose that − f ′(a) 6∈ Na A. Then, by definition, ∃h ∈ Ta A:

− f ′(a)h > 0. (4)

By definition of a tangent vector, ∃an → a (an ∈ A) ∃Tn > 0:

an → a,
an − a

Tn
→ h.

So

0

for all sufficiently
great n since

an→a and a∈Locmin f |A
(recall that Tn>0)

≤ f (an)− f (a)

Tn

Lm.5.4.1.
K f ′(a)h

(4)
< 0, a contradiction! ⊲

Remark. That we require in the theorem f ∈ Dif(a), not merely f ∈ DifG(a), is essential,
as the following counter-example shows:

y

z

x

0

A

gr f  (0)

A

Example. Let A be the circle in R2 shown on the picture, and
let f : R2 → R be defined by the rule

f (x, y) =
{

0 if (x, y) ∈ A
x if not.

Then f ∈ DifG(0), with f ′(0) = (1, 0), and 0 ∈ Locmin f |A,
but

− f ′(0) = (−1, 0) 6∈ N0 A = {(x, y)| x = 0}, (= y-axis).

The point is that the set A is not “star-like”.
NB In this example T0 gr f 6= gr f ′(0). ⊳⊳ gr f = (A×0)∪(gr f ′(0)\ Ã) (see the picture);
T0 gr f = gr f ′(0) ∪ x-axis ⊲⊲

Remark. For f ∈ Dif, the generalized Fermat theorem follows from Theorem 5.4.2. and
Example 3 from prewious set of examples.

5.5 Smooth problems: sufficient conditions

IDEA OF LAGRANGE. The idea of Lagrange was to reduce the problem with constraints in
question:

Locmin f |A =? (A = g−1(0))

to a problem WITHOUT constraints for some new function 8 (instead of f ). The mosts
simple way to construct 8 : X → R, starting from f and g, is to consider some LINEAR

(continuous) function λ : Y → R and to put

8 := f + λ ◦ g. (1)

Such a function 8 is called LAGRANGE FUNCTION, and the functional λ ∈ Y ∗ in (1) is
called LAGRANGE MULTIPLIERS (plural!).
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If Y = R, then λ ∈ R∗ ≈ R is just a number (Lagrange multiplier), if Y = Rn , then
λ ∈ (Rn)∗ ≈ Rn is a vector (λ1, . . . , λn) (Lagrange multipliers).

Theorem 5.5.1. (sufficient conditions for a smooth problem). Consider a smooth problem

Locmin f |A =?, A = g−1(0).

If for some λ ∈ Y ∗ Lagrange function 8 = f + λ ◦ g has a local minimum at a point
a ∈ A then

a ∈ Locmin f |A.

⊳ a ∈ Locmin( f + λ ◦ g)
obv.⇒ a ∈ Locmin ( f + λ ◦ g)|A︸ ︷︷ ︸

obv.= f |A+ (λ ◦ g)|A︸ ︷︷ ︸
g|A=0= 0

⇒ a ∈ Locmin f |A. ⊲

Remark. The condition “∃λ ∈ Y ∗ : a ∈ Locmin( f + λ ◦ g)” is NOT necessary for
“a ∈ Locmin f |A”, as the following counter-example shows:

Example. X = R2, Y = R, f (x, y) = x, g(x, y) = x + x2; here A = {x = 0} ∪ {x =
−1}, 0 ∈ Locmin f |A, but ∀λ ∈ R

... 0 6∈ Locmin( f + λg). (Verify!)

5.6 Smooth problems: tangent cone to A = g−1(0)

gr f
(x,f(x))

x

gr f’(x)
Y Y

X X

Theorem 5.6.1. (on the tangent cone to a graph).
Let X,Y ∈ NS, f : X → Y , and let f ∈ Dif(x).
Then

(1)T(x, f (x)) gr f = gr f ′(x).

Here gr f dentotes the graph of f :

gr f := {(x, f (x))| x ∈ X} ⊂ X × Y.

⊳ 1◦ gr f ′(x) ⊂ T(x, f (x)) gr f . ⊳⊳ Let (h, k) ∈ gr f ′(x), that is, k = f ′(x)h. Take ANY

sequence Tn ↓ 0, and put xn := x + Tn h, yn := f (xn). Then (xn, yn) ∈ gr f , and

(xn, yn) = (x + Tn h, f (x + Tn h))
f ∈Cont(x),Tn h→0

K
n→∞ (x, f (x)),

(xn, yn)− (x, f (x))

Tn
= (x + Tn h, f (x + Tn h))− (x, f (x))

Tn

obv=
(

h,
f (x + Tn)− f (x)

Tn h

)
f ∈Dif(x)

K
n→∞ (h, f ′(x)h) = (h, k);

hence, (h, k) ∈ T(x, f (x)) gr f. ⊲⊲

2◦ T(x, f (x)) gr f ⊂ gr f ′(x).
⊳⊳ Let (h, k) ∈ T(x, f (x)) gr f , that is, ∃{xn} ⊂ X, ∃{Tn} ⊂ (0,+∞):

(xn, f (xn)) K
n→∞ (x, f (x)), (2)

(xn, f (xn))− (x, f (x))

Tn
K

n→∞ (h, k). (3)
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Relation (2) means that
xn → x, f (xn)→ f (x). (4)

Relation (3) means that

xn − x

Tn
→ h,

f (xn)− f (x)

Tn
→ k. (5)

By Lemma 5.4.1., it follows from (4) and (5) that

f (xn)− f (x)

Tn
→ f ′(x)h. (6)

Comparing (6) with the second relation in (5), we conclude (by the uniqueness of limit in
a Hausdorff space) that k = f ′(x)h. But this means that (h, k) ∈ gr f ′(x) ⊲⊲ ⊲

Remark. In Step 1◦ we used just G-differentiability of f at x , but in Step 2◦ we have
used F-differentiability essentially, and this condition of F-differentiability is essential
for validity of the theorem, as the following counter-example shows:

Example. Let A be a CIRCLE, shown on the picture, and let f : R2 → R be defined by
the rule

y
A

x0

f (x, y) =
{

0 if (x, y) 6∈ A
x if (x, y) ∈ A

Then f ∈ DifG(0), f ′(0) = 0, gr f ′(0) = R2 × 0, but T0 gr f =
(R2 × 0) ∪ (R(1, 0, 1)). (Verify! Compare Ex. 2.9! That example also is
suited!)

Theorem 5.6.2. (on the tangent cone to g−1(0)). Let X,Y ∈ BS, g : X → Y, A =
g−1(0), a ∈ A (that is, g(a) = 0), g ∈ C1

G(a), g′(a) ∈ Sur (that is, g′(a) is SURJECTIVE:
g′(a)X = Y ), and let the kernel

K := ker g′(a) :=(g′(a))−1
︸ ︷︷ ︸

pre−image, rather
than the

inverse mapping!

(0) = {k| g′(a)k = 0} (7)

SPLITS the space X in the sense that there exists a vector subspace L in X such that:

(i) K , L ∈ BS (when equipped by the induced norm);
(ii) X = K ⊕ L (that is, X = K + L and K ∩ L = {0});

(iii) X ≈ K × L (that is, more precisely, the mapping (k, l) 7→ k + l, K × L → X) is
a (linear) homeomorphism). Then

Ta A = ker g′(a). (8)

Note, that K as the pre-image of a closed set is CLOSED, so the condition K ∈ BS
is fulfilled automatically (a closed set in a complete metric space is also complete, when
equipped by the induced metric).

Note also, that in FINITE-DIMENSIONAL case (X = Rn) ANY vector subspace splits
the whole space 1, so you can forget about this condition if you wish deal just with
finite-dimensional situation.

1⊳ Choose an orthonormal base in K , and extend it to an orthonormal basis in Rn ; the subspace, generated
by the “new” basis vectors, will be the desirable L . ⊲
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⊳ 1◦ Without loss of generality (wlog) we can assume that a = 0. Otherwise we consider
a new mapping g̃ : X → Y , defined by the rule g̃(h) = g(a + h). It is clear that
g̃′(0) = g′(a), and that Ã := g̃−1(0) = g−1(0)− a = A − a, that is, Ã is the translation
of A byf the vector−a, so that T0 Ã = Ta A.

L

V

U

K

A

0

2◦ By (i)-(iii), we can assume that g is a mapping K × L → Y .
Denote by g′K and g′L the corresponding partial derivatives:

(9)g′K (0)k =
(k∈K )

g′(0) · (k, 0), g′L(0)l =
(l∈L)

g′(0) · (0, l).

3◦ g′K (0) = 0. ⊳⊳ K = ker g′(0). ⊲⊲

4◦ g′L(0) ∈ Sur. ⊳⊳ Since g′(0) is surjective

∀y ∈ Y ∃(k, l) ∈ K × L : y = g′(0) · (k, l) (9)= g′K (0)k︸ ︷︷ ︸
3◦=0

+g′L(0)l = g′L(0)l.

This means that g′L(0) is surjective. ⊲⊲

5◦ g′L(0) ∈ Inj (that is, is INJECTIVE). ⊳⊳ Let l ∈ L and g′L(0)l = 0. Then

g′(0) · (0, l) (9)= g′K (0)0︸ ︷︷ ︸
0

+ g′L(0)l︸ ︷︷ ︸
0

= 0,

which means that

(0, l) ∈ ker g′(0) = K × 0 (we identify K and K × 0!).

If follows (by (ii)) that l = 0. ⊲⊲

6◦ By 4◦ and 5◦, g′L(0) ∈ Bij (is BIJECTIVE). Hence, g′L(0) ∈ Iso(L,Y ), in finite dimensi-
onal case automatically (any linear map is continuous!), and in general case by so-called
Openness Principle from functional analysis.
7◦ By Implicit Function Theorem, ∃U ∈ Nb0(K ) ∃V ∈ Nb0(L) ∃ϕ : U → V :

1. grϕ = A ∩ (U × V ),
2. ϕ ∈ Dif(0),
3. ϕ′(0) =−(g′L(0))−1

inverse map!
◦ g′K (0)︸ ︷︷ ︸

3◦=0

= 0.

It follows from 3), that gr ϕ′(0) = K × 0 = ker g′(0).
8◦ By Theorem 5.6.1., gr ϕ′(0) = T0 A. ⊲

Theorem 5.6.2. says in particular that the tangent cone to A is a VECTOR SUBSPACE

in X . In such a case any normal vector is ORTHOGONAL to each tangent vector:

Lemma 5.6.3. (on orthogonality). Let X ∈ NS, A ⊂ X, a ∈ A. If Ta A is a vector
subspace in X, then

∀h ∈ Ta A ∀h∗ ∈ Na A
... h∗ · h = 0.

If h∗ · h = 0 then we say that h∗ and h are orthogonal (in finite-dimensional case it
is usual orthogonality).
⊳ By the definition of a normal vector, h∗ · h ≤ 0. But we have also −h ∈ Ta A (since
Ta A is a vector subspace), so it holds also h∗ · (−h) ≤ 0, that is, h∗ · h ≥ 0. Hence,
h∗ · h = 0. ⊲

Corollary 5.6.4. In conditions of Lemma 5.6.3.,

∀h∗ ∈ Na A
... Ta A ⊂ ker h∗.
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5.7 Smooth problems: necessary condition

Theorem 5.7.1. (on Lagrange multipliers). Let X,Y ∈ BS, and let (see the diagram)
A := g−1(0), a ∈ A, f ∈ Dif(a), g ∈ C1

G(a), g′(a) ∈ Sur. If

a ∈ Locmin f |A, (1)

then
∃λ ∈ Y ∗(=L (Y,R)) : ( f + λ ◦ g︸ ︷︷ ︸

=:8

)′(a) = 0. (2)

X f
K R

gց λ
ր

Y

Thus, the theorem says, that there exists Lagrange multipliers λ such that the corre-
sponding Lagrange function satisfies at the point a Fermat condition.

Before the proof consider a model example:

Example. Let X = R2, Y = R, f (x, y) = x2 + y2, g(x, y) = x − 1. Here A =
{(x, y)|x = 1}︸ ︷︷ ︸
=:{x=1}

, and ∀b ∈ A
... Tb A = {x = 0}, Nb A = {y = 0}.

d

y

level
lines of f

A

level 
lines of g

grad f(a)=(2,0)

q x

N Aa

T Aa

Now, λ ∈ R∗ ≈ R may be here identified with a real numbers, so our Lagrange function
has the form

8(x, y) = x2 + y2 + λ(x − 1).

Condition (2) gives (for a =: (x̂, ŷ))

(3)8′(a) = (2x̂ + λ, 2ŷ) = (0, 0).

Condition a ∈ g−1(0) gives

(4)x̂ − 1 = 0.

It follows from (3) and (4) that

x̂ = 1, ŷ = 0 (that is, a = (1, 0)), λ = −2.

Thus the unique candidate for a point of local minimum is a = (1, 0), and it is easy
to verify that really a ∈ Locmin f |A.

The necessary condition− f ′(a) ∈ Na A means here (since Ta A is a vector subspace
of R2) that grad f |a⊥Ta A. So grad f |a is orthogonal at a both to the level line of f (as
the gradient of f ) and to the level line of g (which is just A). It follows (by the formula
∂ϕ/∂ν = gradϕ · Eν), that both f and g have zero derivative in the direction of the common
tangent line to these level lines, that is, zero derivative in y: ∂ f/∂y|a = ∂g/∂y|a = 0.
Further, ∂g/∂x |a = 1 6= 0, so far some λ̃ ∈ R it holds ∂ f/∂x |a = λ̃∂g/∂x |a (namely, for
λ̃ = 2, for we have ∂ f/∂x |a = 2). So, for this λ̃, both f and λ̃g have ONE AND THE SAME

partial derivatives at a and hence one and the same derivative at a. Hence their difference
f − λ̃g has ZERO derivative at a.

We see that our desired Lagrange multiplier is

λ = −̃λ.
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Roughly speaking, by adding λg to f we “rotate” the graph of f around the HORIZONTAL

line, passing through the point (a, f (a)) and parallel to the mentioned common tangent
line, until we obtain the HORIZONTAL tangent plane to the graph.

THE PROOF. ⊳ 1◦ To avoid appealing functional analysis, we restrict ourselves by the
FINITE-DIMENSIONAL case (X = Rn,Y = Rm).
2◦ By Theorem 5.2.1.− f ′(a) ∈ Na A.
3◦ By Theorem 5.6.2., Ta A = ker g′(a).

4◦ ker g′(a) ⊂ ker f ′(a). ⊳⊳ ker g′(a) 3◦= Ta A
2◦;5.6.4.⊂ ker(− f ′(a)) obv= ker f ′(a). ⊲⊲

5◦ ALGEBRAICAL LEMMA (on passing through). Let X,Y, Z be vector spaces, and let
ϕ ∈ L(X, Z), γ ∈ L(X,Y ). Let γ be SURJECTIVE. Then the following two conditions are
equivalent:
(a) ker γ ⊂ kerϕ;
(b) ∃̃λ ∈ L(Y, Z) : ϕ = λ̃ ◦ γ (ϕ can be “passed through γ ”).

X ϕ
K Z

γց λ̃
ր

Y

⊳⊳ (b)⇒(a): Let x ∈ ker γ , that is, γ x = 0. Then ϕx
(b)= λ̃( γ x︸︷︷︸

0

) = 0, that is,

x ∈ kerϕ.
(a)⇒(b): Take any element y ∈ Y . Since γ ∈ Sur, ∃x ∈ X : γ x = y. Put

γ̃ y := ϕx .

This definition is correct, that is, doesn’t depend on the choice of x . Indeed, if we have
another x ′ with the property γ x ′ = y then

γ (x ′ − x) = γ x ′ − γ x = 0 ⇛ x ′ − x ∈ ker γ
(a)
⇛ x ′ − x ∈ kerϕ ⇛ ϕ(x ′ − x) = 0

⇛ ϕx ′ = ϕx .

By the very construction, ϕ = λ̃ ◦ γ . ⊲⊲

6◦ By 4◦, we can apply 5◦ to the diagram

X f ′(a)
K R

g′(a)ց λ̃
ր

Y

and conclude that ∃̃λ ∈ L(Y,R)(=L (Y,R), since Y = Rm) : f ′(a) = λ̃ ◦ g′(a).
7◦ Put λ = −̃λ. Then

( f + λ ◦ g)′(a)
Chaine
Rule= f ′(a)+ λ ◦ g′(a) = f ′(a)− λ̃ ◦ g′(a) 6◦= 0. ⊲

5.8 Problems with equations and inequalities

As an application consider a classic extreme problem with equations and inequalities to
find local minimums of a given function Rn → R on the set

A = {x ∈ Rn| g1(x) = 0, . . . , gk(x) = 0; gk+1(x) ≥ 0, . . . , gl(x) ≥ 0}.
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(All the function are supposed to be sufficiently smooth.)
Description of a method. At a point a ∈ Locmin f |A we have for i = k+ 1, . . . , l either
gi (a) = 0 or gi(a) > 0.

According to which of these two possibilities is realized, there 2l−k possibilities. A
method of solution the extreme problem is to consider one by another all the possibilities
and apply to each of them Theorem on Lagrange multipliers (TLM) with an appropriate
g.

We illustrate this method on the following simple example:

Example. Let
A = {x | g1(x) = 0, g2(x) ≥ 0}.

Put
A1 := g−1

1 (0), A2 := g−1
2 (0), B2 := g−1

2 ((0,+∞)).
The sets A1 and A2 are closed (as the pre-images of the closed set {0}), and the set B2 is
open (as the pre-image of the open set (0,+∞)). It is clear that

A = (A1 ∩ A2) ∪ (A1 ∩ B2),

the two intersections being disjoint. Let a ∈ Locmin f |A.
There are two possibilities: 1) a ∈ A1 ∩ A2; 2) a ∈ A1 ∩ B2.
In the first case

a ∈ Locmin f |A
a ∈ A1 ∩ A2

}
A1∩A2⊂A⇒ a ∈ Locmin f |A1 ∩ A2︸ ︷︷ ︸

obv= (g1,g2)
−1(0)

.

Thus we can apply TLM with g = (g1, g2) : Rn → R2.
In the second case

a ∈ Locmin f |A
a ∈ A1 ∩ B2

}
A1∩B2⊂A⇒ a ∈ Locmin f |A1∩B2 ⇒ a ∈ Locmin f | A1︸︷︷︸

g−1
1 (0)

.

(Proof of the last implication: since B2 ∈ Op, there exists (U ∈ Nba(Rn) : U ⊂ B2 ⇛

(A1 ∩ B2) ∩U = A1 ∩U.)
Thus we can apply TLM with g = g1 : Rn → R.





Chapter 6

Riemann integral in Rn

6.1 Partitions and cubes

t0 t1 t2 t3 t4

a b

A partition of a (bounded closed) interval I = [a, b] is a finite sequence p = (t0, t1, . . . , tk),
such that

a = t0 ≤ t1 ≤ . . . ≤ tk = b.

In such a case we write
p ∈ Part I.

We say that the intervals Ji = [ti−1, ti ] are the intervals of the partition p, and we write

Ji ∈ Intv p.

A cube Q in Rn is a product I1 × . . .× In of n intervals Ii = [ai , bi ] (maybe ai = bi for
some i ), we write

Q ∈ Cube Rn.

The volume of a cube is defined as the product of the lengths of its edges:

vol Q := (b1 − a1) . . . (bn − an).

For example, any point x ∈ Rn considered as a one-point set {x} is a cube of zero volume.

S

A partition P of a cube Q = I1 × . . . × In is a sequence (p1, . . . , pn), where pi is a
partition of the interval Ii :

P ∈ Part(I1 × . . .× In) :⇔ P = (p1, . . . pn), pi ∈ Part Ii .

A cube S of a partition P is a product J1× . . .× Jn , where each Ji is
an interval of the partition pi :

S ∈ Cube P :⇔ S = J1 × . . .× Jn, Ji ∈ Intv pi .

Let P = (p1, . . . , pn) and P ′ = (p′1, . . . , p′n) be two partitions of a cube Q. We say that
P ′ is a refinement of P and we write

P ′ ≻ P

if for such i the sequence pi is a subsequence of p′i .

83
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6.2 Riemann integral

Let f : M → R,M ⊂ Rn . In this chapter we ALWAYS suppose that f is bounded, that is,
its image f (M) is a bounded subset of R:

f ∈ BdM :⇔ f (M) ∈ Bd(R).

If f ∈ BdM then we can EXTEND f to a bounded function on the WHOLE Rn by putting

f (x) = 0 for x ∈ Rn\M.

So without loss of generality (wlog) we can (and we shall) assume that our functions are
defined on the whole space.

For a given cube Q in Rn and a given partition P of Q we define the lower sum LP f
and the upper sum UP f of f , corresponding to P , by the formulas

LP f :=
∑

S∈Cube P

(inf
S

f ) vol S, UP f :=
∑

S∈Cube P

(sup
S

f ) vol S.

(Here, e.g., infS f denotes the infimum of f on S, that is, inf( f (S)).) By boundeness of
f , both the infS f and supS f are ever FINITE.

The lower integral of f over Q is defined as the SUPREMUM of all lower sums, and
the upper integral as the INFIMUM of all upper sums:

L
∫

Q
f := sup {LP f |P ∈ Part Q}︸ ︷︷ ︸

=:L

, U
∫

Q
f := inf {UP f |P ∈ Part Q}︸ ︷︷ ︸

=:U

.

L U

L  f
Q

U  f
Q

R

As we shall see in a minute (Lemma 6.3.3.), the set L lies TO THE LEFT of the set U, so
both integrals are finite, and the lower one is less (by “less” we
mean “≤”, for “<” we say “strictly less”):

L
∫

Q
f ≤ U

∫

Q
f.

We say that f is integrable over Q in the sense of Riemann if the lower sum is EQUAL

to the upper one:

L U

f
Q

f ∈ (R) IntQ :⇔ L
∫

Q
f = U

∫

Q
f.

In such a case this common value is called the Riemann integral
of f over Q and is denoted by

(R)
∫

Q
f or (R)

∫

Q
f (x1, . . . , xn) dx1 . . . dxn.

As a rule we shall drop (R) and “in the sense of Riemann.”

Examples.

1. f = const = c;
∫

Q c = c vol Q. ⊳ For any partition P of Q

LP c =
∑

S∈Cube P

c vol S = c
∑

S∈Cube P

obv.= c vol Q,

and analogously for UP c. ⊲
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2. f =

1
α

1-1 0
∫

[−1,1] f = 1 (does not depend on the value α at 0). ⊳ Exercise. ⊲

3. The Dirichlet function fDir : R→ R, defined by the rule

fDir(x) =
{

1 if x 6∈ Q
0 if x ∈ Q

is NOT integrable over, say, [0, 1]. ⊳ ∀P ∈ Part[0, 1]
... LP fDir = 0,UP fDir = 1, so

L
∫

[0,1] fDir = 0,U
∫

[0,1] fDir = 1. ⊲

4. Any function CONTINUOUS on a cube (that is, in each point of this cube) IS integrable
over this cube. This follows from the LEBESGUE THEOREM below. For n = 1 we obtain
the classic integral of one-dimensional analysis.

The Dirichlet function from example 3 is an example of so called indicator functions:
Definition. The indicator (or characteristic) function of a subset M of a set X is defined
by the rule

χM (x) :=
{

1 if x ∈ M
0 if x 6∈ M

6.3 Criterion of existence of Riemann integral

Let f ∈ Bd(Rn), Q ∈ Cube Rn .

Lemma 6.3.1. ∀P ∈ Part Q
... Lp f ≤ UP f .

⊳ ∀S ∈ Cube P
... infS f ≤ supS f . ⊲

Lemma 6.3.2. If P, P ′ ∈ Part Q and P ′ ≻ P then

LP f ≤ LP ′ f ≤ UP ′ f ≤ UP f.

S’

S

j

⊳ The middle inequality is true by Lemma 6.3.1. Let us prove the
left one. Any cube S of the partition P is built from some cubes
S′1, . . . , S′k of the partition P ′ (k depends on S), and so

vol S = vol S′1 + . . .+ vol S′k;
hence

(inf
S

f ) vol S′ = (inf
S

f )
︸ ︷︷ ︸
≤infS′1 f

vol S′1 + . . .+ (inf
S

f )
︸ ︷︷ ︸
≤infS′k f

vol S′k

If we sum these inequalities over all S ∈ Cube P , we obtain LP f ≤ LP ′ f . The right
inequality may be proved analogically. ⊲
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L U

L  fP

L   fP’’

U  fP’

U   fP’’

Lemma 6.3.3. ∀P, P ′ ∈ Part Q
... LP f ≤ UP ′ f .

⊳ Take a partition P ′′ of Q such that P ′′ ≻ P and P ′′ ≻ P ′. Then

LP f
6.3.2.≤ LP ′′ f

6.3.1.≤ UP ′′ f
6.3.2.≤ UP ′ f. ⊲

Criterion of integrability. A bounded function f : Rn → R is integrable over a cube Q
in Rn if and only if

L U

c

(1)∀ε > 0 ∃P ∈ Part Q : (0 ≤)UP f − LP f︸ ︷︷ ︸
=:△P f

≤ ε.

⊳ 1◦ Let f ∈ IntQ , that is sup L = inf U = c, where

L := {LP f |P ∈ Part Q}, U := {UP f |P ∈ Part Q}.

L   fP’ c U   fP’’

L  fP U  fP

²ε/2 ²ε/2

Let ε > 0 be given. By the definitions of supremum and infimum

(2)∃P ′ ∈ Part Q : c − LP ′ f ≤ ε

2
,

(3)∃P ′′ ∈ Part Q : UP ′′ f − c ≤ ε

2
.

Let P be a refinement both of P ′ and P ′′. Then

UP f − LP f
6.3.2.≤ UP ′′ f − LP ′ f

6.3.1.,6.3.2.≤ ε

2
+ ε

2
= ε. O.K.

2◦ Vice verse, let (1) be true. Then
}

L  f U  fP P

UL

≤ ε

inf U︸︷︷︸
≤UP f

− sup L︸ ︷︷ ︸
≥LP f

≤ UP f − LP f ≤ ε.

Since ε was arbitrary we conclude that inf U− sup L ≤ 0, that is,

inf U ≤ sup L .

But by Lemma 6.3.3.,
inf U ≥ sup L .

Hence,
inf U = sup L,

which means that f ∈ IntQ . ⊲

Remark that the difference UP f −LP f which appears in Criterium, may be written
in the form

1P f = UP f − LP f =
∑

S∈Cube P

(sup
S

f − inf
S

f ) vol S.

This justifies the following
Definition. Let f ∈ BdRn ,M ⊂ Rn . We define the oscillation of the function f on the
set M so:

�M f := (sup
M

f )− (inf
M

f ).

If M = Rn we omit M in the notation.



6.4. NULL SETS 87

Example. � sin = 2.
Thus

1P f =
∑

S∈Cube P

(�S f ) vol S.

Lemma 6.3.4. (on monotony). If P ′ ≻ P then1P ′ f ≤ 1P f .
⊳ It follows at once from Lemma 6.3.2. ⊲

Exercises.
1

0 11/2

A 1.
∫

[0,1]2 χA = 1
2 (not depending on taking A WITH the boundary or

WITHOUT).

2.
∫

[a,b] id
(
=
∫ b

a x dx
)
= 1

2 (b
2 − a2) (do not use Newton-Leibniz formula!).

3. If f, g ∈ IntQ then f + g ∈ IntQ , and
∫

Q( f + g) = ∫Q f + ∫Q g.
[Hint: infS f + infS g ≤ infS( f + g), supS f + supS g ≥ supS( f + g).]

Below we omit for short “if. . . then. . . ”.

4.
∫

Q c f = c
∫

Q f .
5. f ≤ g ⇒

∫
Q f ≤

∫
Q g.

6.
∣∣∣
∫

Q f
∣∣∣ ≤

∫
Q | f |. [Hint: �S| f | ≤ �S f .]

7. f = g on Q\F, #F < ∞ (F is FINITE) ⇒
∫

Q f =
∫

Q g (changing a function on a
finite set does not change the integral).

8. ∀P ∈ Part Q
...
∫

Q f =∑S∈Cube P

∫
S f .

6.4 Null sets

We say that a set N ⊂ Rn is a set of Lebesgue measure zero or a null set if for any ε > 0
there exists (AT MOST) COUNTABLE family {Qi } of cubes in Rn , which covers N and is
such that the sum of the volumes of the cubes is less than ε:

N ∈ Null :⇔ ∀ε > 0 ∃{Qi }i∈N : Qi ∈ Cube Rn,
⋃

i∈N
Qi ⊃ N,

∑

i∈N
vol Qi ≤ ε.

(We can, without loss of generality, assume that the family is just countable, since adding
to our family any countable number of one-point set does not change the sum of volumes.)

In the integration theory null sets are “negligible” in a sense, as we shall see.

Remarks.

1. Emphasize that Qi may have zero volume.
2. A cube Q has POSITIVE volume iff it has the non-empty interior:

vol Q > 0⇔ ◦
Q 6= ∅.

3. We obtain an EQUIVALENT definition if we replace the condition ∪Qi ⊃ N by

⋃

i∈N

◦
Qi ⊃ N.
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(Prove as an EXERCISE. [Hint: for fixed l1, . . . , ln (the lengths of the edges of a cube)
the function t 7→ (l1 + t) . . . (ln + t),R→ R is continuous and strictly increasing
at 0.])

Examples.
1. Any point (that is, a set {x}) is null. ⊳ {x} ∈ Cube Rn, vol{x} = 0. ⊲

2. Any finite set is null.

3. Any countable set is null. ⊳ Numerate the points of our set into a sequence {xi } and
take Qi := {xi}. ⊲

4. Any straight line in R2 is null. ⊳ EXERCISE. ⊲

5. A set in Rn which has an INTERIOR point is NOT null:
◦
M 6= ∅ ⇒ M 6∈ Null. In particular

no cube with positive volume is null; in fact, vol Q > 0⇔ Q 6∈ Null (prove!). (But there
exist NOT-NULL sets (even in R) with the EMPTY INTERIOR, cf. Exam. 6.7 2.)

Lemma 6.4.1. Any subset of a null set is null.
⊳ Obviously. ⊲

Lemma 6.4.2. The union of a countable family of null sets is a null set.
⊳ Let Ni ∈ Null for each i ∈ N, and let ε > 0 be given. Let us write ε = ε1 + ε2 + . . .,
where each εi > 0. For each i there exists a countable family {Qi j } j∈N of cubes, such that

⋃

j

Qi j ⊃ Ni ,
∑

j

vol Qi j ≤ εi .

Then the family {Qi j }i, j∈N (which is countable!) covers
⋃

i Ni and satisfies the inequality
∑

i, j

vol Qi j =
∑

i

(
∑

j

vol Qi j

︸ ︷︷ ︸
≤εi

) ≤
∑

i

εi = ε. ⊲

Lemma 6.4.3. If a null set N in Rn is COMPACT then for any ε > 0 there exists a FINITE

family Q1, . . . , Qk of cubes such that ∪k
i=1 Qi ⊃ N,

∑k
i=1 vol Qi ≤ ε.

⊳ By Remark 3, there exists a countable family {Qi } of cubes such that
⋃

i∈N

◦
Qi ⊃ N,

∑

i∈N
vol Qi ≤ ε.

By compactness of N we can choose a finite subcovering, and this finite family is what
we need. ⊲

Remark 4. The compactness condition in Lemma 6.4.3. is essential (see Exercise 2 below).
Exercises

1. The Cantor set, the intersection of the sequence

0

0

0

1

1

1

1/3� 2/3

1/9 2/9 2/3 7/9 8/9

n=1

n=2

n=3

is a (compact) null set.

2. Let M be the set of rational numbers between 0 and 1, M := Q ∩ [0, 1]. Then M
is NULL as a countable set. Prove that there exists no FINITE family I1, . . . , Ik of
intervals, such that ∪Ii ⊃ M and

∑
length Ii < 1. [Hint: use induction in k.]
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6.5 Oscillation

B (x)
x

M

δ

Let X be a normed space, let M ⊂ X , and let f : X → R be a bounded function. The
oscillation of f on M at a point x ∈ X (usually x ∈ M) is defined by
the formula

ωM f (x) := lim
δ↓0

�Bδ(x)∩M f,

where � is the “global” oscillation, defined in Section 6.3:

�M f = sup
M

f − inf
M

f.

This limit exists since supBδ(x)∩M f ↓ and infBδ(x)∩M f ↑ as δ ↓ 0. If M = X we omit
the index M .

Examples.

1. f = 1 1/2 ; ω f (0) = 1, ω(−∞,0) f (0) = 0, ω[−1,0] f (0) = 1
2 .

2.

f (x) =
{

sin 1
|x | if x 6= 0,

0 if x = 0;
ω f (0) = 2.

Remark. The valueωM f (x) does not change if we replace the norm in X by any equivalent
norm.

Lemma 6.5.1. Let X be a normed space, M ⊂ X, x ∈ M, and let f : X → R be a
bounded function. Then f is continuous at x if and only if the oscillation of f at x is equal
to zero:

f |M ∈ Cont(x)⇔ ωM f (x) = 0.

⊳ ”⇒”: Let f |M is continuous at x . Consider arbitrary ε > 0. By supposed continuity
there exists δ > 0 such that

∀y ∈ Bδ(x) ∩ M
... | f (y)− f (x)| ≤ ε

2 .

Then
sup

Bδ(x)∩M
f ≤ f (x)+ ε

2 , inf
Bδ(x)∩M

f ≥ f (x)− ε
2 ,

whence it follows that
�Bδ(x)∩M f ≤ ε.

Hence
ωM f (x) ≤ ε.
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Since ε was arbitrary we conclude that ωM f (x) = 0.

y x}f(x)
f(y)

B (x)δ

”⇐”: Let ωM f (x) = 0, and let ε > 0 be given. Then there exists δ > 0 such that

(1)�Bδ(x)∩M f ≤ ε.
Hence for each y ∈ Bδ(x) ∩ M it holds

| f (x)− f (y)| obv≤ sup
Bδ(x)∩M

f − inf
Bδ(x)∩M

f
(1)≤ ε,

which means that f |M is continuous at x . ⊲

Lemma 6.5.2. Let X be a normed space, M ⊂ X, and let f : X → R be a bounded
function. Then for any ε > 0 the set

Aε := {x ∈ M|ωM f (x) < ε} (strict inequality!)

is OPEN IN M.
⊳ Let x ∈ Aε. We need to show that there exist δ > 0 such that

B (y)

B (y)

M

x
y

δ

γ

(2)◦
Bδ(x) ∩ M ⊂ Aε.

But indeed (since ωM f (x) < ε) there exist δ > 0 and (0 <)ε′ < ε

such that

(3)�Bδ(x)∩M f ≤ ε′.

Let y ∈ ◦Bδ(x) ∩ M . Obviously there exists γ, 0 < γ ≤ δ, such
that Bγ (y) ⊂ Bδ(x). Then Bγ (y) ∩ M ⊂ Bδ(x) ∩ M , and hence

�Bγ (y)∩M f ≤ �Bδ(x)∩M f
(3)
≤ ε′,

which implies that
ωM f (y) ≤ ε′ < ε.

This means that y ∈ Aε , and (2) is true. ⊲

Let us return in Rn , equipped, say, by the Euclidean norm (‖·‖2).

Lemma 6.5.3. Let Q be a cube in Rn , and let f : Rn → R be a bounded function such
that

∃ε > 0 ∀x ∈ Q
... ωQ f (x) < ε (strict inequality!). (4)

Then there exists a partition P of Q such that
∑

S∈Cube P

(�S f ) vol S < ε vol Q.

⊳ 1◦ Consider arbitrary point x ∈ Q. By (4),

∃δx > 0 : �Bδx (x)∩Q f < ε. (5)

Qx

QB (x)δx

x

Let Qx be a cube with the center at x such that
◦
Qx 6= ∅ and Qx ⊂ Bδx (x). (Such a cube

exists, since ‖·‖∞ ∼ ‖·‖2.) The cubes { ◦Qx} form an open covering
of Q. By compactness of Q, we can choose a finite subcovering,
say

{ ◦Qx1
, . . . ,

◦
Qxk
} (x1, . . . , xk ∈ Q).
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Thus,
◦
Qx1
∪ . . . ∪ ◦Qxk

⊃ Q. Therefore if we put Qi := Qxi ∩ Q, it holds

Q1 ∪ . . . ∪ Qk = Q.

2◦ Obviously each set Qi is a cube, and there exists a partition P of Q such that each cube
S of P is cointained in some Qi , that is,

S ⊂ Qxi ∩ Q ⊂ Bδxi
(xi) ∩ Q.

Q4

Q2

Q1

Q3
Then

�S f ≤ �Bδxi
(xi )∩Q f

(5)
< ε.

Hence,
∑

S∈Cube P

(�S f )︸ ︷︷ ︸
<ε

vol S < ε
∑

S∈Cube P

vol S = ε vol Q. ⊲

6.6 Lebesgue theorem

The following result is fundamental.

Theorem 6.6.1. (Lebesgue). Let Q be a cube in Rn , and let f : Rn → R be a bounded
function. Denote by discontQ f the set of all points where f |Q is not continuous:

discontQ f := {x ∈ Q| f |Q 6∈ Cont(x)}.

Then f is integrable over Q if and only if discontQ f is a null set:

f ∈ IntQ ⇔ discontQ f ∈ Null .

⊳ For short put A := discontQ f , and put for each ε > 0

Aε := {x ∈ Q| ωQ f (x) ≥ ε}.

(This set is COMPLEMENTARY in Q to the set Aε from Lemma 6.5.2. (with M = Q).) We
have

A
Lm 6.5.1.= {x ∈ Q| ωQ f (x) > 0} obv=

∞⋃

k=1

{x ∈ Q| ωQ f (x) ≥ 1
k },

that is,
A =

⋃

k∈N
A1/k. (1)

”⇒” 1◦ Let f ∈ IntQ . We need verify that A ∈ Nul. In view of (1) it is sufficient (by
Lemma 6.4.2.) to show that for each δ > 0

Aδ ∈ Nul . (2)

Let ε be an arbitrary positive number. By (Corollary of) Criterium of integrability (Section
6.3) there exists a partition P of Q such that

∑

S∈Cube P

(�S f ) vol S ≤ ε. (3)



92 CHAPTER 6. RIEMANN INTEGRAL IN Rn

2◦ Denote by N the union of the boundaries of all cubes of P:

N :=
⋃

S∈Cube P

fr S.

Obviously, N ∈ Null; hence there exists a countable (end even finite, since N is compact;
see Lemma 6.4.3.) family {Qi } of cubes in Rn such that

⋃
Qi ⊃ N,

∑
vol Qi ≤ ε. (4)

3◦ Now denote by S the set of all cubes S of P such that at least one INTERIOR point of S
belongs to Aδ:

S := {S ∈ Cube P|◦S ∩ Aδ 6= ∅}. (5)

It is clear that

∀S ∈ S
... �S f ≥ δ (6)

(since for some x ∈ ◦S it holds ω f (x) ≥ δ). Further,

∑
S∈S vol S

(6)
≤

trick

∑
S∈S δ

−1(�S f ) vol S = δ−1 ∑
S∈S(�S f ) vol S

≤
obv

δ−1 ∑
S∈Cube P(�S f ) vol S

(3)≤ εδ−1.

(7)

4◦ The cubes from {Qi } and from S altogether cover Aδ , since each point of Aδ either lies
in N or is interior for some cube S, and

∑
vol Qi +

∑

S∈S
vol S

(4),(7)
≤ ε(1+ δ−1).

But here δ is fixed, and ε is arbitrary. We conclude that (2) is true.
”⇐” 5◦ Let A ∈ Null. We prove that f ∈ IntQ , using the same Criterion. Let ε be

an arbitrary positive number. The set Aε = {x ∈ Q| ωQ f (x) ≥ ε} is null (since Aε ⊂ A)
and is compact (Aε is bounded since Aε ⊂ Q, and Aε is closed since (Aε)c ∩ Q = {x ∈
Q| ωQ f (x) < ε} is open in Q by Lemma 6.5.2., hence Aε is closed in Q and therefore
is closed (since Q is closed!)). By Lemma 6.4.3., there exists a finite number of cubes
Q1, . . . , Qk such that
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Q1 Q2 Q3

Q4

A ε

(8)k⋃

i=1

◦
Qi ⊃ Aε,

(9)k∑

i=1

vol Qi ≤ ε.

6◦ Put

Black := (∪k
i=1 Qi ) ∩ Q

(shadowed on the second picture), and

White := Q\(∪k
i=1

◦
Qi ) (= cl(Q\Black)).

It is clear that

(10)∀x ∈White
... ωQ f (x) < ε

(since White ⊂ (Aε)c).

White

P’

S’

P
S’

Black

7◦ Obviously there exists a partition P ′ of Q such
that each cube S′ of P ′ lies either in White or in
Black.

Put

W := {S′ ∈ Cube P ′| S′ ⊂White},
B := {S′ ∈ Cube P ′| S′ ⊂ Black}.

It is clear from (9) that

(11)
∑

S ′∈B
vol S′ ≤ ε.

8◦ For each S′ ∈ W there exists by Lemma 6.5.3.
(in view of 10)) a partition PS ′ such that

(12)1PS′ f < ε vol S′.

9◦ Finally, there exists a partition P of Q such that

P ≻ P ′

and

∀S′ ∈W
... P|S ′ ≻ PS ′ .

(Here P|S ′ denotes, naturally, the “restriction” of
the partition P to S′.) Let us show that P is what we
need.
10◦ For this end put

(0 ≤)M := �Q f

(M is finite, since f ∈ Bd). It is clear that

∀S ∈ Cube P
... �S f ≤ M. (13)
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11◦ Now,

1P f =
∑

S∈Cube P

(�S f ) vol S =
∑

S ′∈W

∑

S∈Cube P
S⊂S ′

(�S f ) vol S

︸ ︷︷ ︸
1

+
∑

S ′∈B

∑

S∈Cube P
S⊂S ′

(�S f ) vol S.

︸ ︷︷ ︸
2

We have

1 = 1P|S′ f
6.3.4.≤ 1PS′ f

(12)≤ ε vol S′, (14)

2
(13)
≤

∑

S ′∈B

∑

S∈Cube P
S⊂S ′

M vol S = M
∑

S ′∈B

∑

S∈Cube P
S⊂S ′

vol S
obv= M

∑

S ′∈B
vol S′

(11)
≤ Mε (15)

Thus

1P f =
∑

S ′∈W
1 + 2

(14),(15)
≤

∑

S ′∈W
ε vol S′+Mε

obv= ε
∑

S ′∈W
vol S′

︸ ︷︷ ︸
obv≤ vol Q

+Mε ≤ ε(vol Q+M).

But ε was arbitrary small. So by Criterium, f ∈ IntQ . ⊲

Exercises.
1. Let

f (x) =





1
q if x ∈ Q and x = p

q , p, q being
mutually prime integers,

0 ifx 6∈ Q.

Prove that discont f = Q (dense in R!). So f is integrable over any (bounded) interval.

3. Let f : Rn → Rm, f = ( f1, . . . , fm ), Q ∈ Cube(Rn), and let each component
function fi is integrable over Q. Let further g : Rm → R be a CONTINUOUS function.
Prove that the composition g ◦ f

Rn f
K Rm g

K R

is integrable over Q. (In particular the product f1 f2 of two integrable functions is inte-
grable.) [Hint: discont(g ◦ f ) ⊂ ∪m

i=1 Discont fi .]

6.7 Jordan measurable sets

Now we define the integral over ARBITRARY (bounded) set. Let f be a bounded function
on Rn , and let M be a bounded set in Rn . We say that f is integrable over M and we
write f ∈ IntM , if the product χM f (recall that χM denotes the indicator function of M)
is integrable over some cube Q ⊃ M , and in such a case we put

∫

M
f :=

∫

Q
χM f.
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(The result does not depend on the choice of Q, and sometimes we shall drop Q.)
Further we say, that M is Jordan measurable if the constant function 1 is integrable

over M , and we define the volume of M as the corresponding integral:

M ∈ JMeas :⇔ ∃
∫

M
1 =

∫
χM =: vol M.

This definition evidently agrees with our original definition of volume for cubes.

Theorem 6.7.1. A bounded set M in Rn is Jordan measurable iff its boundary is a null
set:

M ∈ JMeas⇔ fr M ∈ Null .

⊳ This follows at once from Lebesgue Theorem, since DiscontχM = fr M . ⊲

Remark. A null set (and even countable!) may be non-Jordan-measurable (Example 1
below); an open set may be non-Jordan-measurable (Example 2). [All the null sets and all
the open ones are LEBESGUE MEASURABLE.]
Example 1. The set Q ∩ [0, 1] is not Jordan measurable. (Cf. Example 1.2 3.)
Example 2. We construct a bounded open set in R by the following procedure. Write

1
2 = ε1 + ε2 + . . . (εi > 0)

(e.g. εi = 2−i−1).
Step 1. Take the interval of the length ε1 with the center common with the center of

the interval [0, 1]:

0 1

ε1

Step 2. Take 2 open intervals, each of the length 1
2ε2 with the centers common, resp.,

with the centers of 2 intervals complementary in [0, 1] to the open interval constructed in
Step 1:

0 1

ε1ε2
1
2
- ε2

1
2
-

Step 3. Take 4 open intervals, each of length 1
4ε3, with the centers common, resp.,

with the centers of 4 intervals complementary in [0, 1] to the open intervals constructed
in Steps 1 and 2:

0 1

ε1ε2
1
2
− ε2

1
2
−ε3

1
4
− ε3

1
4
− ε3

1
4
− ε3

1
4
−

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The union M of all constructed by this procedure open intervals is a (bounded) open
set, which is not Jordan measurable (but is LEBESGUE MEASURABLE, with LEBESGUE

MEASURE 1/2).

Exercises
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1. Prove the assertion of Example 2. [Hint: prove at first that fr M = [0, 1]\M; then
prove by induction in k, that there exists no finite covering of fr M by intervals with
the sum of the lengths < 1/2 (cf. Lemma 6.4.3.).]

2. Any COMPACT null set is Jordan measurable (and its volume is equal to 0.)
3. Prove that

vol M = 0⇒ M ∈ Null

and that if M ∈ JMeas then

vol M = 0⇐ M ∈ Null

4. f ∈ Bd, vol M = 0⇒
∫

M f = 0.
5.

vol M = 0⇔ ∀ε > 0 ∃k ∈ N ∃Q1, . . . , Qk ∈ Cube :
⋃k

i=1 Qi ⊃ M,∑k
i=1 vol Qi ≤ ε

⇔ ∀ε > 0 ∃k ∈ N ∃Q1, . . . , Qk ∈ Cube :
⋃ ◦

Qi ⊃ M,∑k
i=1 vol Qi ≤ ε

6. vol M = 0⇒ vol M̄ = 0. (Remark that M ∈ Null 6⇒ M̄ ∈ Null!)

6.8 Fubini Theorem

This theorem says about possibility to reduce calculation of the integral over a product to
calculation of integrals over the factors.

Theorem 6.8.1. (Fubini). Let A be a cube in Rn , let B be a cube in Rm , and let f :
A × B → R be a (bounded) integrable function. Put for each x ∈ A

l(x) := L
∫

B
f (x, ·), u(x) := U

∫

B
f (x, ·).

Then both the functions l and u are integrable over A, and
∫

A×B
f =

∫

A
l =

∫

A
u.

(Recall that the “x-section” f (x, ·) of f is the function B → R, y 7→ f (x, y).)
⊳ 1◦ Obviously, any partition P of A× B may be written as a pair P = (PA, PB ), where
PA ∈ Part A, PB ∈ Part B . We have

S ∈ Cube P ⇔ S = SA × SB , SA ∈ Cube PA, SB ∈ Cube PB .

2◦ For any P = (PA, PB) ∈ Part(A × B)

LP f =
∑

S∈Cube P

(
inf

S
f

)
vol S =

∑

SA∈Cube PA
SB∈Cube PB

(
inf

SA×SB
f

)
vol(SA × SB)︸ ︷︷ ︸
=vol SA vol SB

=
∑

SA∈Cube PA


 ∑

SB∈Cube PB

(
inf

SA×SB
f

)
vol SB




︸ ︷︷ ︸
1

vol SA.
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3◦ 1 ≤ infSA l. ⊳⊳ ∀x ∈ SA
... infSA×SB f ≤ inf{x}×SB f = infSB f (x, ·). Hence

∀x ∈ SA
... 1 ≤

∑

SB∈Cube PB

(inf
SB

f (x, ·)) vol SB = LPB f (x, ·) ≤ L
∫

B
f (x, ·) = l(x).

We conclude that 1 ≤ infSA l. ⊲⊲

4◦ LP f ≤ LPA l.

⊳⊳ LP f
2◦=

∑

SA∈Cube PA

1 vol SA
3◦≤

∑

SA∈Cube PA

(inf
SA

l) volSA = LPA l. ⊲⊲

5◦ UP f ≥ UPA u.⊳⊳ Analogously. ⊲⊲

6◦ LPA l ≤ UPA u. ⊳⊳ L PA l
l≤u≤ LPA u ≤ UPA u. ⊲⊲

7◦ By 3◦–5◦,
LP f ≤ LPA l ≤ UPA u ≤ UP f.

It follows that

sup
P∈Part(A×B)

LP f

︸ ︷︷ ︸
=
∫

A×B f

≤ sup
PA∈Part(A)

LPA l

︸ ︷︷ ︸
=L

∫
A l

≤ inf
PA∈Part(A)

UPA l
︸ ︷︷ ︸

=U
∫

A l

≤ inf
P∈Part(A×B)

UP f
︸ ︷︷ ︸
=U

∫
A×B f

.

Therefore

L
∫

A
l = U

∫

A
l =

∫

A×B
f,

which means that
∫

A l =
∫

A×B f .
8◦ The other equation may be proved analogously. ⊲

0 0

Dirichlet 
function

Example. Let

f (x, y) =
{

1 if x = 1
2 , y 6∈ Q,

0 otherwise.

Then l = 0, u = χ{1/2}, and
∫

[0,1]2
f =

{∫
[0,1] l =

∫
[0,1] 0∫

[0,1] u =
∫

[0,1] χ{1/2}

}
= 0.

(Remark that f is integrable, though it has a NON-integrable section f (1/2, ·).)
Notations. It is convenient to use the following “classic” notations:
∫

f ≡
∫

f (x, y) dx dy,
∫

f (x, ·) ≡
∫

f (x, y) dy,
∫

f (·, y) ≡
∫

f (x, y) dx

(and analogously for L
∫
,U
∫

). E.g. we use these notations in the corollaries below.

Corollary 6.8.2. (change of the order of integrations).

(∫

A×B
f (x, y) dx dy =

)∫

A
(L
∫

B
f (x, y) dy) dx =

∫

B
(L
∫

A
f (x, y) dx) dy

(and any from two “L” or both of them may be replaced by “U”).
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Corollary 6.8.3. (reduction of a double integral to a repeated one). Let, in the conditions
of Fubini Theorem, for each x ∈ A the function f (x, ·) is integrable. Then

∫

A×B
f (x, y) dxdy =

∫

A

(∫

B
f (x, y) dy

)
dx .

The condition of Corollary 6.8.3. is fulfilled, e.g., for continuous functions (since any
section of a continuous function is also continuous).

In particular, for f ∈ Cont we have (by induction)
∫

[a1,b1]×...×[an,bn]
f ≡

∫ b1

a1

. . .

∫ bn

an

f (x1, . . . , xn) dx1 . . . dxn

=
∫ bn

an

(
. . .

(∫ b1

a1

f (x1, . . . , xn) dx1

)
. . .

)
dxn.



Chapter 7

Partition of unity. Change of
variables

7.1 Smooth indicators

supp f

f

For a function f : Rn → R its support supp f is defined as the closure of the set, where
f is not equal to 0:

supp f := cl{x ∈ Rn | f (x) 6= 0}.

We say that a C∞-function f is a smooth indicator of a set A ⊂ Rn if f |A = 1.

K

G

supp f

Theorem 7.1.1. For any open set G in Rn and any compact set K ⊂ G
there exists a smooth indicator f of K with the support in G:

f |K = 1, supp f ⊂ G.

⊳ 1◦ Theorem is true for n = 1, K = [a, b], g = (c, d).
( ([ [

c a b d
⊳⊳ Step 1.

f1(x) :=
{

e− tg2 x if − π/2 < x < π/2,
0 if not. 0-π/2 π/2

f
1

It is easy to verify that f1 ∈ C∞ and supp f1 = [−π/2, π/2].

Step 2. ∀a < b ∃ f2 ∈ C∞ : f2 ≥ 0, supp f2 = [a, b]. a b

f2

⊳⊳ Put f2 := f1 ◦ l, where l =
π/2

-π/2
a b

⊲⊲

a b

fa,b1
Step 3. ∀a < b ∃ fa,b ∈ C∞ : fa,b ≥ 0, fa,b|(−∞,a] = 0,

fa,b|[b,+∞) = 1.

⊳⊳⊳ fa,b(x) :=
(∫ x

a
f2

)
/

(∫ b

a
f2

)
. ⊲⊲⊲

99
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Step 4. Choose c̃ and d̃ such that c < c̃ < a, b < d̃ < d and put f := fc̃,d − fb,d̃ .

⊳⊳⊳ c a b d

f

c d ⊲⊲⊲ ⊲⊲

2◦ Theorem is true for K = Q1,G =
o
Q2, where Q1, Q2 ∈ Cube(Rn).

⊳⊳ Let Q1 = [a1, b1] × . . . × [an, bn], Q2 = [c1, d1] × . . . × [cn, dn]. By 1◦, for each
i = 1, . . . , n there exists a smooth indicator fi

of [ai , bi ] with supp fi ⊂ (ci , di ). Put

f := f1 ⊗ . . .⊗ fn,

that is,

f (x1, . . . , xn) := f1(x1) · . . . · fn(xn).

It is clear that f is what we need. ⊲⊲

x K

Q’’x
Q’x

3◦ General case. For any x ∈ K there exist cubes Q′x , Q′′x
such that

x ∈
o
Q ′x , Q′x ⊂

o
Q ′′x , Q′′x ⊂ G.

The cubes
o
Q
′
x cover K . By compactness of K , we can

choose a finite subcovering, say
o
Q ′1, . . . ,

o
Q ′k , with the

corresponding “outer” cubes Q′′1, . . . , Q′′k . By 2◦, for each
i = 1, . . . , k there exists a smooth indicator fi of Q′i with

supp fi ⊂
o
Q ′′i . Put

f̃ :=
k∑

i=1

fi .

It is clear that f̃ ∈ C∞, f̃ ≥ 0, f̃ |K ≥ 1, supp f̃ ⊂ G. At last, put

f := f0,1 ◦ f̃ ,

where f0,1 = 0 1

1

(see Step 3 of 1◦). It is obvious that f is what we need. ⊲

7.2 Partition of unity

Let A ⊂ Rn , and let O be an open covering of A (the notation: O ∈ OC(A)). A family8
of C∞-functions Rn → R is called a partition of unity for A submitted to O (the notation:
8 ∈ PU(A, O)), if

1) ∀ϕ ∈ 8 ... 0 ≤ ϕ ≤ 1;
2) ∀x ∈ A ∃U ∈ Nbx such that only FINITE number of functions from 8 are not

identically zero on U (the condition of local finiteness);

3) ∀x ∈ A
...
∑
ϕ∈8 ϕ(x) = 1 (this sum is FINITE, by 2));

4) ∀ϕ ∈ 8 ∃U ∈ O : suppϕ ⊂ U (8 is submitted to O).

Remark. For any COMPACT set K ⊂ A there exists only FINITE number of functionsϕ ∈ 8
such that ϕ|K 6= 0.
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⊳ This follows from 2) and from compactness of K . ⊲

Theorem 7.2.1. For any A ⊂ Rn and any open covering O of A there exists a partition
of unity for A submitted to O.
⊳ Case 1. A is compact. Without loss of generality we can assume that O is FINITE.

Q’’x

Q’x

U x

x

A

1◦ ∀x ∈ A ∃Ux ∈ O ∃Q′x , Q′′x ∈ Cube(Rn) : x ∈
o
Q ′x , Qx ⊂

o
Q

′′
x , Q′′x ⊂ Ux . The cubes

o
Q ′

x cover A. By compactness of A

we can choose a finite subcovering, say
o
Q ′1, . . . ,

o
Q ′k , with the

corresponding outer cubes Q′′1, . . . Q′′k .

By Theorem on smooth indicators applied to Q′i and
o
Q ′′i , for

each i = 1, . . . , k there exists a smooth indicator fi for Q′i with

supp fi ⊂
o
Q ′′i .

2◦ Put on
o
Q ′1 ∪ . . .∪

o
Q ′k =: G

9i := fi

f1 + . . .+ fk
(i = 1, . . . , k). (1)

(Obviously, f1 + . . .+ fk ≥ 1 on G, hence this definition is correct.)
3◦ Once again by Theorem on smooth indicators, applied this time to A and G, there exists
a smooth indicator f0 of A with supp f0 ⊂ G. Put

ϕi :=
{

f0ψi on G,
0 on Gc.

It is clear that ϕ1, . . . , ϕk are just what we need. Indeed,

suppϕi ⊂ supp fi ⊂
o
Q ′′i

1◦⊂ U for some U ∈ O,

and (
k∑

i=1

ϕi

)∣∣∣∣∣
A

=
k∑

i=1


 f0|A︸︷︷︸
=1


 (9i |A) =

(
k∑

i=1

9i

)∣∣∣∣∣
A

(1),
A⊂G= 1.

Case 2. A = ∪∞i=1 Ai , Ai ∈ Comp, Ai ⊂
◦
Ai+1 . Note that in this case A is open (since

A = ∪ ◦Ai ), each set Ki := Ai\
◦
Ai−1 is compact (verify!), each set Gi := ◦Ai+1/Ai−2 is

open, and

A

Gi

K i

Ki ⊂ Gi (see the picture). Put

Oi := {U ∩ Gi |U ∈ O}.
Then Oi is an open covering of Ki , and by Case 1,

there exists a FINITE partition of unity8i for Ki submitted
to Oi . Now put

ψ :=
∞∑

i=1

∑

ϕ∈8i

ϕ.

This definition is correct since each point of A lies in some Gi , and for each i all the
functions from8 j with j ≥ i + 3 have the supports OUTSIDE Gi , so on each Gi our ψ is
the sum of a FINITE number of functions ϕ.
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At last put for each ϕ ∈ ∪∞i=18i

ϕ′ := ϕ

ψ
.

The family of all such ϕ′ is what we need.
Case 3. A is open. Put for i = 1, 2, . . .

AA

fr A

i

Bi

Ui Ui := {x ∈ Rn| dist(x, frA) < 1
i },

Ai = A ∩U c
i ∩ Bi .

Here Bi denotes the ball of radius i with the center
at 0, and dist(x,Y ) denotes the distance from a point
x to a set Y , that is defined by the formula

dist(x,Y ) := inf
y∈Y
‖x − y‖ .

For any fixed set Y the function

̺Y := dist(·,Y )

is continuous (verify!).
We claim that

∀i ... Ai ∈ Comp, Ai ⊂
◦
Ai+1, and A =

∞⋃

i=1

Ai .

⊳⊳ We use the following simple fact from topology: The difference of s set and an OPEN

neighbourhood of its frontier is closed. (Verify!)
By this fact A ∩ U c

i ∈ Cl. Further, Bi is bounded and closed. Hence Ai is bounded
and closed, that is, Ai ∈ Comp. (Note that Ui is open since Ui = ̺−1

frA((− 1
i ,+ 1

i )) and
̺frA is continuous function.) Other relations are obvious. ⊲⊲

Hence we can apply Case 2.
General case. Put G := ∪U∈OU . By Case 3, there exists a partition of unity for G

submitted to O. It is of course also a partition of unity for A. ⊲

7.3 Partition of integral

Now we show that having a partition of unity8 for A we can represent the integral
∫

A f
as a sum of integrals

∫
A ϕ f over ϕ ∈ 8.

Lemma 7.3.1. If A, B are Jordan measurable then

A ∪ B, A ∩ B, A\B, B\A (1)

are also Jordan measurable.
⊳ Recall that a set is Jordan measurable iff its frontier is a null set. Thus frA and frB are
null sets and hence their union also is a null set. But the frontier of each from 4 sets in (1)
lies in frA ∪ frB (verify!) and hence is null. ⊲
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Lemma 7.3.2. If A is a (bounded) Jordan measurable set then for any ε > 0 there exists
a COMPACT Jordan measurable subset K of A such that

vol(A\K ) ≤ ε.

(Note that A\K is Jordan measurable by Lemma 7.3.1.)
⊳ frA is a compact null set, hence by Lemma 1.4.3 there exists a finite number of cubes
Q1, . . . , Qk such that

QK
A i

k⋃

i=1

◦
Qi ⊃ frA,

k∑

i=1

vol Qi ≤ ε.

Put

K := A\
k⋃

i=1

◦
Qi .

This set is bounded (obviously) and closed (as the difference of a set and an OPEN

neigbourhood of its frontier, see the end of the previous section). Hence K is compact.

By Lemma (7.3.1.), K is Jordan measurable (each
◦
Qi is obviously Jordan measurable).

At last, A\A ⊂ ∪Qi , hence

vol(A\K ) ≤
∑

vol Qi ≤ ε. ⊲

Theorem 7.3.3. Let A be a (bounded) Jordan measurable set, and let f be a (bounded)
function integrable over A. Let O be an open covering of A by Jordan measurable sets,
and let 8 be a partition of unity for A submitted to O. Then

∫

A
f =

∑

ϕ∈8

∫

A
ϕ f, (2)

where the series converges ABSOLUTELY.
(Recall that a series

∑
ϕ∈8 aϕ (aϕ ∈ R) converges absolutely to s if for any ε > 0

there exists a FINITE set 80 ⊂ 8 such that for each FINITE set 8′, satisfying the condition
80 ⊂ 8′ ⊂ 8, it holds ∣∣∣∣∣∣

s −
∑

φ∈8′
aφ

∣∣∣∣∣∣
≤ ε.

In such a case the series
∑
φ∈8 |aφ| also (absolutely) converges.)

⊳ Consider an arbitrary ε > 0. By Lemma 7.3.2., there exists a compact Jordan measurable
set K ⊂ A such that

vol(A\K ) ≤ ε. (3)

By Remark to the definition of a partition of unity, the set 80 of all functions ϕ from 8

such that ϕ|K 6= 0, is FINITE. For any finite 8′ such that 80 ⊂ 8′ ⊂ 8 it holds
∣∣∣∣∣∣

∫

A
−
∑

ϕ∈8′

∫

A
ϕ f

∣∣∣∣∣∣

sum is
finite=

∣∣∣∣∣∣

∫

A


 f −

∑

ϕ∈8′
ϕ f



∣∣∣∣∣∣
≤
∫

A

∣∣∣∣∣∣
f


1−

∑

ϕ∈8′
ϕ



∣∣∣∣∣∣
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∑
ϕ∈8′ ϕ|A=1
≤ sup

A
| f |

︸ ︷︷ ︸
=:M

∫

A


∑

ϕ∈8
ϕ −

∑

ϕ∈8′
ϕ


 = M

∫

A

∑

ϕ∈8\8′
ϕ

=
ϕ∈8\8′
⇒ϕ|K=0

M
∫

A\K

∑

ϕ∈8\8′
ϕ

︸ ︷︷ ︸
≤1

≤ M
∫

A\K
1 = M vol(A\K )

(3)
≥ Mε.

Since ε was arbitrary we conclude that (2) is true. ⊲

Remark. 1. Since
∑
ϕ∈8 ϕ|A = 1, we can rewrite (2) so:

∫

A

∑

ϕ∈8
ϕ f =

∑

ϕ∈8

∫

A
ϕ f,

that is, we can change
∫

and
∑

with places.
Remark. One can use (2) to EXTEND the definition of

∫
A f to non-Jordan-measurable

or/and non-bounded sets A and non-bounded functions f . But we shall not need such an
extension below.

7.4 Change of variables

The following result is a generalization of the known rule of classic analysis concerning
a change of a variable in an integral.

By a change of variables in Rn we mean a (C1-)diffeomorphism g of an open set
G ⊂ Rn onto an open set H ⊂ Rn , that is, a C1-bijection G → H such that the inverse
mapping g−1 : H → G is also of class C1.

Since any C1-mapping is continuous, both g and g−1 are continuous, thus g is a
homeomorphism.

Remember: any (C1-)diffeomorphism is a homeomorphism.
Since g1 ◦ g = id and g ◦ g−1 = id, it follows by Chain Rule that for any x ∈ G and

for y := g(x)

(g−1)′(y) ◦ g′(x) = id, g′(x) ◦ (g−1)′(y) = id .

Hence (remember!)

∀x ∈ G
... g′(x) ∈ Iso(Rn) (⇔ det g′(x) 6= 0).

Theorem 7.4.1. Let g : G → H (G, H ⊂ Rn) be a (C1-)diffeomorphism. Then for any
integrable function f : H → R it holds (below we prefer write g(G) instead of H )

G
g
K H

f
K R

∫

g(G)
f =

∫

G
| f ◦ g| det g′|. (1)

⊳ I. PRELIMINARIES. 1◦ This theorem is true for integrals in the extended sense mentioned
in last Remark. But we shall prove this theorem only for our ”old” notion of the integral,
and by this reason we shall suppose that our sets G and H are bounded and G is Jordan
measurable. (It follows from (1) with f = 1 that H must then also be Jordan measurable.
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2◦ We say that a Jordan measurable set A ⊂ G is nice for a diffeomorphism g and we
write

A ∈ Nice(g),

if for any (bounded) integrable function f (on H )

∫

g(A)
=
∫

A
( f ◦ g)| det g′|. (2)

It follows from (2) with f = 1 that g(A) is then also to be Jordan measurable. Thus our
aim is to prove that G is nice for g.

A
h k

R
f

h(A) k(h(A))
II. CONDITIONAL PART.

1◦ A ∈ Nice(h), h(A) ∈ Nice(k) ⇒ A ∈
Nice(k ◦ h).

⊳⊳ For any f integrable on k(h(A)) it holds
∫

k(h(A))
f =

∫

h(A)
( f ◦ k)| det k ′| =

∫

A
((( f ◦ k)| det k ′|) ◦ h)| det h′|

(ϕψ)◦γ=
(ϕ◦γ )(ψ◦γ )=

∫

A
( f ◦ k ◦ h)| det(k ′ ◦ h)|| det h′|

det(B◦C)=
(det B)(det C)=

∫

A
( f ◦ k ◦ h)| det ((k ′ ◦ h) ◦ h′)︸ ︷︷ ︸

Ch.rule= (k◦h)′

|. ⊲⊲

2◦ If an open Jordan measurable set A admits an open covering O by sets each of which
is a subset of A and is nice for a diffeomorphism g then A itself is nice for g.
⊳⊳ For any set S ⊂ G put for short

S̃ := g(S).

Since g is a homeomorphism, the sets Ũ with U ∈ O form an open covering of Ã; note
that each Ũ is Jordan measurable, for U is nice (see I, 2◦). Denote this covering by Õ .
By Theorem 2.2 there exists a partition of unity 8 for A submitted to O. For any ϕ ∈ 8
put ϕ̃ := ϕ ◦ g−1 (so that ϕ = ϕ̃ ◦ g). It is clear that the functions ϕ̃ with ϕ ∈ 8, form
a partition of unity for Ã submitted to Õ . Denote this partition by 8̃. We have for any
integrable function f

U

A

g g
supp ϕ-1

U

A

supp ϕ=supp ϕ

∫

g(A)
f

7.3.3.=
∑

ϕ̃∈8̃

∫

Ã
f ϕ̃

∃Ũ∈Õ
supp ϕ̃⊂Ũ=

∑

ϕ̃∈8̃

∫

Ũ
f ϕ̃

U∈Nice(g)=
∑

ϕ̃∈8̃

∫

U
(( f ϕ̃) ◦ g)︸ ︷︷ ︸
=( f ◦g) (ϕ̃ ◦ g)︸ ︷︷ ︸

=ϕ

| det g′|

supp⊂U=
∑

ϕ∈8

∫

A
(( f ◦ g)| det g′|)ϕ 7.3.3.=

∫

A
( f ◦ g)| det g′|. ⊲⊲
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3◦ Let Q be a cube in g(G). If for any cube S ⊂ Q
∫

S
1 =

∫

g−1(S)
| det g′| (3)

(that is, (2) is true for g−1(S) and f = 1), then both pre-images g−1(Q) and g−1(
◦
Q) are

nice for g.
⊳⊳ a) The pre-image for any cube S ⊂ Q with vol S = 0 also has zero volume.
⊳⊳⊳

0 =
∫

S
1
(3)=
∫

g−1(S)
| det g′|︸ ︷︷ ︸
≥m

(∗)
> 0

≥ m
∫

g−1(S)
1

m>0⇒
∫

g−1(S)
1 = 0.

(∗): | det g′| is a continuous function on the compact g−1(S) which is nowhere 0. ⊲⊲⊲

b) For any cube S ⊂ Q and any bounded function f on G

∫

fr g−1(S)
f = 0.

⊳⊳⊳ fr g−1(S)
g∈Homeo= g−1(fr S). Since fr S is a finite union of cubes with zero volume

it follows by a) that fr g−1(S) is a finite union of zero volume sets and hence has itself
zero volume. But the integral of bounded function over a volume 0 set is equal to 0. ⊲⊲⊲

c) For any integrable function f on Q it holds

∀P ∈ Part(Q)
... L P f =

∑

S∈Cube P

(inf
S

f ) vol S︸︷︷︸
=∫S 1

(3)=
∑

S∈Cube P

∫

g−1(S)
(inf

S
f )

︸ ︷︷ ︸
≤( f ◦g)|g−1(S)

| det g′|
b)
≤
∫

g−1(Q)
( f ◦ g)| det g′|.

It follows that
∫

Q f ≤
∫

g−1(Q)( f ◦ g)| det g′|. Analogously we conclude that the inverse

inequality is true (consider UP f ). Hence
∫

Q f =
∫

g−1(Q)( f ◦g)| det g′|. By b) we conclude

that also
∫
◦
Q

f =
∫

g−1(
◦
Q )
( f ◦ g)| det g′|. ⊲⊲

III. ABSOLUTE PART. 1◦ For any permutation σ ∈ Sn , each Jordan measurable set
A ⊂ Rn is nice for sσ , where

sσ (x1, . . . , xn) := (xσ(1), . . . , xσ(n)).

sσ

(It is clear that sσ is a linear bijection Rn → Rn

and hence is a diffeomorphism.)
⊳⊳ The matrix of sσ has evidently the determi-

nant equal ±1, so

∫

A
( f ◦ sσ ) | det s′σ |︸ ︷︷ ︸

=1

=
∫

A
f ◦ sσ =

∫

A
f (xσ(1), . . . , xσ(n)) dx1 . . . dxn
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change the order of integrations
by Fubini Theorem=

∫

sσ (A)
f (y1, . . . , yn) dy1 . . . , dyn =

∫

sσ (A)
f. ⊲⊲

2◦ Theorem is true for n = 1.
⊳⊳ For any [α, β] ⊂ g(G)(⊂ R) it holds

∫

[α,β]
1

obv= β − α
Newton−
Leibniz=

∫ g−1(β)

g−1(α)

g′
consider two possible

cases: g′>0,g′<0=
∫

g−1([α,β])
|g′|.

Hence by II, 3◦ the pre-image of any open interval in g(G) is nice for g. Since these
pre-images (which are open intervals) cover G we conclude by II, 2◦ that G is nice for g.
3◦ Now argue by induction. Let Theorem is true for n − 1.
4◦ For any point x̂ ∈ G there exists an open neigbourhood Ux̂ such that

g|Ux̂ = k ◦ h ◦ sσ , (4)

where σ ∈ Sn , and k and h are diffeomorphism, each of which DOES NOT CHANGE AT

LEAST ONE COORDINATE.
⊳⊳ 5◦ We have, putting g =: (g1, . . . , gn),

det g′(x̂) =

∣∣∣∣∣∣∣∣∣

∂g1
∂x1

. . .
∂g1
∂xn

...
. . .

...
∂gn
∂x1

. . .
∂gn
∂xn

∣∣∣∣∣∣∣∣∣
x̂

(∗)=
(
∂gn

∂x1
Mn1 + . . .+

∂gn

∂xn
Mnn

)∣∣∣∣
x̂
.

(∗): decomposition of the determinant corresponding to the last row.
Since det g′(x̂) 6= 0, we have

∂gn

∂xi

∣∣∣∣
x̂
6= 0, Mni |x̂ 6= 0 for some i.

Take as σ the TRANSPOSITION of i and n. Then g ◦ sσ =: g̃ satisfies the conditions

∂ g̃

∂xn

∣∣∣∣
s−1
σ (x̂)
6= 0, M̃nn

∣∣
s−1
σ (x̂) 6= 0.

If we decompose ĝ into the composition of diffeomorphisms h and k as above, we obtain
the diserable decomposition (4), since g̃ ◦ sσ = g ◦ sσ ◦ sσ︸ ︷︷ ︸

=id

= g.

x

h

k

g

(x ,...,x   )1 n-1

n
Thus without loss of generality we can assume that
i = n, so that

(5)∂gn

∂xn

∣∣∣∣
x̂
6= 0, Mnn |x̂ 6= 0.

6◦ Put

(6)h(x) := (g1(x), . . . , gn−1(x), xn),

so that h DOES NOT CHANGE THE LAST COORDINATE.
We have
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det h′|x̂ =

∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂x1

. . .
∂g1
∂xn−1

∂g1
∂xn

... . . .
...

...
∂gn−1
∂x1

. . .
∂gn−1
∂xn−1

∂gn−1
∂xn

0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣
x̂

= Mnn |x̂
(5)
6= 0.

By Inverse Function Theorem, there exists an open neighbourhood Ux̂ of x̂ such that

h|Ux̂ ∈ Diffeo .

7◦ Now put
k := g ◦ h−1 (7)

(k is a diffeomorphism as a composition of two diffeomorphisms). This k DOES NOT

CHANGE THE FIRST n − 1 COORDINATES. Indeed, if x = (x1, . . . , xn) and h(x) =
(y1, . . . , yn), then, by (6), y1 = g1(x), . . . , yn−1 = gn−1(x), yn = xn , so

k(y1, . . . , yn)
(7)= g(x) = (g1(x), . . . , gn(x)) = (y1, . . . , yn−1, gn(x)). ⊲⊲

8◦ Ux̂ ∈ Nice(h).

z z

h

y y

Q2

Q1

Q

⊳⊳ For short put x = (x1, . . . , xn−1︸ ︷︷ ︸
=:y

, xn︸︷︷︸
=:z

) = (y, z),

h(y, z) =: (a(y, z), z). For any cube Q = Q1 × Q2 in
h(Ux̂ ) it holds

∫

Q
1

Fubini
Theorem=

∫

Q2

dz
∫

Q1

dy
3◦=
∫

Q2

dz
∫

(a(·,z)−1)(Q1)

| det (a(·, z))′︸ ︷︷ ︸
=∂h/∂y

|

det h′=
∣∣∣∣
∂h/∂y ∂h/∂z

0 1

∣∣∣∣=det ∂h/∂y

=
∫

Q2

dz
∫

(a(·,z)−1)(Q1)

| det h′|
Fubini

Theorem=
∫

h−1(Q)
| det h′|.

By II, 3◦ we conclude that for any cube Q ⊂ h(Ux̂ )we have h−1(
◦
Q) ∈ Nice(h). But such

the pre-images cover Ux̂ , so, by II, 2◦, Ux̂ is nice for h. ⊲⊲

9◦ h(Ux̂ )Nice(k). ⊳⊳ Quite analogously. ⊲⊲

10◦ Ux̂ ∈ Nice(g). ⊳⊳ This follows from (4), 1◦, 5◦, 6◦ and II, 1◦. ⊲⊲

11◦ G ∈ Nice(g) ⊳⊳ This follows II, 2◦, since the neighbourhoods Ux̂ , x̂ ∈ G, cover G
and are nice for g, by 7◦. ⊲⊲ ⊲

Corollary 7.4.2. Let g be a diffeomorphism of an open set G ⊂ Rn onto an open set
H ⊂ Rn , and let A ⊂ G. If vol A = 0 then vol g(A) = 0.
⊳ Exercise. ⊲

NB If g is merely a homeomorphism then vol A = 0 6⇒ vol g(A) = 0. (A counter-example
can be constructed using two Cantor type sets, the usual one, with zero volume, and a
modification, with a positive Lebesgue measure)



Chapter 8

Differential forms

8.1 Tensors

By tensor of rank k (or k-tensor), k = 1, 2, . . ., on a vector space X we mean a k-LINEAR

functional
u : X × . . .× X︸ ︷︷ ︸

k−times

→ R.

The set of all k-tensors on X we denote by Lk(X):

Lk(X) := L(X × . . .× X︸ ︷︷ ︸
k

;R).

It is convenient to put
L0(X) = R.

Notations. Our main special case is X = Rn , with points x = (x1, . . . , xn). We denote
by e1, . . . , en the canonical basis in Rn :

ei := (0, . . . , 0, 1
[i]
, 0, . . . , 0),

and by πi the canonical projections in Rn:

πi x := xi .

It is clear that

πi e j = δi j :=
{

1 if i = j ,
0 if not.

(1)

Examples.

1. L1(X) = L(X,R) =: X ′ (the dual vector space); 1-tensors are oft called covectors.

2. For a smooth function f : Rn → R

f (k)(x) ∈ Lk
sym(R

n) ⊂ Lk(Rn),

where Lk
sym(X) denotes the set of all SYMMETRIC k-linear functionals.

109
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3. For any A ∈ L(Rn,Rn) we can define a 2-tensor u A by the formula

u A(h, k) := 〈Ah, k〉,

where 〈·, ·〉 denotes the scalar product in Rn . (The correspondence A 7→ u A is a bijection
L(Rn,Rn)→ L2(Rn)).

4. (Elasticity theory.) Let f (x) denotes the position of a point x of a (3-dimensional) body
after a deformation. The 2-tensor generated (in the sense of previous Example) by the
operator

1
2 ( f ′(x)+ f ′(x)T )− id

(here f ′(x) ∈ L(R3,R3); the symbol T denotes the transposed matrix; we identify linear
operators in Rn with their matrices ) is called deformation tensor.

F
→ν→

The 2-tensor generated by the operator Eν 7→ EF , where Eν is the unit normal vector to some
flat section of the body, and EF is the force that acts “on 1 cm2” of
the surphace of that graf of our persected body for which Eν is OUTER

normal vector, is called the stress tensor. The known Hook law says
that the stress tensor at a point linearly depend on the deformation
tensor at this point. The corresponding matrix describes the elasticity
properties of our body at the point in question.

5. The determinat can be considered as a tensor:

det(h1, . . . , hn) :=

∣∣∣∣∣∣

h11 . . . h1n

. . . . . . . . .

hn1 . . . hnn

∣∣∣∣∣∣

(where hi = (hi1, . . . , hin) ∈ Rn).
The main operations over tensors are TENSOR PRODUCT and PULL-BACK.

Tensor product
Let u ∈ Lp(X), v ∈ Lq(X), p, q ≥ 1. The tensor product u ⊗ v is defined by the formula

u ⊗ v(h1, . . . , h p+q ) := u(h1, . . . , h p)︸ ︷︷ ︸
∈R

· v(h p+1, . . . , h p+q)︸ ︷︷ ︸
∈R

.

It is clear that u ⊗ v ∈ Lp+q(X).
For t ∈ L0(X) = R it is convenient to put

t ⊗ u := tu.

NB In general u ⊗ v 6= v ⊗ u.

Example. In Rn , πi ⊗ π j corresponds (in the sense of Example 3) above) to the operator
A with the matrix with just one non-zero element which is equal to 1:




0
... 0

. . . 1 . . .

0
... 0




[i]

[ j ]

⊳ (πi ⊗ π j )(h, k) = (πi h) · (π j k) = hi k j = 〈Ah, k〉. ⊲
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Theorem 8.1.1. The operation⊗ is distributive and associative:

(u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v, u ⊗ (v1 + v2) = u ⊗ v1 + u ⊗ v2,

t (u ⊗ v) = (tu)⊗ v = u ⊗ (tv), (u ⊗ v)⊗ w = u ⊗ (v ⊗ w).

⊳ Easy exercise. ⊲

Theorem 8.1.2. (on basis of Lk(Rn)) For any k = 1, 2, . . . the products πi1 ⊗ . . .⊗ πik
(i j ∈ {1, . . . , n}) form a basis of the vector space Lk(Rn). Hence,

dim Lk(Rn) = nk .

⊳ 1◦ let u ∈ Lk(Rn). Then

u(h1, . . . , hk) = u




n∑

i1=1

h1i1 ei1 , . . . ,

n∑

ik=1

hkik eik




u∈Lk

=
n∑

i1,...,ik=1

h1i1 . . . hkik︸ ︷︷ ︸
=(πi1⊗...⊗πik )(h1,...,hk)

u(ei1 , . . . , eik )︸ ︷︷ ︸
=:ai1 ...ik

=




n∑

i1,...,ik=1

ai1...tkπi1 ⊗ . . .⊗ πik


 (h1, . . . , hk).

Hence,

u =
n∑

i1,...,ik=1

πi1 ⊗ . . .⊗ πik ,

that is, our products span Lk(Rn).
2◦ They are linearly independent. Indeed, let

u =
n∑

i1,...,ik=1

ai1...ikπi1 ⊗ . . .⊗ πik = 0

Applying this to (ei ′1
, . . . , ei ′k

), we obtain, by (1),

ai ′1...i
′
k
= 0. ⊲

Pull-back

X
l

K Y

Lk(X)
l∗

L Lk(Y )

Let X,Y be a vector spaces, and let l ∈ L(X,Y ). For any v ∈ Lk(Y ) we define the
pull-back l∗v of v, putting

(l∗v)(h1, . . . , hk) := v(lh1, . . . , lhk).

It is clear that

l∗v ∈ Lk(X).

So we “pull” the tensor v “back” to X .
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R
l∗y ′ ր տ y ′

X
l

K Y

X ′
l∗

L Y ′

Example. For k = 1 we obtain the operator l∗ : Y ′ → X ′

which act so:

l∗y ′ = y ′ ◦ l.

⊳ (l∗y ′)h = y ′(lh) = (y ′ ◦ l)h. ⊲

This operator between the DUAL spaces is called the dual operator to l. Note that l∗

act in the OPPOSITE direction.

Theorem 8.1.3. Pull-back RESPECTS tensor product:

f ∗(u ⊗ v) = ( f ∗u)⊗ ( f ∗v).

⊳ Easy exercise. ⊲

8.2 Asymmetric tensors

A tensor u ∈ Lk(X) (k ≥ 2) is called antisymmetric if it has value 0 at any point
(h1, . . . , hk) which has two equal components. The set of all antisymmetric tensors we
denote by 3k(X). Thus,

u ∈ 3k(X) :⇔ u(. . . , h, . . . , h, . . .) = 0.

It is convenient to put
31(X) := L1(X)(= X ′),

30(X) := L0(X)(= R).

Remark. An equivalent description is such: a tensor is antisymmetric iff it changes the
sign by any transposition of its arguments:

u ∈ 3k(X)⇔ u(. . . , h, . . . , k, . . .) = −u(. . . , k, . . . , h, . . .)

(all others arguments remain unchanged).
⊳ “⇒”: u(. . . , h + k, . . . , h + k, . . .)︸ ︷︷ ︸

=0

= u(. . . , h, . . . , h, . . .)︸ ︷︷ ︸
=0

+u(. . . , h, . . . , k, . . .)+

u(. . . , k, . . . , h, . . .)+ u(. . . , k, . . . , k, . . .)︸ ︷︷ ︸
=0

,

hence u(. . . , h, . . . , k, . . .)+ u(. . . , k, . . . , h, . . .) = 0.
“⇐”: u(. . . , h, . . . , h, . . .) = −u(. . . , h, . . . , h, . . .), hence u(. . . , h, . . . , h, . . .) = 0. ⊲

Examples.

1. det.

2. Let A ∈ L(Rn,Rn), and let u A be the corresponding 2-tensor. Then

u A ∈ 32(Rn)⇔ AT = −A.

(We identify A with the corresponding matrix.) ⊳ Exercise. ⊲ Operators A satisfying the
condition AT = −A, are also called antisymmetric. A typical example is rotation by 90◦ in

R2, e.g. counter-clock-wise, with the matrix

(
0 −1
1 0

)
. The corresponding antisymmetric

tensor is just det.
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⊳ u A(h, k) = 〈Ah, k〉 = (k1, k2)

(
0 −1
1 0

)(
h1
h2

)
= h1k2 − h2k1 = det(h, k). ⊲

Thus, (
0 −1
1 0

)
←→ det .

Operator alt

From any tensor we can make an antisymmetric one. Viz., put for u ∈ Lk(X)

(alt u)(h1, . . . , hk) := 1

k!

∑

σ∈Sk

(sgn σ)u(hσ(1), . . . , hσ(k)).

(In the sum the signs alternate (+,−,+,−, . . .), whence the notation.)
Recall that sgn σ denotes the sign of a permutation. It is clear that alt u is a k-tensor.

Examples.

1. alt〈·, ·〉 = 0. (Recall that 〈·, ·〉 denotes the scalar product, which is a symmetric 2-tensor.)
More generally, alt sends ANY symmetric tensor to 0:

u ∈ Sym⇒ alt u = 0.

NB The inverse implication is not true! See Exercise 8.2.2. 3) below.

2. If u ↔ A (that is u = u A), then alt u ↔ 1
2 (A − AT ). (Verify!)

Theorem 8.2.1. The operator alt has the following properties:

a) alt ∈ L(Lk(X),3k(X)), that is, alt u is an antisymmetric tensor, and the mapping
u 7→ alt u is linear;

b) u ∈ 3k ⇒ alt u = u, that is, 3k is INVARIANT under alt;
c) alt2 = alt, that is, alt is an IDEMPOTENT operator; (alt2 u := alt(alt u));

d) alt u = 0⇒ ∀v
... alt(u ⊗ v) = 0 (“bad sheep principle”: one bad sheep spoils all

the crew).

⊳ a) The sum defining (alt u)(. . . , h, . . . , h . . .) can be splitted onto pairs of the form

+u(. . . , h, . . . , h . . .)− u(. . . , h, . . . , h . . .),

where our two h appear on one and the same pair of places (different for different
pairs). Hence the sum is equal to 0.

b) ∀u ∈ 3k
...

alt u(h1, . . . , hk) =
1

k!

∑

σ∈Sk

(sgn σ) u(hσ(1), . . . , hσ(k))︸ ︷︷ ︸
=(sgnσ)u(h1,...,hk)

= 1

k!
(k!u(h1, . . . , hk)) = u(h1, . . . , hk).

c) By a), alt u ∈ 3k , hence

alt(alt u)
b)= alt u.
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d) (alt(u ⊗ v))h1 . . . h p+q

= 1

(p + q)!

∑

σ∈Sp+q

(sgn σ)(uhσ(1), . . . , hσ(p))(vhσ(p+1), . . . , hσ(p+q)).

If, for a fixed σ0 we consider all the σ such that

{σ(1), . . . , σ (p)} = {σ0(1), . . . , σ0(p)} (as NON-ORDED set!),

σ(p + 1) = σ0(p + 1), . . . , σ (p + q) = σ0(p + q),

then the sum over all such such σ is equal to 0, since alt u = 0. But the whole sum
splits onto such subsums. ⊲

Exercise 8.2.2. 1) alt ◦ sym = 0.
2) sym ◦ alt = 0.
3) Give an example of u ∈ L3(R3) such that u 6= 0, sym u = alt u = 0.
NB Such an u is not the sum of its symmetric part sym u and antisymmetric part alt u.
Only 2-tensors have this property.

Answer:

uei e j ek =





2
3 if (i, j, k) = (1, 2, 3),

− 1
3 if (i, j, k) = (3, 2, 1),
0 otherwise.

Using the operation alt, we can make from tensor product an operation over antisy-
mmetric tensors.

Exterior product
For u ∈ 3p(X) (p ≥ 1), v ∈ 3q (X) (q ≥ 1), the exerior product u ∧ v is defined by the
formula

u ∧ v := (p + q)!

p! q!
alt(u ⊗ v).

Remarks. 1) u ⊗ v itself is not in general antisymmetric (give an example!).
2) The coefficient in this formula is chosen to obtain the coefficient 1 in the formula (1)
below.

Example. In R2, π1 ∧ π2 = det. ⊳ (π1 ⊗ π2)(h, k) = π1h · π2k = h1k2; hence (π1 ∧
π2)(h, k) = (1+1)!/(1! 1!) alt(π1⊗π2)(h, k) = 2( 1

2 (π1⊗π2)(h, k)− 1
2 (π1⊗π2)(k, h)) =

h1k2 − k1h2 = det(h, k). ⊲

Exercise 8.2.3. Prove that for u ∈ 3p, u ∈ 3q

(u ∧ v)h1 . . . h p+q =
∑

σ∈Sp+q

σ(1)<σ(2)<...<σ(p)

σ (p+1)<...<σ(p+q)

(sgn σ)(uhσ(1) . . . hσ(p))(vhσ(p+1) . . . hσ(p+q)) (1)

Theorem 8.2.4. The operation ∧ has the following properties:

a) (u1 + u2) ∧ v = u1 ∧ v + u2 ∧ v, u ∧ (v1 + v2) = u ∧ v1 + u ∧ v2,
t (u ∧ v) = (tu) ∧ v = u ∧ (tv) t ∈ R (distributivity);

b) u ∧ v = (−1)pqv ∧ u (u ∈ 3p, v ∈ 3q ) (“semi-commutativity”);
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c) (u ∧ v)∧w = u ∧ (v ∧w) = (p+ q + r)!/(p!q!r !) alt(u ⊗ v⊗w) =: u ∧ v ∧w
(u ∈ 3p, v ∈ 3q , w ∈ 3r ) (associativity);

d) f ∗(u ∧ v) = ( f ∗u) ∧ ( f ∗v) (pull-back RESPECTS exterior product).

⊳ a) Obvious.
b) Consider the permutation

σ0 =
(

1 . . . p p + 1 . . . p + q
1+ q . . . p + q 1 . . . q

)

It is clear that sgn σ0 = (−1)pq (1 is transposed q times, then 2 is transposed q
times, . . . p is transposed q times).
Each permutation σ ∈ Sp+q can be written an the form σ = σ ′ ◦ σ0. Then

σ(p+1) = σ ′(σ0(p+1)) = σ ′(1), . . . , σ (1) = σ ′(σ0(q+1)) = σ ′(q+1), . . . (2)

and
sgn σ = (sgn σ ′)(sgn σ0) = (−1)pq sgn σ ′. (3)

Hence

(u ∧ v)(h1, . . . , h p+q ) =
(p + q)!

p! q!︸ ︷︷ ︸
=:c

alt(u ⊗ v)(h1, . . . , h p+q )

= c

(p + q)!

∑

σ∈Sp+q

(sgn σ)u(hσ(1),...,hσ(p))v(hσ(p+1), . . . , hσ(p+q))

σ=σ ′◦σ0
(2),(3)
= c

(p + q)!

∑

σ ′∈Sp+q

(−1)pq(sgn σ ′)(hσ ′(q+1), . . . , hσ ′(q+p))v(hσ ′(1), . . . , hσ ′(q))

= (−1)pqc alt(v ⊗ u)(h1, . . . , h p+q ) = (−1)pq(u ∧ v)(h1, . . . , h p+q).

c) To verify that

(u ∧ v) ∧w = (p + q + r)!

p! q! r !
alt(u ⊗ v ⊗w)

we need (after canceling constant factor) to verify that

alt((alt(u ⊗ v))⊗ v)︸ ︷︷ ︸
[1]

= alt(u ⊗ v ⊗ w)︸ ︷︷ ︸
[2]

.

But [1]−[2]
alt∈L= alt((alt(u⊗v))⊗w−u⊗v⊗w) distr.= alt((alt(u ⊗ v)− u ⊗ v)︸ ︷︷ ︸

[3]

⊗w)

bad Sheep Priciple= 0, since alt[3]
alt∈L= alt2(u ⊗ v)− alt(u ⊗ v) alt2=alt= 0.

d) Easy exercise. ⊲

Corollary 8.2.5. For any antisymmetric tensor of ODD rank its exterior product by itself
is equal to 0.

⊳ If u ∈ 3k , k ∈ Odd, then u ∧ u
b)= (−1)k

2

︸ ︷︷ ︸
=−1

, whence 2(u ∧ u) = 0. ⊲
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Basis of 3k(Rn)

Theorem 8.2.6. For any 1 ≤ k ≤ n the set {πi1 ∧ . . . ∧ πik | i1 < . . . < ik} is a basis of
the vector space 3k(Rn). hence

dim3k(Rn) =
(

n

k

)
:= n!

k!(n − k)!
.

⊳ By Theorem on basis of Lk(Rn), we can write any u ∈ 3k(Rn) as a linear combination
of πi1 ⊗ . . .⊗ πik :

u :=
n∑

i1,...,ik=1

. . . πi1 ⊗ . . .⊗ πik (4)

(the first dots mean a number coefficient). It follows that

u
Th 8.2.1.= alt u

(4)= alt
∑

. . . πi1 ⊗ . . .⊗ πik
alt∈L=

∑
. . . alt(πi1 ⊗ . . .⊗ πik )

Th 8.2.4.=
∑

. . . πi1 ∧ . . .∧ . . . πik
Th 8.2.4.,b),cor.=

∑

i1<...<ik

. . . πi1 ∧ πik .

Thus, our set spans3k(Rn). The linear independence can be proved just as in the case
of Lk(Rn). ⊲

Corollary 8.2.7. The space 3n(Rn) is 1-dimensional. Hence (since det ∈ 3n(Rn)) any
element of 3n(Rn) has the form

c det (c ∈ R).

Corollary 8.2.8. In Rn ,
π1 ∧ . . . ∧ πn = det .

⊳ By Corollary 8.2.7., π1 ∧ . . . ∧ πn = c det. Applying both sides to (e1, . . . , en) and
taking into account that πi e j = δi j , we conclude that c = 1. ⊲

Corollary 8.2.9. For k > n
3k(Rn) = {0}.

⊳ This follows from the PROOF of Theorem 8.2.6. ⊲

Theorem on determinat

Theorem 8.2.10. Let A ∈ L(Rn,Rn). Then

A∗ det = (det A) det

Here det A denotes the determinant of the matrix of A in the canonical basis in Rn .
NB Let X be an arbitrary n-dimensional vector space, and let A be a linear operator in
X , A ∈ L(X, X). Then the determinant of the matrix of this operator in basis in X does
not depend on the choice of the basis. ⊳ The matrix in a “new” basis has the form
B M B−1, where M is the matrix in the “old” basis, and B is the “transition matrix”. But
det(B M B−1) = det B det M(det B)−1 = det M . ⊲ So we can say about the determinant
of an operator (in a finite-dimensional vector spaces).
⊳ By Corollary 8.2.7., A∗ det = c det. Hence
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(A∗ det)e1 . . . en︸ ︷︷ ︸
[1]

= c det e1 . . . en︸ ︷︷ ︸
=1

= c

[1], def of A∗= det(Ae1) . . . (Aen)

def. of the matrix
of an operator= det A

We conclude that c = det A. ⊲

Theorem 8.2.10. means that a linear operator A changes the volume by det A times. (It
follows also from Theorem on Change!)

Corollary 8.2.11. If det A = 1, then A∗ det = det.
In other words, an operator with the unit determinant does not change the volume.

Examples.

1. For any u1, . . . , un ∈ 31(Rn) (= L(Rn))

u1 ∧ . . .∧ un =

∣∣∣∣∣∣

u11 . . . u1n

. . . . . . . . .

un1 . . . unn

∣∣∣∣∣∣
det,

where ui j are the coefficients of the linear function ui : Rn → R,

ui x = ui1x1 + . . .+ uin xn.

2. For any u1, . . . , uk ∈ 31(Rn), k ≤ n

(u1 ∧ . . .∧ uk)h1 . . . hk =

∣∣∣∣∣∣

u1h1 . . . u1hk

. . . . . . . . .

unh1 . . . unhn

∣∣∣∣∣∣
.

In particular

(πi1 ∧ . . .∧ πik )h1 . . . hk =

∣∣∣∣∣∣

h1i1 . . . h1ik
. . . . . . . . .

hki1 . . . hkik

∣∣∣∣∣∣
.

(Note that the determinant of the transposed matrix is the same.)

8.3 Differential forms

Let X be a normed space, and let U be an open set in X . A differential form ω of degree k
(k = 0, 1, 2, . . .) (or k-form) on U is a smooth (that is, of class Cp for some p) mapping

ω : U → 3k(X),

that is, a “tensor field” on U , all the tensor being antisymmetric. As to smoothness, we
considerω as a mapping into NORMED SPACE3k(X) (a vector subspace in Lk(X) equipped
with the induced norm). We denote the set of all k-forms on U by

�k(U).

Examples.

1. Any smooth function f : U → R is a 0-form.
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2. For any smooth function f : U → R its derivative f ′ is a 1-form.

3. As a special case of the previous example, π ′i ∈ 31(Rn); for any point x ∈ Rn we have
π ′i (x) = πi . Thus π ′i is a CONSTANT 1-form on Rn . It is denoted traditionally by

dxi .

So for any x ∈ Rn and any h = (h1, . . . , hn) ∈ Rn

(dxi )(x) · h = hi .

4. On Rn , a CONSTANT mapping ω(x) ≡ detk is k-form. We denote it also by detk , or
simply det.

The operations ∧ and ∗ for forms are “point-wise”.

Exterior product
Let ω1 ∈ �p1(U), ω2 ∈ �p2(U). The exterior product ω1 ∧ ω2 is defined by the rule

∀x ∈ U
... (ω1 ∧ ω2)(x) := (ω1(x))∧ (ω2(x)).

It is easy to verify that ω1 ∧ ω2 is a SMOOTH mapping U → 3p1+p2(X), so

ω1 ∧ ω1 ∈ �p1+p2(U).

Moreover we put for f ∈ �0(U)

f ∧ ω := f ω,

where
∀x ∈ U( f ω)(x) := ( f (x))︸ ︷︷ ︸

∈R

(ω(x)).

Example. On Rn ,
dx1 ∧ . . . ∧ dxn = det .

⊳ πi ∧ . . .∧ πn = det . ⊲

Theorem 8.3.1. Any k-form ω on Rn can be written in the form

ω =
∑

i1<...<ik

fi1 ...ik dxi1 ∧ . . .∧ dxik ,

where fi1 ...ik are smooth (real-valued) functions.
⊳ It follows at once from Theorem on basis on 3k(Rn). ⊲

Example. For f ∈ �0

f ′ = ∂ f

∂x1
dx1 + . . .

∂ f

∂xn
dxn.

⊳ Apply both sides to h = (h1, . . . , hn). ⊲
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Pull-back

X
f

K Y

�k(X)
f ∗

L �k(Y )

Let X,Y be normed spaces, let f be a smooth mapping from X into Y , and let ω ∈ �k(Y ).
We define the pull-back f ∗ω of ω by the rule

∀x ∈ X
... ( f ∗ω)(x) := ( f ′(x))∗ω( f (x)),

where the star in the right-hand side means pull-back for tensors.
Thus, the value of the pull-back of ω by f at x is the tensor pull-back by the

DERIVATIVE f ′(x) of the value of ω at f (x).
More explicitly,

(( f ∗ω)(x))h1 . . . hk := ω( f (x))( f ′(x)h1) . . . ( f ′(x)hn).

Moreover we put for g ∈ �0(Y )
f ∗g = g ◦ f.

Example. For a smooth mapping f : Rn → Rm , f = ( f1, . . . , fm), it holds

f ∗(dyi) =
n∑

j=1

∂ fi

∂x j
dx j (i = 1, . . . ,m)

((x = x1, . . . , xn) ∈ Rn , y = (y1, . . . , ym) ∈ Rm).

⊳ f ∗(dyi)(x) · h = (dyi ) · ( f ′(x)h)

= dyi





∂ f1/∂x1 . . . ∂ f1/∂xn

. . . . . . . . .

∂ fm/∂x1 . . . ∂ fm/∂xn







h1
...

hn







=
n∑

j=1

∂ fi

∂x j
h j︸︷︷︸

=(dx j )h

=




n∑

j=1

∂ fi

∂x j
dx j


 h. ⊲

Theorem 8.3.2. The pull-back operation over forms has the following properties

a) f ∗(ω1 + ω2) = f ∗ω1 + f ∗ω2 (linearity);
b) f ∗(ω1 ∧ ω1) = ( f ∗ω1) ∧ ( f ∗ω2) (∗ respects ∧); in particular, for g ∈ �0

f ∗(gω) = (g ◦ f )( f ∗ω).

⊳ This follows at once from the definitions and the corresponding results for tensors. ⊲

Pull-back of determinant

Theorem 8.3.3. Let f : Rn → Rn (that is f : Rn → Rn) be smooth, and let g ∈ �0(Rn).

Rn f→ Rn g→ Rn .
Then

f ∗(g det) = (g ◦ f )(det f ′) det

⊳ 1◦ f ∗(det) = (det f ′) det.

⊳⊳ ∀x ∈ Rn
... ( f ∗ det)(x) = ( f ′(x))∗ det( f (x))︸ ︷︷ ︸

=det

Th. on det for tensors= (det f ′(x)) det ⊲⊲.

2◦ f ∗(g det)
Th 8.3.2., b)= (g ◦ f ) f ∗(det)

1◦= (g ◦ f )(det f ′) det. ⊲

NB In the special case where f is a diffeomorphism, this Theorem describes the change
of a “weighted” volume by a change of variables—compare with Theorem on change of
variables (where we write f instead of g and v.v.).
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8.4 Exterion differentiation (operator d)

If we differentiate a form ω ∈ �k(X) (as a mapping X → 3k(X) between two normed
spaces) then we obtain ω′(x) ∈ L(X,3k(X)) ⊂ L(X,Lk(X)) ∼ Lk+1(X). In general
ω′(x) considered as an element of Lk+1(X) is not antisymmetric, that is, does not belong
to 3k+1(X). So we appeal the operator alt.

Operator d
Let X be a normed space, and let ω ∈ �k(X) we define the exterior derivative (or exterior
differential) dω by the rule

∀x ∈ X
... (dω)(x) := (k + 1) alt ω̃′(x) (∈ 3k+1(X)), (1)

where ω̃′(x) denotes the element of Lk+1(X) generated by ω′(x):

ω̃′(x) · h0h1 . . . hk := (ω′(x)h0)︸ ︷︷ ︸
∈3k(X)

·h1 . . . hk . (2)

Is is easy to verify that if ω ∈ Cp then dω ∈ Cp−1, so is sufficiently smooth if ω is.
Thus

dω ∈ �k+1(X).

Remark. The factor k + 1 is chosen to obtain the coefficient 1 in some formulas below.

Examples.

1. For f ∈ �0 we have d f = f ′.
2. For any f ∈ �0

d2 f = 0,

where
d2 f = d(d f ).

⊳ (d2 f )(x) = (d(d f ))(x)
1)= (d( f ′))(x) (1)= (1+ 1) alt ˜( f ′)(x)︸ ︷︷ ︸

= f ′′(x)

= 2 alt f ′′(x) =
f ′′(x)∈Sym

0. ⊲

3. In R2, d(xdy︸︷︷︸
=:ω

) = det. ⊳ We have ω : (x, y) 7→ xπ2, so that ω ∈ L(R2,L(R2,R)),

hence ω′ ≡ ω. So

(dω)((x, y)) h︸︷︷︸
=:(h1,h2)

k︸︷︷︸
=:(k1,k2)

= (1+ 1) alt ˜ω′((x, y))︸ ︷︷ ︸
=ω

hk = 2 1
2 (ω̃hk − ω̃kh)

(2)= (ωh)︸︷︷︸
h1π2

k − (ωk)︸︷︷︸
k1π2

h = h1k2 − kh2 = det(h, k). ⊲

Exercise 8.4.1. Let A ∈ L(Rn,Rn) and ω(x) = 〈An, ·〉 (∈ L(Rn,R) = 31(Rn)). Prove
that

dω ≡ u A−AT .

Remark. It can be shown that

dω(x) · h0 . . . hk =
k∑

i=0

(−1)i (ω′(x)hi ) · h0 . . . hi . . . hk,
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where hi means that this term is to be canceled.

Theorem 8.4.2. The operator d has the following properties

a) d(ω1 + ω2) = dω1 + dω2 (linearity);
b) d(ω1 ∧ ω2) = (dω1) ∧ ω2 + (−1)degω1ω1 ∧ dω2 (“semi-leibniz” rule);
c) d2 = 0 (d2ω = d)dω) (“self-annihilation”);
d) f ∗(dω) = d( f ∗ω) (pull-back respects d).

Here degω denotes the degree of ω.

⊳ a) Obvious.
b) Let ω1 ∈ �r1 , ω2 ∈ �r2 . We have (for short we drop the argument x)

˜(ω1 ⊗ ω2)′h0 . . . hr1+r2
Leibnitz rule= ((ω′1h0)⊗ ω2 + ω1 ⊗ (ω′2h0))h1 . . . hr1+r2

= ((ω′1h0)h1 . . . hr1)(ω2hr1+1 . . . hr1+r2)

+ (ω1h1 . . . hr1)((ω
′
2h0)hr1+1 . . . hr1+r2)

= (ω̃′1h0 . . . hr1)(ω2hr1+1 . . . hr1−r2)+ (ω1h1 . . . hr1)(ω̃
′
2h0hr1+1 . . . hr1+r2)

= (ω̃′1 ⊗ ω2)h0 . . . hr1+r2 + (ω2 ⊗ ω̃′1)h1 . . . hr1 h0hr1+1 . . . hr1+r2 .

To replace h0 to the first place we have to make r1 transpositions, which yields
the factor (−1)r1 . After alternating (applying of alt) we obtain what we need. We
omitting the details.

c) The idea is the same as in Example 2) above. Let ω ∈ �r . We have (omitting the
details)

(d2ω)h0 . . . hr+1 = const(alt ˜(alt ω̃′)′)h0 . . . hr+1

= const
∑

{h,k}⊂{h0 ...hr+1}

∑

...

((ω′′hk) . . .︸︷︷︸
∗
−(ω′′kh) . . .︸︷︷︸

∗
)

∗— other r arguments in one and the same order

= const
∑

...

((ω′′hk − ω′′kh)︸ ︷︷ ︸
ω′′∈sym= 0

. . .) = 0

d) We consider the simplest case where ω ∈ �0, that is, ω is a function g:

X
f−→ Y

g−→ R.

We have

((d( f ∗g))(x))h = ( f ∗g)(x)h = (g ◦ f )′(x)h Chain rule= ( g′︸︷︷︸
=dg

( f (x))) · ( f ′(x)h)

= (( f ∗(dg))(x))h,

whence d( f ∗g) = f ∗(dg). In more general case the idea is the same. ⊲

Remark. The semi-Leibnitz rule is NON-symmetric w.r. to ω1 and ω2. Only degω1 enters
the rule. The matter is that in our definition of ω̃′(x) we put the derivative to act onto
the FIRST argument. But we could choose anyone. So in essence dω is defined just UP TO

THE SIGN! “Physically”, ω and−ω are same, that is why when integrating over manifolds
(Chapter 6) we need to choose one of two possible ORIENTATIONS of the manifold in
question.
Remark. It is instructive to see how semi-Leibnitz rule interacts with semi-commutativity:
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d(ω2 ∧ ω1) = d((−1)r1r2ω1 ∧ ω2) = (−1)r1r2(dω1ω2 + (−1)r1ω1dω2)

= (−1)r1r2((−1)(r1+1)r2ω2 ∧ dω1 + (−1)r1(−1)r1(r2+1)dω2 ∧ ω1)

= dω2 ∧ ω1 + (−1)r2ω2dω1,

r1 “transforms” into r2, as it need to be!
Exercise 8.4.3. Give the proof of d) with all details for the case ω ∈ �1.

d in Rn

Theorem 8.4.4. Let ω ∈ �r (Rn). If the canonical representation of ω is

ω =
∑

i1<...<ir

fi1 ...ir dxi1 ∧ . . . ∧ dxir

then dω is given by the formula

dω =
∑

i1<...<ir

d fi1 ...ir ∧ dxi1 ∧ . . . ∧ dxir

⊳ This follows at once from semi-Leibnitz rule for forms and from the self-annihilation
property (d2); recall that f dxi1 ∧ . . . ∧ dxir = f ∧ dxi1 ∧ . . .∧ dxir . ⊲

Example. In R2, d(xdy) = dx ∧ dy = det.

Closed and exact forms
If dω = 0 (in an open set U ) one can says that ω is closed (in U ). If ω = dψ (in U ) for
some form ψ then one can says that ω is exact (in U ).

Each exact form is closed. ⊳ ω = dψ ⇒ dω = d2ψ = 0. ⊲

The inverse assertion is not in general true.

Example. The form

ω = −y

x2 + y2 dx + x

x2 + y2 dy

x

y
h=(dx,dy)

rdθ

θ

on R2 \ {0} is closed (verify!), but is not exact. (This form arises naturally if one consider
polar coordinates r, θ (x = r cos θ , y = r sin θ ), and by this
reason is usually denoted by dθ , and though ω is not exact!
(But ω IS exact on somewhat less sets,as it follows, e.g., from
Poicaré lemma:))

Poincaré lemma

Theorem 8.4.5. Let U be an open ball in Banach space. If a form ω is closed in U, then
it is exact in U.

We omit the proof.



Chapter 9

Stokes Formula for Chains

9.1 Chains

1

1

[0,1]2

By [0, 1]k we denote the unit cube [0, 1]× . . .× [0, 1] (k-times) in Rk . For k = 0 we put

[0, 1]0 := {0}, R0 := {0}.
By a curved k-cube c in Rn we mean a continuous mapping

c : [0, 1]k → Rn.

For short we omit the word “curved” below. If im c ⊂ A ⊂ Rn we say that c is a
cube in A.

Examples.
1. A 0-cube is just a point:

c

2. A 1-cube is a curve: 0 1

3. The embeding id : [0, 1]k → Rk is called the standard k-cube and is denoted by I k :

I k := idRk |[0,1]k .

Chains
A k-chain (in A) is a formal (finite) sum of k-cubes (in A) with integer coefficients, that
is, an expression of the form

2c1 + 3c2 − 5c3 + 100c4,

where ci are k-cubes. We identify a k-cube c with multiplication with the chain 1 · c.
In natural way we define for k-chains multiplication by an integer number and

addition.

Faces
For a standard cube I n we define its faces I k

(i,α), i = 1, . . . , k, α = 0, 1, by the rule

I k
(i,α) : [0, 1]k−1→ Rk, (x1, . . . , xk−1) :7→ (x1, . . . , xi−1, α, xi , . . . , xk−1).
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Thus, we insert α into i th place and move all the “tail” to the right by one position.

cI k
(i,α)

For any k-cube c we define its face c(i,α) by the rule

c(i,α) := c ◦ I k
(i,α).

Operator ∂
We define the boundary ∂c of a k-cube c as the following chain:

∂c :=
k∑

i=1

∑

α=0,1

(−1)i+αc(i,α)

(an alternating sum of the faces). For chains we define the boundary “by linearity”:

∂
∑

aici :=
∑

ai∂ci (ai ∈ Z).

Examples.

1. ∂ I 1 = I 1
(1,1) − I 1

(1,0); I 1
(1,0) I 1

(1,1)

+−

2. ∂ I 2 = I 2
(2,0) + I 2

(1,1) − I 2
(2,1) − I 2(1, 0);

I 2
(1,1)

I 2
(2,0)

I 2
(1,0)

I 2
(2,1)

+

+

−

−

I 3
(1,1)

I 3
(2,0)

I 3
(3,1)

3. ∂ I 3 three “visible” faces are positive (enter into sum with “+”)
three “non-visible” faces are negative.

Theorem 9.1.1. ∂2 = 0 (that is, ∂(∂c) = 0 for any chain c).
We do not need this result, so we omit the proof.

Exercise 9.1.2. Verify Theorem for I 3.

Closed and exact chains
A chain c is called closed if ∂c = 0, that is, if its boundary is the null chain; c is called
exact (in A) if c = ∂c′ for some chain (in A), that is, if c is the boundary of some chain
(in A).

By the Theorem above, each exact chain is closed. But not each closed is exact:

c(0)=c(1)

Example.
Consider the 1-cube c : [0, 1] → R2, t 7→ (cos 2π t, sin 2π t)
(the unit circle in R2 \ {0}. We have ∂c = 0 (verify), so that c
is closed, but c is not exact in R2 \ {0}, since c is the boundary
of no chain in R2 \ {0}.

9.2 Integral over a chain

For any k-form ω in an open set U in Rk , such that U ⊃ [0, 1]k, k = 1, 2, . . ., we put

∫

I k
ω :=

∫

[0,1]k
f (1)
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where f is the function U → R, uniquely defined by the relation ω = f det. (Recall that
any k-form in Rk can be written (uniquelly) in such form; see Chapter 8.)

In more detailed record,
∫

I k
f dx1 ∧ . . . ∧ dxn :=

∫

[0,1]k
f dx1 . . . dxn. (2)

NB This definition DOES DEPEND on the ORDER of the basis vectors, since det does depend!
For k = 0 we put

∫

i0
ω := ω(0), (here ω ∈ �0 is a FUNCTION).

[0, 1]k c
K

G
Rn

c∗ω ↓ ↓ ω
3k(Rk) 3k(Rn)

Now, let G be an open set in Rn , let ω be a k-form in G, and let c be a k-cube in G. Then
we put

(3)
∫

c
ω :=

∫

I k
c∗ω

In particular, for a 0-cube c and a 0-form ω we have

∫

c
ω = ω(c(0)) (since c∗ω = ω ◦ c,if ω ∈ �0).

At last for a chain c =∑ ai ci we put

∫
∑

ai ci

ω :=
∑

ai

∫

ci

ω (4)

It is clear that so defined integral is LINEAR:
∫

c
αω = α

∫

c
ω,

∫

c
(ω1 + ω2) =

∫

c
ω1 +

∫

c
ω2 (α ∈ R).

Lemma 9.2.1. (on integral over the boundary). Let c be a k-cube, and let ω be a k-form
(both in G). Then ∫

∂c
ω =

∫

∂[0,1]k
c∗ω.

⊳ Exercise. ⊲

9.3 Stokes formula

Similarly of properties of the operators d and ∂ (d2 = 0, ∂2 = 0), and of the notions
concerning them (closeness, exactness) is not an accident. There is a deep relation between
d and ∂ , which is expressed by the following

Theorem 9.3.1. Let ω be a k− 1-form in G(∈ Op(Rn)), and let c be a k-chain in G. Then

∫

c
dω =

∫

∂c
ω (Stokes formula) (1)
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⊳ 1◦ At first let us prove the folloving fact about pull-back by the standard faces:

(
I k
(i,α)

)∗
dx j =





dx j if j < i ,
0 if j = i ,

dx j−1 if j > i .
(2)

⊳⊳

(
I k
(i,α)

)′
(x) h︸︷︷︸
=(h1,...,hk−1)

Exer.= (h1, . . . , hi−1, 0, hi , . . . , hk−1) whence

((I k
(c,α))

∗dx j ) = dx j (I
k
(i,α))

′(x)h = dx j · (h1, . . . , hi−1, 0, hi , . . . , hk−1)

=





h j if j < i ,
0 if j = i ,

h j−1 if j > i .
⊲⊲

2◦ Case c = I k , ω ∈ �k−1(Rk). Calculate the left-hand side in (1):

∫

I k
dω

Th 8.3.1.=
∫

I k

k∑

i=1

d fi dx1 . . . ∧ dxi ∧ . . .∧ dxk

Th 8.4.4.=
∫

I k

k∑

i=1

d fi︸︷︷︸
=D1 fi dx1+...+Dk fi dxk

∧dx1 . . .∧ dxi ∧ . . . ∧ dxk

Th 8.2.4. and its Cor.=
k∑

i=1

(−1)i−1
∫

I k
Di fi dx1 ∧ . . .∧ dxk︸ ︷︷ ︸

=det

(1)=
k∑

i=1

(−1)i−1
∫

[0,1]k
Di fi

Fubini Th=
k∑

i=1

(−1)i−1
∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
k−1

(∫ 1

0
Di fi (x1, . . . , xk)dxi︸ ︷︷ ︸

Newt.-Leib. Th= fi (x1,...,1
i
,...,xk)− fi (x1,...,0

i
,...,xk)=: 1

)
dx1 . . . dxi . . . dxk

Fubini+trick!=
k∑

i=1

(−1)i−1
∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
k

1 dx1 . . . dxk .

Calculate the right-hand side:

∫

∂ I k
ω

def of ∂=
∫
∑k

i=1
∑
α=0,1(−1)i+α I k

(i,α)

k∑

j=1

f j dx1 ∧ . . . ∧ dx j ∧ . . . dxk

(4)=
k∑

i, j=1

∑

α=0,1

(−1)i+α
∫

I k
(i,α)

f j dx1 ∧ . . . ∧ dx j ∧ . . . dxk

(3)=
∑

i, j,α

(−1)i+α
∫

I k−1

(
I k
(i,α)

)∗ (
f j dx1 ∧ . . . ∧ dx j ∧ . . . dxk

)

∗respects ∧=
∑

i, j,α

(−1)i+α
∫

I k−1

( (
I k
(i,α)

)∗
f j

︸ ︷︷ ︸
= f j◦I k

(i,α)

)

∧ (((I k
(i,α))

∗dx1) ∧ . . . ∧ ((I k
(i,α))

∗dx j−1) ∧ ((I k
(i,α))

∗dx j+1) ∧ . . .∧ ((I k
(i,α))

∗dxk))︸ ︷︷ ︸
(2)=
{

0 if i 6= j
dx1 ∧ . . .∧ dxk−1 if i = j
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=
∑

i,α

(−1)i+α
∫

I k−1

(
fi ◦ I k

(i,α)

)
dx1 ∧ . . . ∧ dxk−1︸ ︷︷ ︸

=det
(1)=
∑

i,α

(−1)i+α
∫

[0,1]k−1
fi ◦ I k

(i,α)

def of I k
(i,α)+trick
=

∑

i,α

(−1)i+α
( ∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
k−1

fi (x1, . . . , α
i
, . . . , xk−1)

)(∫ 1

0
dxk

)

︸ ︷︷ ︸
=1

Fubini Th=
∑

i,α

(−1)i+α
∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
k

fi (x1, . . . , α
i
, . . . , xk−1)dx1 . . . dxk

y1 := x1, . . . , yi−1 := xi−1, yi := xk, yi+1 := xi , . . . , yk := xk−1

=
∑

i,α

(−1)i+α
∫ 1

0
. . .

∫ 1

0
fi (y1, . . . , α

i
, . . . , yk−1)dy1 . . . dyk

obv.=
∑

i,α

(−1)i+α
∫ 1

0
. . .

∫ 1

0
( fi (y1, . . . , 1, . . . , yk−1)

− fi (y1, . . . , 0, . . . , yk−1))dy1 . . . dyk .

The result is the same.
3◦ Case c ∈ k-Cube(G), ω ∈ �k(G).

∫

c
dω

def=
∫

I k
c∗(dω)

∗ respects d=
∫

I k
d(c∗ω) 2◦=

∫

∂ I k
c∗ω Lm 9.2.1.=

∫

∂c
ω. O.K.

4◦ General case c =∑αi ci , ci ∈ k-Cube(G), ω ∈ �k(G).
∫

c
dω

(4)=
∑

ai

∫

ci

dω
3◦=
∑

αi

∫

∂ci

ω
(4)=
∫

∑
ai∂ci︸ ︷︷ ︸

def of∂→=∂c

ω =
∫

∂c
ω. O.K. ⊲





Chapter 10

Stokes Theorem for Manifolds

10.1 Manifolds in Rn

In this chapter by smooth mappings we mean C∞-mappings.
We say that a subset M of Rn is a k-dimensional manifold (or simply k-manifold), and

we write
M ∈ Mfk(Rn),

if for each point x ∈ M the following condition is fulfilled:

∃U ∈ Op Nbx(Rn) ∃Ũ ∈ Op(Rn) ∃8 ∈ Diffeo(Ũ ,U) :

U ∩ M = 8(Ũ ∩ Rn × 0︸︷︷︸
∈Rn−k

). (1)

R n-k

R k

U
~

8
K

Rn

M
U

x

(In other words, M is locally, up to a dif-
feomorphism, a k-dimensional vector sub-
space in Rn .) We call such a mapping 8 a
full chart for M at x .

Examples.

1. Each single point set {x} is a 0-dimensi-
onal manifold.

2. Each open set in Rn is an n-dimensional manifold.

8
K

3. The unit circle in R2 with the center at 0
is a 1-dimensional manifold. E.g. for the point
(1, 0) a full chart is shown on the picture. (Give
an analytic expression for 8!)
Exercise 10.1.1. Let G ∈ Op(Rn), and let g :
G → Rp (p ≤ n) be a smooth mapping. Put

M := g−1(0).

If

∀x ∈ M
... rank g′(x) = p

then
M ∈ Mfn−p(Rn).

129
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Here rank denotes the rank of the corresponding matrix. Note that p is the maximal
possible value for the rank of n × p-matrix. [Hint: Let

g′(x) =



∂g1/∂x1 . . . ∂g1/∂xn

. . . . . . . . .

∂gp/∂x1 . . . ∂gp/∂xn




Wlog we can assume that it is the FIRST mirror that is not 0:
∣∣∣∣∣∣

∂g1/∂x1 . . . ∂g1/∂x p

. . . . . . . . .

∂gp/∂x1 . . . ∂gp/∂x p

∣∣∣∣∣∣
6= 0

Put
9 := (id, g) : Rn → Rn−p ×Rp = Rn,

that is,
9(x1, . . . , xn) := (x1, . . . , xn−p, g1(x), . . . , gp(x)).

Verify that 9 ′(x) ∈ Iso, and apply Inverse Function Theorem. The inverse mapping
8 := 9−1 is a full chart for M .]

Charts

Un-kR

V
~

x~

x0

V
~

kR
i π

kR

8
K

U
V

Mx

nR

Lemma 10.1.2. Let M ∈ Mfk(Rn), and let 8 :
Ũ → U be a full chart for M at x. Put

(2)V := U ∩ M, Ṽ := π(Ũ ∩ (Rk × 0)),

(3)ϕ := 8 ◦ i, ψ := π ◦8−1,

where π and i are the canonical projection and
inclusion, resp. (π(x1, . . . , xn) = (x1, . . . , xk), i(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0)).
Then ϕ : Ṽ → Rn is a smooth map and is a bijection of Ṽ onto V . Moreover

∀x̃ ∈ Ṽ
... ϕ′(̃x) ∈ Inj L(Rk,Rn) (⇔ rankϕ′(̃x) = k). (4)

We call ϕ a chart for M at x (generated by the full chart8), or a coordinate system on
M at x . The element ϕ−1(x) (for any x ∈ V ) is called the representative of x in the chart
ϕ, and will be usually denoted by x̃ .
⊳ All but the assertion on the rank is obvious. As to this assertion, we have

ψ ◦ ϕ (3)= π ◦8−1 ◦8 ◦ i = π ◦ i = idRk ,

hence, by Chain Rule,
ψ ′(x) ◦ ϕ′(̃x) = idRk .

This means that ϕ′(̃x) is injective, that is, has the maximal possible rank, k. ⊲

Example. If M = Rn , then idRn is a chart at all points at once.

Transition functions
Let we have two charts for M at x , ϕ1 and ϕ2 (see the diagram):
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kR
x~

V
~

1

π1i1

V1

V2

ϕ12

ϕ21

Φ1

Φ1
-1

Φ2

Φ2
-1

kRx~

V
~

π2i2

2

ϕ1 ϕ2

ϕ1 : Ṽ1 → V1, ϕ2 : Ṽ2 → V2.

Put V := V1 ∩ V2 and

ϕ12 := ϕ−1
2 ◦ ϕ1 : ϕ−1

1 (V )→ ϕ−1
2 (V ), (5)

ϕ21 := ϕ−1
1 ◦ ϕ2 : ϕ−1

2 (V )→ ϕ−1
1 (V ). (6)

So defined ϕ12 and ϕ21 are called the transition functions for these charts.
In other words, a transition function sends the representative of x ∈ M in one chart

into the representative of x in the other one.

Lemma 10.1.3. The transition function ϕ12 and ϕ21 (see (5), (6)) are mutually inverse
diffeomorphism.
⊳ It is clear from the diagram, that ϕ12 = π2 ◦8−1

2 ◦81 ◦ i1, ϕ21 = π1 ◦8−1
1 ◦82 ◦ i2.

Hence both ϕ12 and ϕ21 are smooth as compositions of smooth mappings. Now, it is clear
from (5), (6), that ϕ12 and ϕ21 are mutually inverse. Hence they are mutually inverse
diffeomorphism. ⊲

10.2 Tangent space

Now we consider tangent vectors to a manifold in Rn .

n-kR

x~

U
~

π1

Φ

Φ-1

ϕ

π 2

U

M

MTx

x

Theorem 10.2.1. Let M ∈ Mfk(Rn).
Then for each point x ∈ M the tan-
gent cone Tx M to M at x is a k-
dimensional vector subspace in Rn;
viz., for any char ϕ for M at x

Tx M = im ϕ′(̃x),

where x̃ is the representative of x in
the chart ϕ (̃x = ϕ−1(x)).

⊳ Put g := π2 ◦8−1. Then obviously

M ∩U = g−1(0).

By theorem on tangent cone to g−1(0),

Tx M = Tx (M ∩U) = ker g′(x).

Thus we need to verify that
ker g′(x) = imϕ′(̃x). (1)
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But, indeed, we have (since 8−1(U ∪ M) ⊂ Rk × 0)

g ◦ ϕ = π2 ◦8−1 ◦ ϕ = 0
Chain Rule⇒ g′(x) ◦ ϕ′(̃x) = 0⇒ imϕ′(̃x) ⊂ ker g′(x).

It remains to note that both imϕ′(̃x) and ker g′(x) have the same dimension k (since kerπ2
has dimension k, and since both ϕ′(̃x) and (8−1)′(x) are injective). ⊲

Remark. It is convenient to imagine a tangent vector h from Tx M as an arrow with the

beginning at x and end at x + h (x x+h). Formally, starting from this point, we
mean by a tangent vector to M at x a PAIR (x, h), where h ∈ Tx M , and we consider the
set Tx M and Ty M as DISJOINT (and if they may coincide as vector subspaces in Rn .

Representatives of a tangent vectors

h
~

ϕ’(x)

0 h

MTx

im ϕ’(x) =

0

Let ϕ be a chart for M at x , and let x̃ be the representative of x in ϕ. The pre-image by
ϕ′(x) of a tangent vector h ∈ Tx M (this pre-image is UNIQUE: by
Lemma on charts, ϕ′(̃x) ∈ Inj) be called the representative of h in ϕ
and will be denoted by h̃).

Example. For Rn as a manifold in Rn we have

∀x ... Tx Rn = Rn,

and in the chart id

∀h ... h̃ = h.

h
~

ϕ12

ϕ21

M

h

ϕ1

x~1

ϕ2

1

x~2

h
~

2

Lemma 10.2.2. Let h ∈ Tx M, let ϕ1ϕ2
be two chats for M at x let x̃1, x̃2 be the
representatives of x in ϕ1, ϕ2, resp.; and
let h̃1, h̃2 be the representatives of h. Then

(2)ϕ′12(̃x )̃h1 = h̃2

In other words, the derivative of tran-
sition function sends the representative of
a tangent vector in one chart into the re-
presentative in the other one.

⊳ ϕ1 = ϕ2 ◦ ϕ12 ⇒ ϕ′1(̃x1) = ϕ′2(̃x2) ◦ ϕ′12(̃x1)

⇒ ϕ′1(̃x1)̃h1︸ ︷︷ ︸
=h

= ϕ′2(̃x2) · ϕ′12(̃x1)̃h1 ⇒ (2). ⊲

10.3 Mapping between manifolds. Vector fields and forms

A vector field v on a manifold M is a mapping from M into
⋃

x∈M Tx M (all Tx M are
mutually disjoint!), that sends a point x ∈ M into a tangent vector to M at x :

v : x 7→ v(x) ∈ Tx M.

A k-form ω on M is a mapping that sends x ∈ M into an antisymmetric tensor on
Tx M:

ω : x 7→ ω(x) ∈ 3k(Tx M).
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SMOOTHNESS of mappings between manifolds and of vector fields and forms on mani-
fold we define as smoothness of their REPRESENTATIVES.

kR x~
ϕ

nR x
M

lR
y~

ψ

mR

y

N
f

f
~

The representative f̃ OF A MAPPING f : M → N (M ∈ Mfk(Rn), N ∈ Mfl(Rm))
in charts ϕ for M at x and ψ for
N at y := f (x) is defined by the
formula

f̃ (̃ξ ) := f̃ (ξ),

or, equivalently,

f̃ := ψ−1 ◦ f ◦ ϕ : Rk → Rl

(for continuous f this last map-
ping is defined in an appropriate
neighbourhood of x).

In particular, the representative of a mapping

f : M → Rm

in a chart ϕ for M and the identity chart for Rm is

f̃ = f ◦ ϕ = ϕ∗ f.

The representative ṽ of a vector field v on M in a chart ϕ : Ũ → U we define as the
mapping

ṽ : Ũ → Rk, x̃ 7→ ṽ(x);
in other words,

ϕ′(̃x )̃v(̃x) = v(x).
The representative ω̃ of a k-form ω on M in a chart ϕ : Ũ → U is defined by the rule

ω̃(x )̃h1 . . . h̃k = ω(x)h1 . . . hk,

or, equivalently,

ω̃(x )̃h1 . . . h̃k = ω(ϕ(̃x))(ϕ′(̃x )̃h1) . . . (ϕ
′(̃x )̃hk),

that is,
ω̃ = ϕ∗ω.

Smoothness
We say that a mapping f : M → N (M, N ∈ Mf) is differentiable at a point x ∈ M
(resp., is smooth), if for any charts ϕ at x and ψ at y := f (x) the representative f̃ of f
in these charts is differentiable at x̃ (resp., is smooth). We define the derivative f∗(x) of
f at x as the linear mapping from Tx M into Ty N :

f∗(x) ∈ L(Tx M,Ty N),

that acts by the rule

f̃∗(x)h := f̃ ′ (̃x )̃h.

In other words, f∗(x) is the linear mapping, represented by the derivative of the represen-
tative of f at the representative of x .
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(It is easy to verify (using Lemma 10.2.2., p.132), that if f has a differentiable
representation in some two charts at x and y, then its representative in any other two
charts at x and y will be also differentiable, and that our definition of the derivative does
not depend on the choice of charts.)

Example. For any smooth mapping Rn → Rm its restriction to any manifold M in Rn is
a smooth mapping M → Rm . (Verify!)

A vector field v on M is called smooth if the representative ṽ of v in each chart for
M is smooth. (It is easy to verify, that if v has smooth representatives in each chart from
a family {ϕα}), ϕα : Ũα → Uα such that

⋃
Uα = M , then the representative of v in any

chart for M will be smooth, that is, v will be smooth.)
A p-form ω on M is smooth (the record: ω ∈ �p(M)), if the representative ω̃ of

ω in each chart for M is smooth. (Once again, it is easy to verify, that if ω has smooth
representatives for some family of chart “covering” M , then ω is smooth.)

Example. For any smooth form on Rn its restriction to M

ω|M (x) := ω(x)|Tx M×...×Tx M

is a smooth form on M .

Exterior derivative
We define the exterior derivative dω of a form ω on M as the form, the representative of
which in any chart for M is the exterior derivative of the representative of ω:

d̃ω := dω̃.

(it can be verified that this ”chart-wise“ definition is correct, that is, there exists just one
smooth form on M with this property.)

Exterior product
Let ω1, ω2 be two forms on M . We define their exterior product point-wise:

∀x ∈ M
... (ω1 ∧ ω2)(x) := ω1(x) ∧ ω2(x).

It is easy to verify that ω1 ∧ ω2 is also smooth, and in any chart for M

ω̃1 ∧ ω2 = ω̃1 ∧ ω̃2.

Pull-back
Let M, N be manifolds, let f : M → N be a smooth mapping, and let ω be a k-form on
N . We define the pull-back f ∗ω point-wise:

∀x ∈ M
... ( f ∗ω)(x) := ( f∗(x))∗(ω( f (x)))

(compare with the definition for forms on vector spaces), that is,

∀h1, . . . , hk ∈ Tx M
... ( f ∗ω)(x)h1, . . . , hk = ω( f (x))( f∗(x)h1) . . . ( f∗(x)hk).

Again, it can be verified that f ∗ω is smooth, and that in any charts for M and N

f̃ ∗ω = ( f̃ )∗ω̃.

Remarks. 1. The representative ω̃ of a form ω on M in a chart ϕ for M is the pull-back:

ω̃ = ϕ∗ω.
2. Just as in the case of vector spaces, for manifolds also the operations ∗, d and∧ RESPECT

each other.
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10.4 Manifolds with a boundary

A subset M of Rn is a k-dimensional manifold with a boundary, or simply a k-manifold
with a boundary (the notation: M ∈ Mfk

∂(R
n)) if for each x ∈ M one of two condition (1)

and (2), is fulfilled, where (1) is the condition from 10.1, p.129, and (2) is the following
condition:

∃U ∈ Op Nbx(Rn) ∃Ũ ∈ Op(Rn) ∃8 ∈ Diffeo(Ũ ,U) :

x̃ := 8−1(x) ∈ Rk−1 × 0︸︷︷︸
∈Rn−(k−1)

, (1)

and
U ∩ M = 8(Ũ ∩ (Rk−1 × R+ × 0︸︷︷︸

∈Rn−k

)). (2)

x

x

M

∂M
U

Φ

U
~

x~

k

x    ,...,xk+1 n

x  ,...,x1 k+1

(Here R+ := [0,+∞).) In other words, M is up to a diffeomorphism, a k-dimensional
half-space in Rn , the point in ques-
tion lying on the boundary of this
half-space.

Note that (1) and (2) cannot be
fulfilled simultaneously, since 8 is
homeomorphism, and a half-space
(closed!) and the whole space are
not homeomorphic.

The set of all points x ∈ M , for
which (2) is fulfilled, is called the
boundary of M and is denoted by

∂M.

Example. If M ∈ Mfk(Rn) then ∂M = ∅ (though fr M 6= ∅ in general, e.g. for an open
ball).
Exercise 10.4.1. Show that if M ∈ Mfk

∂(R
n), then ∂M ∈ Mfk−1(Rn) and M \ ∂M ∈

Mfk(Rn).
All the notions introduced for manifold “without boundary” (full charts, charts, forms

vector fields, representatives etc.) can be naturally extended to the case of manifolds with
a boundary. Little complications arises with differentiation (”usual“ and exterior) at points
of the boundary ∂M , but ∂M has zero volume (by Corollary from Theorem Change
Variables), so when dealing with INTEGRALS over manifolds (to be defined below), the
values at boundary points are not essential, and we can just ignore these points. [More
accurately; we define a smooth form on a manifold with a boundary as a form that is
smooth in M \ ∂M and is cont. on M.

10.5 Orientation

Let X be an n-dimensional vector space, and let

A := {a1, . . . , an} and B := {b1, . . . , bn}

be two bases for X . We define the sign of A with respect to B by the formula

sgnB A := sgn detB a1 . . . an,
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where detB denotes the determinant with respect to basis B:

a j =
n∑

i=1

ai j bi ⇒ detB a1 . . . an :=

∣∣∣∣∣∣

a11 . . . a1n

. . .

an1 . . . ann

∣∣∣∣∣∣
.

(Note that the last determinant cannot be equal to 0, since a1, . . . , an are linearly indepen-
dent.)

The relation
A ∼ B :⇔ sgnB A = +1

is an equivalence relation (Verify!) An orientation of X is an equivalent class with respect
to ∼. Obviously on X there are just 2 orientations. For a given basis, the orientation,
containing B , we denote by

[B]

the other one by
−[B].

We say that X is oriented if there is chosen one of 2 possible orientation on X . We denoted
this chosen class

or X

For oriented X we say that a basis A is positive if [A] = or X , and is negative
[A] = − or X .

For Rn , the canonical orientation is [e1, . . . , en].

Examples.

1. ∀σ ∈ Sn
... [eσ(1), . . . , eσ(n)] = (sgn σ)[e1, . . . , en] (Prove!)

2. [−e1, e2, . . . , en] = −[e1, . . . , en]. (Prove!)

Positive linear bijections
Let X and Y be two n-dimensional ORIENTED vector spaces, or X = [A], or Y = [B], and
let l ∈ L(X,Y ) be a bijection. We put

sgn l := sgn det l

where det l denotes the determinant of the matrix of l with respect to the bases A and B:

det l := detB(la1) . . . (lan) ({a1, . . . , an} = A).

(It is easy to verify, that this definition of sgn l does not depend on the choice of positive
bases A and B .) We say that l is positive if sgn l = +1 (resp., negative, if not).

Lemma 10.5.1. A positive linear bijection l between oriented finite-dimensional vector
spaces RESPECTS orientations, that is, sends each positive basis into a positive one.
⊳ Let or X = [A], or Y . Let {c1, . . . , cn} be a positive basis in X , that is,

detA c1 . . . cn > 0. (1)

Then

detB(lc1) . . . (lcn) = (t∗ detB)c1 . . . cn
Th on det= (det l)︸ ︷︷ ︸

sgn l=+1 >0

det Ac1 . . . cn︸ ︷︷ ︸
(1) >0

> 0,
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which means that the basis {lc1, . . . , lcn} is positive. ⊲

Oriented manifolds
We say that a k-manifold M is oriented, and we write

M ∈ Or Mfk,

if for each x ∈ M the tangent space Tx M is oriented and if these orientations are
compatible in the sense that for any chart ϕ : Ṽ → V for M all all the mappings ϕ′(x),
x̃ ∈ Ṽ (which are linear bijections of Rk onto Tϕ(̃x) M) have one and the same sign (all
are positive or all are negative), with respect to the canonical orientation of Rk .

It is obvious that if M is orientable (can be oriented), there are just 2 orientation on
M . To fix an orientation on an orientable M , it is sufficient to claim any one chart ϕ as
positive, in the sense that for each point x̃ from the domain of this chart ϕ′(̃x) is positive.

Examples.
1. For n ≥ 2 all the (n − 1) dimensional spheres in Rn are orientable.

2. The famous Möbius band is not oriented. (Exercise: define the Möbius band using TWO

full charts.)

Positive injections
Let N,M ∈ Or Mfk , and let f be a (smooth) injection of M into N . We say that f is
positive (resp., negative), if for any x ∈ M the derivative f∗(x) : Tx M → T f (x) N is
positive (resp., negative). Thus, a positive mapping RESPECTS orientations.

x

-x

0

Example. The mapping f : Sk → Sk, x 7→ −x , where Sk denotes
the unit sphere in Rk+1, is positive if k is odd, and is negative if k is even.

Induced orientation
Let M be an oriented k-manifold with a boundary.The induced orientation
on ∂M is given by the rule: for each x ∈ ∂M

[h1, . . . , hk−1] ∈ or Tx(∂M) :⇔ [ν, h1, . . . , hk−1] = or Tx M,

where ν is the (uniquely defined) unit normal vector to M at x , such that −ν is a tangent
vector to M at x (note that Tx M is here a (k-dimensional) HALF-space).

Examples.
1. 2.

ν
1

M
(disc)

1

∂M

1
ν

(ball)
M

2
12

∂M

[ν, 1] = or M [1] = or ∂M [ν, 1, 2] = or M [1, 2] = or ∂M

Lemma 10.5.2. Let in the cube [0, 1]k its faces im I k
(i,α) are equipped with with the

orientation induced by the canonical orientation in [0, 1]k. Then I k
(i,α) is positive iff i + α

is even:
sgn I k

(i,α) = (−1)1+α.

⊳ EXERCISE. [Hint: see Example 2 (p. 136).] ⊲

Corollary 10.5.3. Let c be a k-cube in Rn , and let im c be oriented by the condition that
c is positive. Let the faces im c(i,α) be equipped by the induced orientation. Then c(i,α) is
positive iff i + α is even:

sgn c(i,α) = (−1)i+α .
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10.6 Integral of a form on an oriented manifold

Throughout this section M denotes an ORIENTED k-manifold with a boundary.

Integral over a chain on a manifold
Let c be a k-cube in M (that is, a k-cube in Rn , such that im c ⊂ M), and let ω ∈ �k(M).
We put just as for cubes in Rn ∫

c
ω :=

∫

I k
c∗ω.

Integrals over chains on M are defined once again ”by linearity“:
∫
∑

ai ci

ω :=
∑

ai

∫

ci

ω (the sums are FINITE).

Chart cubes
We say that a k-cube c in M is a chart cube if there exists a chart ϕ : Ṽ → V for M such
that

Ṽ ⊃ [0, 1]k and c = ϕ|[0,1]k . (1)

Thus each chart cube is an injection, so its SIGN is determined (with respect to the canonical
orientation on [0, 1]k).

Let ω be a k-form on M . If there exists a chart k-cube c in M such that

suppω ⊂ im c (2)

then we put ∫

M
ω := sgn c

∫

c
ω (3)

supp ω

c2 c1

[0,1] k c1
-1(C)c2

-1(C)

supp c1
*ωsupp c2

*ω

c2
-1 c1o

IC:=im c1 im c2 M

kR

Theorem 10.6.1. This definition is correct,
that is, does not depend on the choice of c: if
c1, c2 are two chart k-cubes in M such that

suppω ⊂ im c1 ∩ im c2,

then

sgn c1

∫

c1

ω = sgn c2

∫

c2

ω.

⊳ sgn c1

∫

c1

ω = sgn c1

∫

I k
c∗1ω = sgn c1

∫

I k
(c2 ◦ (c−1

2 ◦ c1)︸ ︷︷ ︸
defined only on c−1

1 (C),
but suppω ⊂ C

)∗ω

= sgn c1

∫

I k
(c−1

2 ◦ c1)
∗(c∗2ω︸︷︷︸
as a k-form

on Rk

= g det

)
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Th on det= sgn c1

∫

I k
(g ◦ c−1

2 c1) det(c−1
2 ◦ c1)

′
︸ ︷︷ ︸

= sgn(c−1
2 ◦ c1)

′
︸ ︷︷ ︸

Chain Rule and
def. of sgn
= (sgn c2)(sgn c1)

| det(c−1
2 ◦c1)|

det

= sgn c2

∫

[0,1]k
(g ◦ (c−1

2 ◦ c1))| det(c−1
2 ◦ c1)

′| =
Th on change

of var’s

sgn c2

∫

[0,1]k
g

c∗2ω=g det= sgn c2

∫

I k
c∗2ω = sgn c2

∫

c2

ω. ⊲

Partitions of manifolds

M

U

U
c

c
  ϕ

ϕ

Lemma 10.6.2. Let M be compact. There exists a
finite covering O of M by RELATIVELY open (that
is, open in M equipped with the topology induced
from Rn) sets U, each of which is contained in the
image of some chart cube.
⊳ It follows obviously from the fact that for each
point of M it is fulfilled either (1) or (2) (see the
picture). ⊲

Lemma 10.6.3. For any compact M there exists a finite partition of unity 9 on M,
submitted to the covering O from Lemma 10.6.2.

(The definition of a partition of unity for manifolds is the same as early, merely
now functions ϕ ∈ 8 are functions on M; but we know what is a smooth function on a
manifold.)
⊳ This follows from the following lemma ⊲

Lemma 10.6.4. For any M and any covering O of M by relatively open sets there exists
a partition of unity on M, submitted to O.
⊳ Each U ∈ O can be represented as U ′ ∩ M , where U ′ is an open set in Rn . The family
O′ of all such U ′ is an open covering of M in Rn . Let 8′ be a partition of unity for M
submitted to O′ Then 8 := {ϕ|M : ϕ ∈ 8′} is what we need. (Note that ϕ|M is a smooth
function on M (see 10.3).) ⊲

Integral over a manifold
For a compact M and a k-form ω on M we put

∫

M
ω :=

∑

ϕ∈8

∫

M
ϕω

where ϕ is a FINITE partition of unity for M submitted to a coveringO of M by RELATIVELY

OPEN sets, each of which is contained in the image of some CHART cube, and the integrals
in the sum are defined by the formula (3) on p. 138.

Such a covering O and such a partition 8 do exists by Lemmas 10.6.2. and 10.6.3.,
and it can be shown that the so defined integral

∫
M ω does not depend on the choice of O

and 8.
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10.7 Stokes Theorem

Theorem 10.7.1. (Stokes) Let M be a compact oriented k-manifold with a boundary in
Rn , and let ω ∈ �k−1(M). Then

∫

M
dω =

∫

∂M
ω

where ∂M is equipped by the induced orientation.
⊳ Case 1: There exists a chart k-cube c in M such that suppω ⊂ int(im c).
(Of course suppω := cl {x ∈ M : ω(x) 6= 0}, the closure IN M , but since M is compact,
it is the same as the closure in Rn .)

supp ω
im c

∂M

Wlog we can assume that c is positive (if there exists a negative chart cube with the
mentioned property, then obviously there exists also a positive
chart cube with the same property). We have

∫

M
dω =

∫

c
dω =

∫

I k
c∗dω =

∫

I k
d(c∗ω)

Stokes Th
for chains=

∫

∂ I k
c∗ω =

∫

∂c
ω = 0,

since ω = 0 on

im(∂c) :=
⋃

i,α

im c(i,α).

(Note that Stokes Theorem for chains is applicable here, since c∗ω is, by the definition of
a smooth form on manifold, smooth in some open neighbourhood of [0, 1]k .)

But also
∫
∂M ω = 0, since ω = 0 on ∂M O.K.

supp ω
im c

Case 2: There exists a chart k-cube c in M , such that

(1)∂M ∩ im(∂c) = im c(k,0),

(2)suppω ⊂ rel int(im c).

Again wlog c is positive, so that

∫

M
dω

as in Case 1=
∫

∂c
ω =

∑

i,α

(−1)1+α
∫

c(i,α)
ω

ω = 0 on all the
faces but c(k,0)= (−1)k

∫

c(k,0)
ω

(3)= (−1)k sgn c(0,k)︸ ︷︷ ︸
Lm 10.5.2.= (−1)k

∫

∂M
ω =

∫

∂M
ω. O.K.

General case: We have
∫

M
dω

def=
finite!∑

ϕ∈8

∫

M
ϕdω

trick!=∑
dϕ=0,

since
∑
ϕ=1

∑

ϕ∈8

∫

M
(dϕ ∧ ω + ϕdω)

Cases 1,2=
∑

ϕ∈8

∫

∂M
ϕω

def=
∫

∂M
ω. ⊲
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10.8 Classical special cases

In this section we discuss classical notions of divergence and rotor. For this end we need
some special 1- and 2-forms, named length element and area element, resp.

Length element

M
τ

Let M be an oriented 1-manifold (maybe with a boundary) in R3, let τ denote the unit
positive (that is, respecting the orientation) tangent vector to M .

The length element ds on M is the 1-form ON M , defined by the
rule

(1)ds(x)h := 〈τ, h〉 (h ∈ Tx M)

Theorem 10.8.1. Let M ∈ Or Mf1
∂(R

3), let τ = (τ1, τ2, τ3) be the unit positive positive
vector field on M, and let ds be the length element on M. Then

a) ds = τ1dx + τ2dy + τ3dz,
b) τ1ds = dx, τ2ds = dy, τ3ds = dz.

Of course, here dx, dy, dz denote the RESTRICTIONS on M of the 1-forms dx, dy, dz on
R3.

⊳ a) ds · h
(1)= 〈τ, h〉 = τ1h1 + τ2h2 + τ3h3 = τ1dx · h + τ2dy · h + τ3dz · h =

(τ1dx + τ2dy + τ3dz)h.
b) Let h ∈ Tx M . Then h = ατ for some α ∈ R. Hence

(τ1ds)h = τ1(ds · h) (1)= τ1︸︷︷︸
dx ·τ
〈τ, ατ 〉︸ ︷︷ ︸
=α

= dx · ατ︸︷︷︸
=h

= dx · h,

and analogously for dy, dz. ⊲

Definition. The length of a 1-dimensional compact oriented manifold M in R3 is
∫

M ds.

Area element

h1

h2

ν

Let M be an oriented 2-manifold in R3 (maybe with a boundary), and let ν be the unit
normal vector to M , positive in the sense that

[h1, h2] ∈ or M ⇒ [ν, h1, h2] = or R3.

The area element dA on M is the 2-form on M , defined by
the rule

dA(x)hk := det(h, k, ν) (h, k ∈ Tx M).

Theorem 10.8.2. Let M ∈ Or Mf2
∂(R

3), let ν = (ν1, ν2, ν3) be the positive unit normal
vector field on M, and let dA be the areal element on M. Then

a) dA = ν1dy ∧ dz + ν2dz ∧ dx + ν3dx ∧ dy;
b) ν1dA = dy ∧ dz, ν2dA = dz ∧ dx, ν3dA = dx ∧ dy.

⊳ 1◦ For h, k ∈ R3 define the vector product h × k by the rule

∀t ∈ R3 ... 〈h × k, t〉 := det(h, k, t). (2)
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Applying (2) to t = ei , we conclude that

h × k =
(∣∣∣∣

h2 h3
k2 k3

∣∣∣∣ ,
∣∣∣∣

h3 h1
k3 k1

∣∣∣∣ ,
∣∣∣∣

h1 h2
k1 k2

∣∣∣∣
)
. (3)

It follows at once from (2) that
h × k 6 lin{h, k}. (4)

(Indeed if t is a linear combination of h and k, then det(h, k, t) = 0.) Hence

∀h, k ∈ Tx M
... h × k = αν for some α ∈ R. (5)

2◦ Proof of a). ⊳⊳ ∀h.k ∈ Tx M
... dA(x)hk = det(h, k, ν) = ν1

∣∣∣∣
h2 h3
k2 k3

∣∣∣∣
︸ ︷︷ ︸
=(dy∧dz)hk

+ . . . =

(ν1dy ∧ dz + . . .)hk. ⊲⊲

3◦ Proof of b). ⊳⊳ (ν1dA)hk = ν1(dAhk) = ν1 det(h, k, ν)
(2)= ν1〈h × k, ν〉 (5)= αν1 =

α〈e1, ν〉 = 〈e1, αν〉 (5)= 〈e1, h × k〉 (3)=
∣∣∣∣

h2 h3
k2 k3

∣∣∣∣ = (dy ∧ dz)hk. ⊲⊲ ⊲

Definition. The area of 2-dimenstional compact oriented manifold M in R3 is
∫

M dA.

Theorem on rotor
Let M ∈ Or Mf2

∂(R
3), and let F = (F1, F2, F3) be a vector field in R3. Put

ω := F1dx + F2dy + F3dz.

Then

dω = (D2 F3 − D3 F2)dy ∧ dz + (D3 F1 − D1 F3)dz ∧ dx + (D1 F2 − D2 F1)dx ∧ dy.

We define the rotor rot F of the vector field F as the vector vector formed by the coefficients
of this form:

rot F :=
(∣∣∣∣

D2 D3
F2 F3

∣∣∣∣ ,
∣∣∣∣

D3 D1
F3 F1

∣∣∣∣ ,
∣∣∣∣

D1 D2
F1 F2

∣∣∣∣
)
.

Stokes theorem yields
∫

M
((D2 F3 − D3 F2︸ ︷︷ ︸

(rot F)1

) dy ∧ dz︸ ︷︷ ︸
ν1dA

+ . . .) =
∫

∂M
(F1 dx︸︷︷︸
=τ1ds

+ . . .),

ν
rot F

M

τ
∂M

F

whence it follows that

(6)
∫

M
〈rot F, ν〉dA =

∫

∂M
〈F, τ 〉ds.

Physical meaning of (6) is: the FLOW of the rotor of a
vector field through a surface is equal to the CIRCULATION of
this vector field over the contour.

Remark. 1. Physically, rot F is not a vector, since the direction of so defined rot F depends
on definition of d.

2. In English language literature one use more oft the termini “curl” instead of “rotor”.
3. The so-called Green formula

∫
∂M αdx + βdy =

∫
M (∂β/∂x − ∂α/∂y)dxdy is a

special case of (6), corresponding to F3 = 0 and to a FLAT surface, parallel to x, y plane.
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Theorem on divergence
Let now M ∈ Or Mf2

∂(R
3) (equipped with the orientation of R3), and let again F be a

vector field in R3. Put

ω := F1dy ∧ dz + F2dz ∧ dx + F3dx ∧ dy.

Then
dω = (D1 F1 + D2 F2 + D3 F3) det .

The quantity in the brackets is called the divergence of the field F and is denoted by div F :

div F := D1 F1 + D2 F2 + D3 F3.

Stokes formula yields
∫

M
(D1 F1 + . . .) det =

∫

∂

(F1 dy ∧ dz︸ ︷︷ ︸
=ν1dA

+ . . .),

whence it follows that ∫

M
div F =

∫

∂M
〈F, ν〉dA. (7)

F

ν The physical sense of (7) is: the flow of the vector
field through a closed surface OUTSIDE is equal to the
integral of the divergence of the field over the region
inside this surface.





Chapter 11

Functions of complex variable

11.1 Analytic functions

We can identify the set C of complex numbers with the real plain R2. More precisely, if
we put

α : C→ R2, z 7→ (Rez,Imz) =: z̃ (we call z̃ the representative of z),

β : R2 → C, (x, y) 7→ x + iy,

then
α ◦ β = id, β ◦ α = id .

By this identification, the norm in C, defined by the formula

‖z‖ := |z|,

coincides with Euclidean norm in R2. So we can identify C and R2 also as topological
spaces.

If
x = ̺ cos θ, y = ̺ sin θ,

y

x

(x,y)ρ

θ

we say that ̺, θ are polar coordinates of (x, y) and of z = x + iy and we write

(x, y) ∼ {̺, θ}, and z ∼ {̺, θ}.
E.g., 0 ∼ {0, 0}, 0 ∼ {0, 22π}, i ∼ {1, π/2}, i ∼

{1,−3π/2}.

Lemma 11.1.1. If z1 ∼ {̺1, θ1} , z2 ∼ {̺2, θ2}, then z1z2 ∼ {̺1̺2, θ1 + θ2}.
⊳ (̺1 cos θ1 + i̺1 sin θ1)(̺2 cos θ2 + i̺2 sin θ2) = ̺1̺2(cos θ1 cos θ2 − sin θ1 sin θ2︸ ︷︷ ︸

=cos(θ1+θ2)

) +

i̺1̺2(sin θ1 cos θ2 − cos θ1 sin θ2︸ ︷︷ ︸
=sin(θ1+θ2)

). ⊲

Lemma 11.1.2. Let c = a + i̺ ∼ {̺, θ}. Consider the operator of multiplication by c

A : C→ C, z 7→ cz,

145
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and denote by Ã the corresponding operator in R2:

Ã := α ◦ A ◦ β.

C
A

K C
β ↑ ↓ α
R2 Ã

K R2

Then Ã ∈ L(R2,R2), and the matrix of Ã is equal to
(

a −b
b a

)
= ̺

(
cos θ − sin θ
sin θ cos θ

)
.

In other words, Ã is the composition of the TURN by the angle θ and blowing up with
the coefficient ̺ (≥ 0).

⊳ (a + ib)(x + iy) = (ax − by)+ i(ay + bx), and

(
a −b
b a

)(
x
y

)
=
(

ax − by
ay + bx

)
. ⊲

C-differentiability
We say that a function f : C→ C is C-differentiable at a point ẑ ∈ C, and we write

f ∈ DifC(ẑ),

if there exists the limit (in the norm)

lim
z→ẑ
(z 6=ẑ)

f (z)− f (ẑ)

z − ẑ
=: f ′(ẑ) ∈ C,

called the (C-) derivative of f at ẑ. If G is an open subset of C, and f is differentiable at
each point of G, then we say that f is C-differentiable in G, and we write

f ∈ DifC(G).

Examples.

1. z 7→ zn is C-differentiable everywhere if n = 0, 1, 2 . . ., and is C-differentiable in C\0
if n = −1,−2, . . .; (zn)′ = nzn−1.

2. z 7→ z is nowhere C-differentiable. (Verify!)

C
f

K C
β ↑ ↓ α
R2 f̃

K R2

Notation: For any f : C→ C we denote by f̃ the corresponding
“real” mapping:

f̃ := α ◦ f ◦ β,

that is
f̃ (x, y) := (Re( f (x + iy))︸ ︷︷ ︸

=:u(x,y)

,Im( f (x + iy))︸ ︷︷ ︸
=:v(x,y)

)

For short we write f = u + iv. Thus

f = u + iv :⇔ f̃ = (u, v).

Theorem 11.1.3. Let f = u + iv. The following conditions are equivalent:

a) f ∈ DifC(z), f ′(z) = a + ib ∼ {̺, θ};
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b) f̃ ∈ Dif(̃z), f̃ ′(̃z) =
(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)∣∣∣∣̃
z
=
(

a −b
b a

)
= ̺

(
cos θ − sin θ
sin θ cos θ

)
.

In other words, C-differentiability is a SPECIAL case of differentiability where the
derivative is the composition of turn an a blowing up with non-negative coefficient.
⊳ Just as in the classic real case, f is C-differentiable at z iff it holds the decomposition

f (z + ζ ) = f (z)+ f ′(z)ζ + r(ζ ),
r(ζ )

|ζ | K
|ζ |→0

0.

In “R2-language” this means that

f̃ (̃z + ζ̃ ) = f̃ (̃z)+ f̃ ′(z )̃ζ + r̃ (̃ζ ),
r̃ (̃ζ )

‖̃ζ‖ K
‖̃ζ‖→0

0;

here f̃ ′(z) denotes the linear operator R2 → R2, corresponding to the operator of mul-
tiplication by f ′(z) (Lemma 11.1.2.). So our assertion follows from Lemma 11.1.2. ⊲

Corollary 11.1.4. Let f be C-differentiable at a point z. Then

∂ f (z)

∂x
= f ′(z),

∂ f (z)

∂y
= i f ′(z).

Here by partial derivatives of f we mean partial derivatives of the mapping

f ◦ β : R2 → C, (x, y)→ f (x + iy),

where C is considered as 2-dimensional vector space over R.
⊳ Since differentiability in complex sense is a special case os differentiability in real
sense, and since for real case Chain Rule is valid, we have

∂ f (z)

∂x
= ∂ f (x + iy)

∂x
= f ′

R
(x, y) · ∂

∂x
(x + iy)

︸ ︷︷ ︸
=1∈C

= f̃ ′
R
(z̃) · (1, 0) = f ′

C
(z) · 1 = f ′

C
(z),

∂ f (z)

∂y
= ∂ f (z)

∂y
= f ′

R
(x + iy) · ∂

∂y
(x + iy)

︸ ︷︷ ︸
=i∈C

= f̃R(z̃) · (0, 1) = f ′
C
(z) · i = i f ′

C
(z). ⊲

Cauchy-Riemann conditions
From the equality (

∂u/∂x ∂u/∂y
∂u/∂x ∂v/∂y

)
=
(

a b
−b a

)

in the assertion (b) in the Theorem above it follows immediately that

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1)

These are so called Cauchy-Riemann (or d’Alambert-Euler) conditions. More precisely,
let G ∈ Op(C). We say that a function f : G → C, f = u+ iv, satisfies Cauchy-Riemann
conditions, and we write

f ∈ CR(G),

if u, v ∈ C1(G) and (1) is true.
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Analytic functions
Let G ∈ Op(C). We say that a function f : G→ C, is analytic, and we write

f ∈ An(G),

if f ∈ DifC(G) and f ′ : G → C is continuous.
NB It is possible to show that if f is C-differentiable in G then f ′ IS AUTOMATICALLY

continuous. But it is a hard theorem.

Example. z 7→ zn is analytic in the whole C if n ∈ N, and is analytic in C\0 if n ∈ Z\N.

Theorem 11.1.5. A function f : G → C is analytic iff it satisfies Cauchy-Riemann
conditions:

An(G) = CR(G).

⊳ This follows at once from Theorem 11.1.3. ⊲

11.2 Complex forms

For any M ∈ Mfk
∂ (R

n) and any p ∈ {0, 1, . . . , k} we define

�
p
C
(M)

as the set of pairs (ω1, ω2) ∈ �p(M) ×�p(M) written as ω1 + iω2; for short we put

ω + i0 =: ω.

We equipe this set by the following structure of vector space over C (below a + ib ∈ C):

(a + ib)(ω1 + iω2) := (aω1 + bω2)+ i(bω1 + aω2), (1)

(ω1 + iω2)+ (ω3 + iω4) := (ω1 + iω3)+ i(ω2 + iω4). (2)

Define the conjugate form by the rule

ω1 + iω2 := ω1 − iω2, (3)

and define the operations ∧, d, ∗,
∫

M component-wise:

(ω1 + iω2) ∧ (ω3 + iω4) := (ω1 ∧ ω3 − ω2 ∧ ω4)+ i(ω2 ∧ ω3 + ω1 ∧ ω4), (4)

d(ω1 + iω2) := dω1 + idω2, (5)

g∗(ω1 + iω2) := g∗ω1 + ig∗ω2 (g : M → N), (6)∫

M
(ω1 + iω2) :=

∫

M
ω1 + i

∫

M
ω2. (7)

Examples.

1. Let x and y denote, in accord with a classical tradition, the projections (x, y) 7→ x and
(x, y) 7→ y in R2. Then

z := x + iy ∈ �0
C
(R2), z= x − iy ∈ �0

C
(R2),

dz = dx + idy ∈ �1
C
(R2), dz= dz = dx − idy ∈ �1

C
(R2).

2. Each function f : G → C, f : u + iv, G ∈ Op(C), with sufficiently smooth u, v may
be considered as a complex 0-form:

f ∈ �0
C
(G).
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(In the last relation we consider G as an open set in R2.) What means “sufficiently”,
depends on the context. Sometimes just continuity is sufficient.
NB All the result for “real” forms retain (as it is easy to verify) for complex ones, e.g. for
C-forms as for real ones, it holds

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)degω1ω1 ∧ dω2, (8)

d2 = 0, (9)∫

M
dω =

∫

∂M
ω (for compact oriented M). (10)

Theorem 11.2.1. Let G ∈ Op(R2), and let f, g ∈ �0
C
(G) (that is, f and g are functions

G → C). Then the following assertions are true:

a) f ∈ An(G)⇔ d( f dz) = 0;
b) f ∈ An(G)⇒ d f = f ′dz;
c) d f = gdz⇒ f ∈ An(G), g = f ′.

This can be summarized so:

d( f dz) = 0⇔ f ∈ An ⇔ d f = gdz⇒ g = f ′. (11)

NB The equation d( f dz) = 0 is equivalent to d f ∧dz = 0 (since d2 = 0), and the equation
d f = gdz may be formally written as

d f

dz
= g.

Both equations say that d f and dz are proportional (with COMPLEX coefficient) (“parallel”).
⊳ Let f = u + iv, g = p + iq .

a) d( f dz)
d2=0= d f ∧ dz = (du + idv) ∧ (dx − idy)
(4)= (du ∧ dx − dv ∧ dy)+ i(dv ∧ dx + du ∧ dy)

du=(∂u/∂x)dx+(∂u/∂y)dy, dv=(∂v/∂x)dx+(∂v/∂y)dy

↓=
(
−
(
∂u

∂y
+ ∂v
∂x

)
+ i

(
∂u

∂x
− ∂v
∂y

))
dx ∧ dy.

Hence

d( f dz) = 0⇔
(
∂u

∂y
+ ∂v
∂x
= 0,

∂u

∂x
+ ∂v
∂y
= 0

)
def.⇔ f ∈ CR(G)

Th.11.1.5.⇔ f ∈ An(G).

b) f ∈ An(G)
Th.11.1.5.⇒ f ∈ CR(G)⇒ d f = ∂ f/∂xdx + ∂ f/∂ydy

Cor. 11.1.4.= f ′dx + i f ′dy
= f ′(dx + idy) = f ′dz.

c) d f = gdz ⇒ d( f dz)
d2=0= d f ∧ dz = gdz ∧ dz = 0

a)⇒ f ∈ An
b)⇒ d f = f ′dz

obv.⇒ f ′ = g. ⊲
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11.3 Integrals of complex 1-forms

c(0)=
=c(1)

Theorem 11.3.1. Let G ∈ Op(C), let c : [0, 1] → G be a closed
curve (that is, a 1-cube with c(0) = c(1)), and let f ∈ �0

C
(G) (that

is, f : G → C). Then
∫

c
d f = 0.

⊳
∫

c d f =
∫

I 1 c∗d f =
∫

I 1 d (c∗ f )︸ ︷︷ ︸
= f ◦c=:g

=
∫

I 1 g′ =
∫

[0,1] g′ =
∫ 1

0 g′(t)dt = g(1)− g(0) =

f (c(1))− f (c(0)) = 0. ⊲

Example. For any n ∈ Z \ {−1}, and for any closed curve in C \ {0}
∫

c
zndz = 0.

⊳ For n 6= −1 we have zndz = d

(
1

n + 1
zn+1

)

︸ ︷︷ ︸
∈An(C\0)

. ⊲

C

Theorem 11.3.2. Let C ∈ Comp Or Mf1(R2) (without boundary!), and let
f ∈ �0

C
(C). Then

∫

C
d f = 0

⊳

∫

C
d f

Stokes Th=
∫

∂C
f
∂C=∅= 0. ⊲

Let M be a compact 2-manifold in R2. Then M is orientable (verify!), and we always
suppose that M is equipped with the orientation from R2. Further

◦
M = intR2 M = M \ ∂M

(verify!). We say that a function f : M → C is analytic on M , and we write

f ∈ An(M),

if it is analytic in
◦

M (we identify R2 and C!) and is continuous on M . Thus,

An(M) := An(
◦
M) ∩ C(M).

M

∂M

Theorem 11.3.3. (Cauchy) Let M ∈ Comp Mf2
∂(R

2), and let f ∈
An(M). Then

∫

∂M
f dz = 0

⊳

∫

∂M
f dz

Stokes Th.=
∫

M
d( f dz)︸ ︷︷ ︸

Th. 11.2.1. =0

= 0. ⊲
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If f /∈ An(M), the integral can be non-zero, as the following example shows.

∂Bρ(0)

Example. Let M = B̺(0) (the disc of radius ̺ with the center at
0). Then

∫

∂ B̺(0)

dz

z
= 2π i.

(Note that (z 7→ 1/z) ∈ An(C \ 0).)
⊳ It is clear that ∫

∂ B̺(0)

dz

z
=
∫

c

dz

z
,

where c : [0, 1]→ R2, t 7→ (̺ cos 2π t︸ ︷︷ ︸
=:c1

, ̺ sin 2π t︸ ︷︷ ︸
=:c2

). But

∫

c

dz

z
=
∫

c

dx + idy

x + iy
=
∫

c

(x − iy)(dx + idy)

x2 + y2 =
∫

c
c∗
(
(x − iy)(dx + idy)

x2 + y2

)

=
∫ 1

0

(c1(t)− ic2(t))(c′1(t)dt + ic′2(t)dt

c2
1(t)+ c2

2(t))

= 2π i
∫ 1

0
(cos 2π t − i sin 2π t)(cos 2π t + i sin 2π t)︸ ︷︷ ︸

=1

= 2π i. ⊲

Lemma 11.3.4. Let B := B̺(a), f ∈ C(∂B). Then

∣∣∣∣
∫

∂B
f dz

∣∣∣∣ ≤ 2π̺max
∂B
| f |.

⊳ Let a =: a1 + ia2. Put c(t) := (a1 + ̺ cos 2π t︸ ︷︷ ︸
=:c1

, a2 + ̺ sinπ t︸ ︷︷ ︸
=:c2

). Then

∣∣∣∣
∫

∂B
f dz

∣∣∣∣ =
∣∣∣∣
∫

c
f dz

∣∣∣∣ =

∣∣∣∣∣∣∣

∫

I 1
( f ◦ c) c∗dz︸︷︷︸

=(c′1+ic′2)dt

∣∣∣∣∣∣∣
=
∣∣∣∣
∫ 1

0
f (c(t))(c′1 + ic′2)dt

∣∣∣∣

Exam. 11.3.5.≤ max
0≤t≤1

| f (c(t))(c′1 + ic′2)|︸ ︷︷ ︸
= | f (c(t))| |c′1 + ic′2|︸ ︷︷ ︸

=2π̺

≤ 2π̺max
∂B
| f |. ⊲

Exercise 11.3.5. Prove, using Mean Value Theorem, that for any continuous function
f : [0, 1]→ C ∣∣∣∣

∫ 1

0
f (t)dt

∣∣∣∣ ≤ max
0≤t≤1

| f (t)|.

Exercise 11.3.6. More general, prove that if C ∈ Comp Or Mf1(R2), f ∈ �0
C
(C), then

∣∣∣∣
∫

C
f dz

∣∣∣∣ ≤
∫

C
| f |ds.
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11.4 Cauchy formula

Example 11.3.6. is a special typical case of the following

Theorem 11.4.1. Let M ∈ Comp Mf2
∂(R

2), and let f ∈ An(M). Then for each point

a ∈ ◦M(= M \ ∂M)

∫

∂M

f (z)dz

z − a
= 2π i f (a) (Cauchy Formula).

In other words, the values of an analytic function inside a region are uniquely defined
by the values on the boundary.

⊳ Let ε > 0 be such that the disc B := Bε(a) lies in
◦
M . Obviously f (z)/(z − a) ∈

An(M \ ◦M). Hence by Cauchy Theorem

B
a

M \ B 0 =
∫

∂(M\◦B)

f (z)dz

z − a
=
∫

∂M

f (z)dz

z − a
−
∫

∂B

f (z)dz

z − a
.

So it suffices to show that
∫

∂B

f (z)dz

z − a
K

ε↓0
2π i f (a). (1)

Since f ∈ DifC(a), we have

f (z) = f (a)+ f ′(a)(z − a)+ r(z − a),
r(ζ )

|ζ | K
|ζ |→0

0. (2)

Therefore,
∫

∂B

f (z)dz

z − a
= f (a)

∫

∂B

dz

z − a︸ ︷︷ ︸
[1]

+
∫

∂B

(
f ′(a)+ r(z − a)

z − a

)

︸ ︷︷ ︸
=:g(z)

dz.

︸ ︷︷ ︸
[2]

(3)

Just as in Example 11.3.6., [1] = 2π i. As to [2], the function g is by (2) bounded (in the
norm) in some neighbourhood of a, hence, by Lemma 11.3.4., [2]→ 0 as ε ↓ 0, and (1)
is proved. ⊲

Theorem 11.4.2. Let M ∈ Comp Mf2
∂(R

2), f ∈ An(M). Then f ∈ C∞
C
(
◦
M), and

∀n ∈ N ∀a ∈ M
... f (n)(a) = n!

2π i

∫

∂M

f (z)dz

(z − a)n+1
. (4)

Thus if f is just one time continuously C-differentiable, it is infinitely C-differen-
tiable! ⊳ For n = 1 this is Theorem 11.4.1. Let it be true for n − 1, that is,

∀a ∈ M
... f (n−1)(a) = n − 1

2π i

∫

∂M

f (z)dz

(z − a)n
. (5)

Differentiation of (5) in a (which is possible as it can be shown) yields (4). ⊲
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NB For ANY continuous function ϕ : ∂M → C, Cauchy formula

f (z) := 1

2π i

∫

∂M

ϕdζ

ζ − z
(6)

defines an analytic function f :
◦
M → C, but in general this f , extended to ∂M as ϕ, is

NOT continuous! IF ϕ = f |∂M for some f ∈ An(M), then Cauchy formula does reproduce
the original function f .

11.5 Representation by series

We say that a series
∑∞

n=0 cn , c ∈ C, converges, and we write

∞∑

n=0

cn ;,

if the sequence of partial sums sN :=∑N
n=0 cn converges (in the norm ‖z‖ = z) to some

c ∈ C , that is, if |sN − c| K
N→∞

0, and in such case we write
∑∞

n=0 cn = c.

Uniform convergence
Consider a FUNCTION SERIES

∑∞
n=0 fn , fn : C→ C. If

∑∞
n=0 fn ; uniformly in z ∈ A

we write
∑

fn

A
;
; .

We say that a function series is majorized on A ⊂ C by a real series
∑

tn , tn ≥ 0, if

∀z ∈ A ∀n ∈ N
... | fn(z)| ≤ tn .

Lemma 11.5.1. Let
∑∞

n=0 tn , be a CONVERGING real sequence, and let function series
∑∞

n=0 fn , fn : C → C, is majorized on A ⊂ C by
∑

tn that is, ∀n ... | fn(z)| ≤ tn . Then
∑

fn

A
;
;.

⊳ ∀z ∈ A
...

∣∣∣∣∣

N∑

n=0

fn(z)−
M∑

n=0

fn(z)

∣∣∣∣∣
if e.g. N > M=

∣∣∣∣∣

N∑

n=M+1

fn(z)

∣∣∣∣∣ ≤
N∑

n=M+1

| fn(z)| ≤
N∑

n=M+1

tn K
N,M→∞

0. ⊲

Member-wise integration and differentiation

Theorem 11.5.2. Let C ∈ Comp Or Mf1
∂(R

2), and let fn ∈ �0
C
(C) (that is, fn = un+ ivn ,

where un, vn are (at least) continuous functions C → R). If fn K
n→∞ f UNIFORMLY on

C then ∫

C
fndz →

∫

C
f dz.

⊳ Taking into account the definition of
∫

M ω, this follows from the corresponding theorem
for real-valued functions on [0, 1]. ⊲
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Corollary 11.5.3. Let C ∈ Comp Or Mf1
∂(R

2), f ∈ �0
C
(C) and

∑∞
n=0 fn

C
;
;. Then

∫

C

( ∞∑

n=0

fn

)
dz =

∞∑

n=0

∫

C
fndz.

Theorem 11.5.4. Let M ∈ Comp Mf1
∂(R

2), and let fn ∈ An(M). If fn K
n→∞ f UNIFOR-

MLY on M, then also fn ∈ An(M), and

∀a ∈ ◦M ∀k ∈ N
... f (k)n (a) K

n→∞ f (k)(a).

⊳ 1◦ f ∈ C(M) as an uniform limit of continuous function.

2◦ For each a ∈ ◦M we have obviously fn(z)/(z − a) K
n→∞ f (z)/(z − a) UNIFORMLY ON

∂M , hence

f (a) = lim fn(a)
Cauchy formula= lim

1

2π i

∫

∂M

fn(z)dz

z − a
Th 11.5.2.= 1

2π i

∫

∂M

f (z)dz

z − a
.

So by NB from 11.4, f ∈ An(
◦
M). Thus, in view of 1◦, f ∈ An(M). 3◦ ∀a ∈ ◦M ∀k ∈ N

...

f (k)n (a)
Th. 11.4.2.= k!

2π i

∫

∂M

fn(z)dz

(z − a)k+1

Th 11.5.2.
K

k!

2π i

∫

∂M

f (z)dz

(z − a)k+1
Th. 11.4.2.= f (k)(a). ⊲

Corollary 11.5.5. Let M ∈ Comp Mf2
∂(R

2), fn ∈ An(M),
∑∞

n=0 fn

M
;
; f . Then also

f ∈ An(M), and

∀k ∈ N
... f (k) =

∞∑

n=0

f (k)n in
◦

M .

Convergence disc
Bρ(a)

az^

Theorem 11.5.6. (Abel) Let â, z ∈ C, â 6= z. If a series
∑∞

n=0 cn(z−a)n

converges for z = ẑ then for each ̺ > 0 such that ̺ < |ẑ−a| this series
converges UNIFORMLY on B̺(a).
⊳ 1◦ Since

∑
cn(ẑ − a)n ;, the sequence |cn(ẑ − a)n| converges to

zero and hence it is bounded, e.g. by α > 0.
2◦ Now, let z ∈ B̺(a). Then |z − a|/|ẑ − a| ≤ ̺/|ẑ − a| =: k < 1, hence

|cn(z − a)n| ≤ |cn(ẑ − a)n|︸ ︷︷ ︸
1◦≤α

(|z − a|/|ẑ − a|︸ ︷︷ ︸
≤k

)n ≤ αkn .

Thus, our series is majorized on B̺(r) by the converging real series
∑
αkn , and our

assertion follows from Lemma 11.5.1. ⊲

It follows from this theorem that the set of all points z, where a power series
∑

cn(z−
a)n converges, is either merely {a}, or is the whole C, or lies between

◦
B̺(a) and B̺(a)

for some ̺ > 0. In other words, the CONVERGENCE REGION is, up to the boundary, a DISC

with the center at a. We call it the convergence disc.
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Taylor formula

M

a
z

h

∂M

Lemma 11.5.7. Let M ∈ Comp Mf2
∂(R

2), let z, a ∈ ◦M(= M \ ∂M),
h := z − a, and let f ∈ An(M). Then for each n ∈ N

f (z) =
n∑

k=0

1

k!
f (k)(a)hk + hn+1

2π i

∫

∂M

f (ζ )dζ

(ζ − z)(ζ − a)n + 1︸ ︷︷ ︸
=:rn (h)

.

⊳ f (z)
Cauchy formula= 1

2π i

∫

∂M

f (ζ )dζ

ζ − z
trick= 1

2π i

∫

∂M

f (ζ )dζ

(ζ − a)

(
1− z − a

ζ − a

) =

q := (z − a)/(ζ − a) = h/(ζ − a), (1− qn+1)/(1− q) = 1+ q + . . .+ qn

= 1

2π i

∫

∂M

f (ζ )

ζ − a

(
n∑

k=0

(
h

ζ − a

)n

+ 1

1− h

ζ − a

(
h

ζ − a

)n+1
)

dζ

=
n∑

k=0

hk 1

2π i

∫

∂M

f (ζ )dζ

(ζ − a)k+1
︸ ︷︷ ︸

Th.11.4.2. = f (k)(a)/n!

+hn+1

2π i

∫

∂M

f (ζ )dζ

(ζ − z)(ζ − a)n+1 . ⊲

Definition. Let G ∈ Op(R2), f ∈ An(G), a ∈ G. The series
∑∞

n=0 1/n! · f (n)(a)(z−a)n

is called Taylor series for f at a and is denoted by tsa f :

tsa f :=
∞∑

n=0

1

n!
f (n)(a)(z − a)n.

Theorem 11.5.8. Let B be a disc in R2 of a positive radius with center at a.

a) Let f ∈ An(
◦
B). Then tsa f ; f in

◦
B.

b) Let
∑∞

n=0 cn(z − a)n ; f in
◦
B. Then f ∈ An(

◦
B), and tsa f =∑∞n=0 cn(z − a)n.

Thus an analytic function can be uniquely represented in each “disc of analyticity”
by a power series w.r. to the center of the disc.

Bρ(a)
a

z

B

⊳ a) Let z ∈ ◦B , h = z − a. Choose ̺ > 0 such that z ∈ ◦B̺(a) ⊂
◦
B.

Then f ∈ An(B̺(a)) and k := h/̺ < 1. Hence we have for the rest
term rn in Taylor formula

|rn(h)| =
∣∣∣∣∣
hn + 1

2π i

∫

∂B̺(a)

f (ζ )dζ

(ζ − z)(ζ − a)n

∣∣∣∣∣

Lm 11.3.4.≤ 2π i̺
|h|n+1

2π
max
ζ∈∂B̺

∣∣∣∣
f (ζ )

ζ − z

∣∣∣∣
1

̺n+1 = const ·kn+1
K

n→∞ 0,

that is, tsa f ; f at z.

b) If
∑

cn(z − a)n ; in
◦
B, then, by Abel Theorem, this series converges uniformly

on each closed disc which is contained in
◦
B; hence, by Corollary 11.5.5., its sum f is
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analytic in
◦
B, and ∀ f ∈ N

... f (k)(a) = ∑∞
n=0

d
dzk

∣∣∣∣
z=a

(cn(z − a)n) = n!cn . It follows

that tsa f =∑ cn(z − a)n . ⊲

NB This theorem allows to EXTEND analytic functions, if the convergence disc of the
Taylor series is greater than the original disc of analyticity. These extensions can lead to
DIFFERENT values at one and the same “outer” point!

11.6 Elementary functions

We DEFINE exp, sin, etc by the SAME series representation as in real analysis:

ez := 1+ z + z2

2!
+ z3

3!
+ z4

4!
+ z5

5!
+ . . . , (1)

sin z := z − z3

3!
+ z5

5!
− . . . , (2)

cos z := 1− z2

2!
+ z4

4!
− . . . , (3)

sh z := z + z3

3!
+ z5

5!
+ . . . , (4)

ch z := 1+ z2

2!
+ z4

4!
+ . . . . (5)

Since all these series are majorized in each disc B̺ by the real series
∑∞

n=0 ̺
n/n! all they

converge in the whole C uniformly on each closed disc. So by Corollary 11.5.5., their
sums are analytic functions in the whole C.

It follows from (1)–(5) that

sin z = eiz − e−iz

2i
= −i sh(iz), sh z = ez − e−z

2
= −i sin(iz), (6)

cos z = eiz + e−iz

2i
= ch(iz), ch z = ez + e−z

2
= cos iz, (7)

and
ez = ch z + sh z = cos(iz)− i sin(iz). (8)

Putting z := iθ , θ ∈ R, we obtain

eiθ = cos θ + i sin θ (Euler formula). (9)

In particular

eiπ = −1. (10)

This formula connect three the most fundamental numbers in mathematics, e, π and i, and
is one of most beautiful mathematical formulas.

Relation (9) implies that ̺eiθ = ̺ cos θ + i̺ sin θ , which means that

̺eiθ ∼ {̺, θ} (̺ ≥ 0, θ ∈ R). (11)

Further the following basic property of the exponent function remains true:

ez1+z2 = ez1ez2 . (12)
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⊳ Multiplying the absolutely converging series for ez1 and ez2 , we obtain

ez1ez2 =
∞∑

k=0

zk
1

k!

∞∑

l=0

f zl
2l! =

∞∑

n=0

n∑

k=0

1

k!(n − k)!︸ ︷︷ ︸
1

n!

(
n

k

)
zk

1zn−k
2

=
∞∑

n=0

(z1 + z2)
n

n!
= ez1+z2 . ⊲

Logarithm
At last we define ln z as a complex number c such that ec = z. Such a number is defined
non-uniquely. Indeed,

∀n ∈ Z
... ec+2π in (12)= ec e2π i

︸︷︷︸
=1

= ec = z. (13)

Since
eln̺+iθ (12)= eln ̺eiθ ,

we see that if z ∼ {̺, θ} then one of the values of ln z is ln̺+ iθ . By (13), ln̺+ iθ+2π in,
n ∈ Z ,are also values of ln z. It can be verified that there is no other ones. Thus

z ∼ {̺, θ} ⇒ ln z = ln ̺ + i(2πn + θ). (14)

The fact that ln is a MULTI-VALUED function is just another form of the fact that the
representation z ∼ {̺, θ} is non-unique.

11.7 Residues

B a

U

Let a ∈ C, U ∈ Op Nba(C), and f ∈ An(U \ {a}). The residue of f at a is defined by the
formula

(1)resa f := 1

2π i

∫

∂B
f (z)dz,

where B is any disc with the center at a such that B ⊂ U and

a ∈ ◦B.

B\B1 2

This definition does not depend in the choice of B . Indeed if B1 and B2 are two different

such discs, e.g. B1 ⊂
◦
B2, then

0
Cauchy Th=

∫

∂(B2\B1)

f (z)dz =
∫

∂B2

f (z)dz −
∫

∂B1

f (z)dz.

Examples.

1. If f is analytic in a neighbourbood of a, then

resa
f (z)

z − a
= f (a). (2)

⊳ This follows at once from Cauchy formula. ⊲
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2. As a special case of previous example ( f = 1) we obtain

resa
1

z − a
= 1. (3)

3. For k = 2, 3, . . .

resa
1

(z − a)k
= 0. (4)

(See Example on page 150.)

a1 a2

∂M

Theorem 11.7.1. (on residues) Let M ∈ Comp Mf2
∂(R

2), let

a1, . . . , an ∈
◦
M(= M\∂M), and let f ∈ An(M\{a1, . . . , an}).

Then
∫

∂M
f dz = 2π i

n∑

k=1

resak f.

⊳ Let Bk be mutually disjoint discs with the centers at ak such that Bk ⊂
◦
M . Then

0
Cauchy Th=

∫

∂(M\⋃ ◦Bk)

f dz =
∫

∂M
f dz −

∑∫

∂Bk

f dz

︸ ︷︷ ︸
2π i·resak f

(note that ∂Bk as a part of ∂(M \⋃ ◦
Bk) has the orientation opposite to orientation of ∂Bk

itself). ⊲

This theorem reduces calculation of integrals to calculation of residues.

Calculation of residues
A point a ∈ C is a pole of degree n (or n-pole), n ∈ N, of a function f : U \ a → C,
(U ∈ Op Nba(C)) if the function (z − a)n f admits an analytic extension to U , but the
function (z − a)n−1 f does not.

Examples.

1. 0 is a 1-pole for 1/z, is a 2-pole for 1/z2, etc.

2. 1/sin z has 1-poles at z = 0,±π,±2π, . . ..

Theorem 11.7.2.

a) Let a be an n-pole for f . The there exist a closed disc B with the center at a such

that
◦
B 6= ∅ and f can be (uniquely) represented in

◦
B\ a by some series

∞∑

k=−n

ck(z − a)k, (ck ∈ C),

called the Laurent series for f at a; that is,

f =
∞∑

k=−n

ck(z − a)k in
◦
B\ a.

b) The residue of f at a is equal to the coefficient by (z − a)−1:

resa f = c−1.
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c) This residue can be calculated by differentiation:

resa f = 1

(n − 1)!

dn−1

dzn−1

∣∣∣∣
a
((z − a)n f )

= 1

(n − 1)!
lim
z→a

dn−1

dzn−1

(
(z − a)n f (z)

)
.

⊳ EXERCISE for you. [Hint: Apply Theorem 11.5.8. on Taylor series to (z−a)n f and then
use Examples 2 and 3 on page 157.] ⊲





Chapter 12

Ordinary differential equations

12.1 Analytic setting

A differential equation is an equation of the form

F
(

x, u(x), u′(x), u′′(x), . . . , u(p)(x)
)
= 0, (1)

where
u : X → Y,

u′ : X →L (X,Y )

...

u(p) : X →L (X, . . . , X︸ ︷︷ ︸
p

; Y ),

and
F : X × Y ×L (X,Y )× . . .×L (X, . . . , X; Y )→ Z .

Here X,Y, Z are (say) normed spaces; u is the unknown function, and (1) is to be fulfilled
at each point x of some open set U ⊂ X .

The order p of the highest derivative in (1) is called order of the equation.

Classification
If X = R we have an ordinary differential equation (ODE);
If X = Rn we have a partial differential equation (PDE);
If Y = R we have a scalar differential equation;
If Y = Rn we have a vector differential equation;
If Z = R we have one differential equation;
If Z = Rn we have a system of differential equations.

ODE’s
In ODE’s the unknown function is a function of ONE independent variable, which physi-
cally can be interpreted as TIME (and is denoted usually by t), and (1) can be interpreted
as a LAW of some process, of some evolution.

161
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The derivatives in t are often denoted (after Newton) by dots above, e.g.,

ẋ := dx

dt
, ẍ := d2x

dt2 .

Examples.

1. Inertial motion equation: ẍ = 0, x : R→ R3; this eqaution describes a free motion of
a point in the space (no external forces).

2. Pendulum equation: ẍ + x = 0, x : R → R; this equation
describes the motion of a point, on which the force act, that is
proportional to the displacement of the point, from an equilibrium
position and tends to return the point back.

3. Exponent equation: ẋ = kx , x : R → R; it describes a process where the speed of
grown of something is proportional to the present quantity of this something; e.g., for
k > 0 it may be a chain reaction, for k < 0 it may be a nuclear decay.

Thus, a general ODE looks as follows (now we write t instead of x , and x instead of
u, respectively X instead of Y ):

F
(

t, x, ẋ, ẍ, . . . , x (n)
)
= 0. (2)

Since all the derivatives of x : R→ X are again functions R→ X , now we have

F : R× Xn+1 → Z .

A solution of (2) is an n times differentiable function ϕ : (a, b)→ X (where (a, b) is an
non-empty interval in R, such that

∀t ∈ (a, b)
... F

(
t, ϕ̇(t), ϕ̈(t), . . . , ϕ(n)(t)

)
= 0.

NB Not every equation, containig derivatives in t , is an ODE. E.g., the equation ẍ(ẋ(t)) = 0
is NOT.

Reduction to a first order equation
We shall consider ONLY ODE’s SOLVED w.r. to the highest derivative:

dnx

dtn = F
(

t, x, ẋ, ẍ, . . . , x (n−1)
)
= 0. (3)

Theorem 12.1.1. Equation (3) is equivalent to the following system of n ODE’s of the first
order:

ẋ1 = x2
ẋ2 = x3

...

ẋn−1 = xn

ẋn = F(t, x1, x2, . . . , xn)





(4)

that is, to the equation (x1, . . . , xn)
· = (x2, . . . , xn, F(t, x1, x2, . . . , xn)).

⊳ If ϕ : (a, b)→ X is a solution of (3), then
(
ϕ, ϕ̇, ϕ̈, . . . , ϕ(n−1))
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is a solution of (4); v.v., if

(ϕ1, ϕ2, . . . , ϕn) : (a, b)→ Xn

is a solution of (4), then ϕ1 is a solution of (3). ⊲

By this theorem we can restrict ourselves by ODE’s of the first order

ẋ = f (x, t) , x : R→ X, f : X ×R→ X.

12.2 Geometric setting

X

t

x

Geometrically, the unknown function x : R→ X in an ODE ẋ = f (x, t) is a CURVE in X .
The space X is called the phase space of the equation. The graph
of a solution ϕ is called an integral curve of the equation. The
space X × R, where this graph lies, is called the extended phase
space.

Examples.

1. Inertial motion equation ẍ = 0 (x : R→ R3) is equivalent to the system

ẋ1 = x2

ẋ2 = 0

}
(x1, x2 : R→ R3),

which can be written as ẋ = Ax , where x : R→ R6, and A ∈L (R6,R6), viz.

A =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



.

Here the phase space is R6 (position-velocity).

2. Pendulum equation ẍ + ẋ = 0 is equivalent to the system

ẋ1 = x2

ẋ2 = −x1

}

which can be written as ẋ = Ax , where x : R→ R2,

A =
(

0 +1
−1 0

)
∈L (R2,R2)

(the operator of rotation by 90◦ �) The phase space is R2.

3. For the exponent equation ẋ = kx the phase space is R.
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Fields corresponding to ODE’s

X

t

A geometric interpretation of the equation ẋ = f (x, t) is such. At each point of the
extended phase space a DIRECTION is given (the derivative of a
curve at a point “is” the tangent line to the graph). To find a
solution of the equation means to find an integral curve of this
field of directions, that is, to find a curve, such that at each point
the tangent line coincides with the directions of the field at this
point.

X

In the special case where f does NOT depend on the t (autonomic ODE’s) another inter-
pretation is possible, in the phase space itself. Viz., at each point
x of the phase space a VECTOR f (x) is given (the derivative can
be considered as a vector in X (the velocity)). That is, we have a
vector field. To find a solution of the equation ẋ = f (x)means to
find a motion of a point in the phase space such that the velocity at
each moment of time coincides with the value of the vector field
at the point where we come at this moment.

Examples.

x

t

1. The simplest equation ẋ = f (t), x : R→ R, f : R→ R; the field of directions does
not depend on x . The solution is unique up to vertical translation
of the graph. We know this already, of course:

x(t) =
∫ t

x0

f (τ )dτ + const (for any t0 ∈ I ).

(we suppose that f is sufficiently “nice”.)

2. ẍ + x = 0; (ẋ1, ẋ2) = (x2,−x1). The velocity field is drown
on the picture. Obviously the solutions are motions along circles
with center at 0, e.g., (cos t,− sin t). Hence, the corresponding
solutions of the original equation ẍ + x = 0 are cos t and sin t .

x

t

3. ẋ = kx . The field of directions for k > 0 looks as on the picture. Up to a horizontal
translation of the graph there are just 3 solutions. Of course, we
know them:

x = x0ekt .

For x0 > 0, = 0 or< 0 we obtain the 3 types of solutions.

Initial conditions
In general the function f in the right-hand side of our equation

ẋ = f (x, t) (1)

is defined only on an open subset9 of X ×R. We say that ϕ : R→ X is a solution of (1)
in an interval (a, b) (−∞ ≤ a < b ≤ +∞), and we write

ϕ ∈ Sol(a,b)(1),

if ϕ ∈ Dif((a, b)), {(ϕ(t), t)|t ∈ (a, b)} ⊂ 9 and ∀t ∈ (a, b)
... ϕ̇(t) = f (ϕ, t).

We say that ϕ is a solution of (1), and we write

ϕ ∈ Sol(1),
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if ϕ ∈ Sol(a,b)(1) for some a, b.
Let (x0, t0) ∈ 9 . We say that ϕ is a solution of (1) (in (a, b)) with the initial condition

(x0, t0), and we write

ϕ ∈ Sol(1)t0,x0 (resp., ϕ ∈ Sol(a,b)(1)t0,x0)

if ϕ ∈ Sol(1) (resp., ϕ ∈ Sol(a,b)(1)) and

ϕ(t0) = x0.

This condition means physically that at given initial moment t0 our process has value x0,
and means geometrically that the graph of ϕ, the integral curve, passes through the point
(x0, t0).

12.3 Basic Theorem

Here we discuss the questions of existence and uniqueness of a solution of an equation

ẋ = f (x, t), x : R→ X, (1)

with a given initial condition, and dependence of the solution on the initial condition.

Theorem 12.3.1. (Peano) Let X = Rn , 9 ∈ Op(Rn ×R). If f ∈ C(9, X), then

∀(x0, t0) ∈ 9 ∃ϕ ∈ Sol(1)t0,x0 .

In other words, if f is CONTINUOUS then a solution of (1) always exists. (We omit
the proof of this theorem). But in general a solution with a given initial condition is NOT

unique, as the following example shows.

x

Example. The equation ẋ = 3x2/3, x : R → R, has 2 solution
with the initial condition (0, 0): ϕ1(t) = 0 and ϕ2(t) = t3. The
reason is that the right-hand side x2/3 decrease too quickly as
x → 0:

x

3x 2/3

If f is of CLASS C1 in x , such a patology cannot occur, as we shall see.

Picard method
Consider the equation (1) for X = R, f ∈ C(R×R,R). The main idea of the method is:
to find a solution of (1) means just to find a fixed point of some operator. More precisely:

ϕ ∈ Sol(1)t0,x0 ⇔ ϕ ∈ Fix A,

where A is defined by the formula

(Aϕ) := x0 +
∫ t

t0
f (ϕ(τ ), τ )dτ. (2)
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⊳ (Aϕ)·(t) (2)= f (ϕ(t), t); if ϕ ∈ Sol(1)t0,x0 , that is, if ϕ̇ = f (ϕ(t), t) and ϕ(t0) = x0,

then (Aϕ)· = ϕ̇ and (Aϕ)(t0)
(2)= x0 = ϕ(t0); hence Aϕ = ϕ, that is, ϕ ∈ Fix A. V.v., if

ϕ ∈ Fix A, that is, Aϕ = ϕ, then ϕ̇ = (Aϕ)· (2)= f (ϕ(t), t) and ϕ(t0) = (Aϕ)(t0) (2)= x0. ⊲

Picard method is to construct a solution of (1) as a fixed point of A, that is, as a limit
of sequence ϕ0, ϕ1 := Aϕ0, ϕ2 := Aϕ1, . . ., where ϕ0 is an initial approximation to the
solution.

Examples.

x

t
t0

x0

1
ϕ

0ϕ

1. ẋ = f (t), x(t0) = x0. Field of directions does not depend on x . Put

ϕ0 :≡ x0.

Then already the FIRST approximation

ϕ1(t) = (Aϕ)(t) = x0 +
∫ t

t0
f (τ )dτ

yields the solution ϕ̇ = f , ϕ1(t0) = x0.

x

t

x0

1
ϕ

0ϕ

2
ϕx0et

2. ẋ = x , x(0) = x0. Again put ϕ0 : =̄x0. Then ϕ1(t) = x0 +
∫ t

t0
x0dτ = x0(1 + t),

ϕ2(t) = x0+
∫ t

t0
x0(1+ t)dτ = x0+ (1+ t + t2/2), . . . , ϕn(t) =

x0(1 + t + t2/2 + . . .+ tn/n!), so that ϕn(t) → x0et . And x0et

is indeed the solution.
To justify Picard method we shall show that in an appropriate

space the Picard operator A is a contraction. We need for this end
to define integral of a VECTOR function of real variable.

Integrals of vector functions
Let X be a Banach space (e.g., Rn), and let f ∈ C(R, X). The integral

∫ b

a
f (t)dt (∈ X)

is defined just as usually (by means of partial sums).

Lemma 12.3.2. ∥∥∥∥
∫ b

a
f (t)dt

∥∥∥∥ ≤
∣∣∣∣
∫ b

a
‖ f (t)‖dt

∣∣∣∣ .

(Here it may be a > b!)
⊳ It follows from the corresponding inequality for partial sums:

∥∥∥
∑

f (ti )1i

∥∥∥ ≤
∑
‖ f (ti )1i‖ =

∣∣∣
∑
‖ f (ti )‖1i

∣∣∣ . ⊲

Lemma 12.3.3.
d

dt

∣∣∣
t=t̂

∫ b

a
f (τ )dτ = f (t̂).

⊳ Just as usually. ⊲

Lemma 12.3.4. (Newton-Leibniz Theorem). Let ϕ ∈ C1(R, X). Then

∫ b

a
ϕ̇(t)dt = ϕ(b)− ϕ(a).
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⊳ As usually. ⊲

Basic Theorem

Theorem 12.3.5. (on existence, uniqueness and continuous dependence on initial condi-
tion). Let X ∈ BS, W ∈ Op(x × R), f ∈ C1(W, X), (x0, t0) ∈ W, and we consider the
equation

ẋ = f (x, t). (3)

Then there exist an open interval I with the center at t0 and an open ball B in X with the
center at x0, such that

∀x ∈ B ∃!ϕx ∈ SolI (3)t0,x

and for any CLOSED interval J ⊂ I the mapping

x 7→ ϕx |J , B → C(J, X)

is continuous.

b

a
W

x0

t0

⊳ 1◦ At first we construct a subspace M of of a Banach
space, where a modification of Picard operator is a con-
traction Take a > 0, b > 0 such that the cylinder

C := Bb(x0)× Ia(t0)

lies in W . (We denote by Ia(t) the closed ball Ba(t) in R.)
Put

S := sup
(x,t)∈C

‖ f (x, t)‖, (4)

L := sup
(x,t)∈C

‖D1 f (x, t)‖ (5)

(where D1 f ≡ ∂ f/∂x : 9 →L (X, X)). These supremums are finite and attained since
C is compact.

a

b

a’

b’

Now choose a′ > 0 and b′ > 0 so that the cone K′ := {(x, t) : |t − t0| ≤ a′, ‖x − x0‖ ≤
S|t − t0|} and all its translations by the vectors
(b, 0), b ∈ Bb′(x0), lies in the cylinder C:

(6)K := K
′ + (Bb′(x0)× {0}) ⊂ C.

Consider the “small” cylinder

C
′ := Bb′(x0)× Ia′(t0) ⊂ C.

We put

M := {v ∈ C(C, X)|∀(x, t) ∈ C
′ ... ‖v(x, t)‖ ≤ S|t − t0|}.

In particular

∀v ∈M
... v(·, t0) = 0. (7)

An element of M is shown on the following two pictures (note that on the left picture the
phase space X is represented by a LINE, and on the right one by a PLAIN):
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t

xX
X

v
v

a’

b’

t0

x0

t0

v(x, )

-(x ,0)0

0

The graph of v. The graph of v(x, ·) for fixed x .
Emphasize that M depends on a′, b′, S.
2◦ Now define a modified Picard operator A on M by the formula

(Av)(x, t) :=
∫ t

t0
f (x + v(x, τ ), τ )dτ ((x, t) ∈ C

′). (8)

This definition is correct since, by (6), the argument of f lies in 9 .

3◦ A maps M into itself. ⊳⊳ ∀(x, t) ∈ C′
...

‖Av(x, t)‖ =
∥∥∥∥
∫ t

t0
f (x + v(x, τ ), τ )dτ

∥∥∥∥
Lm12.3.2.≤

∥∥∥∥∥

∫ t

t0
‖ f (x + v(x, τ ), τ )‖︸ ︷︷ ︸

≤S

dτ

∥∥∥∥∥ ≤ S|t − t0|. ⊲⊲

4◦ A is a contraction for sufficiently small a′. Indeed A ∈ LipLa′ , where L is from (5).

⊳⊳ ∀v1, v2 ∈M
...

‖Av1 − Av2‖ = sup
(x,t)∈C′

‖ (Av1 − Av2)(x, t)︸ ︷︷ ︸
(8)=
∫ t

t0
( f (x+v1(x,τ ),τ )− f (x+v2(x,τ )))dτ︸ ︷︷ ︸

1

‖ ≤ sup
(x,t)∈C′

∣∣∣∣∣

∫ t

t0

∥∥∥ 1
∥∥∥

︸ ︷︷ ︸
MVT≤ L ‖v1(x, τ )− v2(x, τ )‖︸ ︷︷ ︸

obv.≤ ‖v1−v2‖

dτ

∣∣∣∣∣

Lm 12.3.2.≤ sup
(x,t)∈C′

L |t − t0|︸ ︷︷ ︸
≤a′

‖v1 − v2‖ ≤ La′‖v1 − v2‖. ⊲⊲

5◦ By Fixed point Theorem (= Contraction Lemma) there exists v ∈M such that Av = v.
Put

u(x, t) := x + v(x, t) ((x, t) ∈ C
′).

For any given x ∈ Bb′(x0) (an initial value) we have

u(x, ·) ∈ Sol(3)t0,x0 .

⊳⊳
d
dt u(x, t) = d

dt
(x + v(x, t)︸ ︷︷ ︸

=Av(x,t)

)

(8)= d

dt

(
x +

∫ t

t0
f (x + v(x, τ ), τ )dτ

)
Lm 12.3.3.= f (x + v(x, τ ), τ )

= f (u(x, τ ), τ ),

and u(x, t0) = x + v(x, t0)︸ ︷︷ ︸
(7)=0

= x . ⊲⊲
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6◦ Our solution depends continuously on the initial value x since v is a continuous
mapping.
7◦ Uniqueness: Take b′ := 0, and consider the corresponding set M and operator A. (Now
M consists from functions defined just on Ia′(t0).) Obviously,

ϕ ∈ Sol(3)t0,x0 ⇔ ϕ − x0 ∈ Fix A,

but the fixed point of A is unique (by Contraction Lemma). Hence (on the interval
◦
Ia′(t0))

the solution is unique. ⊲

12.4 Methods of solutions

As Liouville showed, in general it is impossible to solve a given ODE in explicite form (in
“quadratures”), that is, in form of finite combination of elementary and algebraic functions
and of integrals of them. E.g., such a simple equations as dy/dx = y2−x cannot be solved
in quadratures.

There are general methods of APPROXIMATIVE solution of ODE’s, in particular methods
based on Picard approximations.

Rather full theory of explicite solution is only for LINEAR ODE’s, which we consider
in the next two sections.

Here we discuss special but important case where solutions can be calculated rather
explicitly.

No dependence on x

ẋ = f (t).

This equation describes a process, the speed of which does not depend on its state, but is
fully determined “from outside”. The solution satisfying an initial condition x(t0) = x0 is
given by the “classic” formula of analysis

x(t) = x0 +
∫ t

t0
f (τ )dτ.

No dependence on t

ẋ = f (x) (X = R). (1)

This equation describes an “automatic” process where the behavior of the process is
defined entirely by its present state.

Theorem 12.4.1. Let f ∈ C1((a, b)), x0 ∈ (a, b), f (x0) 6= 0 (−∞ ≤ a < b ≤ +∞).
Then for any t0 ∈ R the solution ϕ of equation (1) with initial condition (x0, t0) (which
does exist by Basic Theorem) satisfies the relation

t − t0 =
∫ ϕ(t)

x0

dξ

f (ξ)
. (2)
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x

b

a

t0

0x

t

In other words, our solution x = ϕ(t) can be found by solving of the equation

t − t0 =
∫ x

x0

dξ

f (ξ)

w.r. to x .
⊳ Let ϕ ∈ Sol(1)t0,x0 . Then ϕ̇(t0) = f (x0) 6= 0. By inverse
Function Theorem, the inverse function ϕ−1 =: ψ is defined
locally (in a neighbourhoodof x0).

We have ψ(x0) = t0, and
dψ

dx

∣∣∣∣
ξ

= 1

f (ξ)
.

Since f (x0) 6= 0, the function 1/ f (ξ) is continuous in a neighbourhood of x0. By Newton-
Leibniz Theorem,

ψ(x)− ψ(x0) =
∫ x

x0

(dξ)

f (ξ)
.

Putting here x = ϕ(t), we obtain (2). ⊲

Separable variables

ẋ = g(x)

f (t)
(X = R).

Here x and t enter “separately”. For better symmetry let us write y instead of x and x
instead of t:

dy

dx
= g(y)

f (x)
. (3)

Theorem 12.4.2. Let f and g are of class C1 in some neighbourhoods of points x0 and
y0, resp.; let f (x0) 6= 0, g(y0) 6= 0, and let y = F(x) be a solution of (3) with the
initial condition F(x0) = y0 (such solution does exist by Basic Theorem). Then F is given
implicitly by the equation ∫ x

x0

dξ

f (ξ)
=
∫ y

y0

dη

g(η)
.

Thus the solution method is: to rewrite (3) formally as dx/ f (x) = dy/g(y) and to
integrate in the corresponding limits.
⊳ Consider two new ODE’s

ẋ = f (x), (4)

ẏ = g(y). (5)

By Basic Theorem, there exist ϕ ∈ Sol(4)0,x0 , ψ ∈ Sol(5)0,y0 , defined on a (w.l.o.g.)
COMMON open interval I:

ϕ̇(t) = f (ϕ(t)), ϕ(0) = x0, (6)

ψ̇(t) = f (ψ(t)), ψ(0) = x0. (7)

t

x y

ϕ ψ
ϕ−1

u

We have ϕ̇(0) = f (x0) 6= 0, ψ̇(0) = g(y0) 6= 0. By Inverse Function Theorem, there
exist (locally) the inverse functions, ϕ−1. We claim that

u := ψ ◦ ϕ−1 ∈ Sol(3)x0,y0 .

Indeed
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u̇(x) =
t :=ϕ−1(x)

ψ̇(t)(ϕ−1).(x) = ψ̇(t)

ϕ̇(t)
(6),(7)=

y:=u(x)=ψ(t)
g(y)

f (x)
,

u(x0) = ψ(ϕ−1(x0))
(6)= ψ(0) (7)= y0.

But by Theorem 12.4.1.,

∫ ϕ(t)

x0

dξ

f (ξ)
= t − t0 =

∫ ψ(t)

y0

dη

g(η)
.

Putting ϕ(t) = x , ψ(t) = y, we see that u = ψ ◦ ϕ−1 : x 7→ y, and
∫ x

x0

dξ

f (ξ
=
∫ y

y0

dη

g(η)
,

which is what we need. ⊲

12.5 Linear equations

By a linear (homogenious) ODE we mean an equation

ẋ = A(t)x (x : I → X, X ∈ NS), (1)

where A(t) for each t ∈ I is a continuous LINEAR operator in X , and the mapping

A : I →L (X, X)

is sufficiently smooth. Thus the right-hand side of (1) is linear (and continuous) in x . In
the case X = Rn the equation (1) takes the form

ẋ1 = a11(t)x1 + . . .+ a1n(t)xn
...

ẋn = an1(t)x1 + . . .+ ann(t)xn





(2)

so usually one calls (1) a linear ODE with variable coefficients.

x

Example. Pendulum of variable length: ẍ = −ω2(t)x , (x : R →
R). This equation when written in the form (2) is

ẋ1 = x2

ẋ2 = −ω2(t)x1

}
(3)

In the form (1) it looks as

ẋ = A(t)x, where A(t) =
(

0 1
−ω2(t) 0

)
, x : R→ R2.

A very pleasant feature of linear equations is that they have solutions defined in the
whole interval I (see (1)):

Theorem 12.5.1. Any solution of (1) can be extended to I .
⊳ The idea of the proof is such. Since on any COMPACT subinterval J of I the norm ‖A‖
is bounded (as a continuous function), we have ‖ẋ‖ = ‖A(t)x‖︸ ︷︷ ︸

≤C

‖x‖ ≤ C‖x‖ on J . It
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follows that any solution grows not faster than eCt (in the norm) on J , and hence cannot
go away to infinity on J . An accurate proof see e.g., in [9, p. 196]. ⊲

tt0

x0

I

NB For non-linear equations it can be that a solution does not admit
an extension to whole I . E.g., for the equation ẋ = x2 one such
solution x(t) = −1/(t − 1) is shown on the picture.

Vector space of solutions

Theorem 12.5.2. The set S of all the solutions of (1) (defined in the whole I ) is a vector
space. This space is isomorphic to the phase space X.

⊳ 1◦ If ϕ1, ϕ2 ∈ Sol(1) then ∀α1, α2 ∈ R
... (α1ϕ1 + α1ϕ1)

· = α1ϕ̇1 + α1ϕ̇2
(1)= α1 Aϕ1 +

α2 Aϕ2
A is linear
= A(α1ϕ1 + α2ϕ2), that is, α1ϕ1 + α2ϕ2 ∈ Sol(1). Thus, S is a vector

space.

ta b

In particular

0 ∈ Sol(1),

and

ϕ ∈ Sol(1)⇒ −ϕ ∈ Sol(1);
the picture of integral curves is SYMMETRIC (see the picture).

2◦ Fix any t ∈ I and consider the mapping

δt S :→ X ϕ :7→ ϕ(t),

which sends each solution ϕ into its value at the moment t . Obviously, δt is linear. The
image of δt is the whole X , since by Basic Theorem for any x ∈ X there exists a solution ϕ
with ϕ(t) = x . The kernel of δt is {0}, since again by Basic Theorem, there exists just one
solution ϕ with ϕ(t) = 0, and this solution is evidently ϕ = 0. Thus δt is both surjective
and injective. ⊲

Fundamental system of solutions
Let X = Rn . Then, by Theorem 12.5.2., S ≈ Rn . Any basis ϕ1, . . . , ϕn of S is called
a fundamental system of solutions for (1). Thus:

a) Each Equation (1) (in Rn) has a fundamental system of solutions.
b) If ϕ1, . . . , ϕn is a fundamental system of solutions then any solution ϕ is a linear

combination of ϕ1, . . . , ϕn .
c) Any n + 1 solutions are linearly depend.
d) For any t1, t2 ∈ I the mapping

X X

gt2
t1

tt2t1

gt2
t1 := δt2 ◦ (δt1)

−1 : X → X

(the transformation of the phase space in the time
from t1 up to t2 is a linear isomorphism.
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Example. For the pendulum equation ẋ =
(

0 1
−1 0

)
x (x : R→ R2) the system

{(cos t,− sin t), (sin t, cos t)}

is a fundamental system of solutions. (Verify! [Hint:

∣∣∣∣
cos t − sin t
sin t cos t

∣∣∣∣ = 1.])

Scalar linear equation of the n-th order
Consider a linear (in x) homogeneous equation of the n-th order with variable coefficients

x (n) = a1(t)x
(n−1) + . . .+ an(t)x, (x : I → R, ai ∈ C(I,R)). (4)

We know from Theorem 12.1.1. that (4) is equivalent to an equation

Ėx = A(t)Ex, (Ex : I → Rn, A ∈ C(I,L (Rn,Rn)).

In view of this equivalence, it follows from Theorem 12.5.2. that the following result is
true:

Theorem 12.5.3. The set S of all solutions of (4) (defined on the whole I ) is a vector
space, which is isomorphic to Rn . This isomorphism is realized by the mapping

S→ Rn, ϕ 7→ (ϕ(t), ϕ̇(t), . . . , ϕ(n−1)(t)),

where t is an arbitrary fixed point in I .
Any basis of this n-dimensional vector space is called fundamental system of solutions

for (4).

Example. For the pendulum equation ẍ + x = 0 the functions cos t , sin t form a funda-
mental system of solutions (see example above).

Finding solutions with given initial conditions
Let ϕ be a solution of (4). We say that ϕ satisfies an initial condition

(Ex0, t0) ∈ Rn × I

if
(ϕ(t0), ϕ̇(t0), . . . , ϕ

(n−1)(t0) = Ex0,

that is,
ϕ(t0) = x01
ϕ̇(t0) = x02

...

ϕ(n−1)(t0) = x0n





(5)

Let we know a fundamental system of solutions ϕ1, . . . , ϕn for (4). If we need to find
the solution with initial conditions (5), we look for the solution in the form

ϕ = c1ϕ1 + . . .+ cnϕn (ci ∈ R).

Then (5) yields
c1ϕ1(t0)+ . . .+ cnϕn(t0) = x01

...

c1ϕ
(n−1)
1 (t0)+ . . .+ cnϕ

(n−1)
n (t0) = x01





(6)
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Solving this linear algebraic system, we obtain the desired values c1, . . . , cn .
Remark. The determinant of the system (6)

∣∣∣∣∣∣∣∣∣

ϕ1(t0) . . . ϕn(t0)
ϕ̇1(t0) . . . ϕ̇n(t0)
...

...

ϕ
(n−1)
1 (t0) . . . ϕ

(n−1)
n (t0)

∣∣∣∣∣∣∣∣∣

is called Wronskian of the system {ϕ1, . . . , ϕn}. Since the solution of (6) MUST exist for
any Ex0 we conclude that Wronskian of any fundamental system of solutions of (4) is
NON-ZERO for each t ∈ T .

Variation of constants
For solving of NON-homogenious linear equations the following METHOD OF VARIATION

OF CONSTANTS is available:
In order to solve an equation

ẋ = A(t)x + h(t), x : I → Rn, A ∈ C(I,L (Rn,Rn), h ∈ C(I,Rn),

supposing we know a fundamental system ϕ1, . . . , ϕn of solutions of the corresponding
homogenious equation ẋ = A(t)x , we look for the solutions in the form

ϕ(t) = c1(t)ϕ1(t)+ . . .+ cn(t)ϕ(t) (ϕ, ϕi : I → Rn)

(with VARIABLE “constants” ci !). Then we obtain for these unknown functions

(c1, . . . , cn) := c : I → Rn

a “simplest” linear equation of the form

ċ = f (t) (with some f : I → Rn),

which we know to solve.

Example. Consider the equation

ẍ + x = f (t) x : I → R, f ∈ C(I,R), 0 ∈ I, (7)

with initial condition (0, a), a = (a1, a2) ∈ R2, that is

x(0) = a1, ẋ(0) = a2. (8)

Reduction to a 1. order system yields

ẋ1 = x2
ẋ2 = −x1 + f

}
,

x1(0) = a1
x2(0) = a2

}
. (9)

The corresponding homogenious system
{

ẋ1 = x2
ẋ2 = −x1

has a well known (Example on page 173) a fundamental system of solutions

{(cos t,− sin t), (sin t, cos t)}.
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So look for the solution in the form

(x1, x2) = c1(t)(cos t,− sin t)+ c2(t)(sin t, cos t).

The substitution into (9) gives after simplifications

ċ1 cos t + ċ2 sin t = 0
−ċ1 sin t + ċ2 cos t = f

}
,

c1(0) = a1
c2(0) = a2

}
,

whence we obtain

ċ1 = − f sin t, c1(0) = a1 ⇒ c1 = a1 −
∫ t

0 f (τ ) sin τdτ,
ċ2 = f cos t, c2(0) = a2 ⇒ c2 = a2 +

∫ t
0 f (τ ) cos τdτ.

If follows that the answer is (x(t) = x1(t)!):

x(t)
(8)=
(

x(0)−
∫ t

0
f (τ ) sin τdτ

)
cos t +

(
ẋ(0)+

∫ t

0
f (τ ) cos τdτ

)
sin t .

12.6 Linear equations with constant coefficients

Here we study an equation

ẋ = Ax, x : R→ X, X ∈ NS, A ∈L (X, X). (1)

We suppose that the space L (X, X) (with the operator norm) is COMPLETE; for example,
it is ever true for X = Rn .

In the simplest case X = R we have an equation

ẋ = ax, x : R→ R, a ∈ R.

The solution is well-known

x = x0eat , x0 = x(0).

In the general case the result is just the same:

Theorem 12.6.1. Any solution x of (1) can be extended to the whole R and is given by the
formula

x = eAt x0, x0 = x(0).

Here for any operator A ∈L (X, X) we put

eA := id+A + 1
2 A2 + 1

3! A3 + . . . ∈L (X, X), Ak := A ◦ . . . ◦ A︸ ︷︷ ︸
k-times

This series converges in L (X, X), since it is majorized by the converging non-negative
real series

∑∞
k=0 ‖A‖k/k! (indeed, ‖Ak‖ = ‖ A ◦ . . . ◦ A︸ ︷︷ ︸

k-times

‖ ≤ ‖A‖k).

⊳ The theorem can be proved essentially in the same way as in classic 1-dimensional case
(using member-wise differentiation of series). ⊲

Thus principally we know the solution of (1), but the problem is how to CALCULATE

eAt for concrete A. Even for X = Rn it is non-trivial problem.
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Case of diagonal operators
Let X = Rn . We shall identify an operator A ∈ L (Rn,Rn) with its matrix. If A is
diagonal, that is,

A =



λ1 0
. . .

0 λn


 ,

then it is easy to calculate eAt :

eAt =




eλ1t 0
. . .

0 eλnt


 .

⊳ Ak =



λk

1 0
. . .

0 λk
n


, hence

∑ Ak tk

k!
=
∑




λk
1tk

k! 0
. . .

0
λk

n tk

k!


 =




eλ1t 0
. . .

0 eλn t


 . ⊲

Hence the solution of equation

ẋ = Ax, x(0) = x0 = (x01, . . . , x0n)

is
x = eAt x0 = (x01eλ1t , . . . , x0neλn t ).

Note that λk are just the EIGENVALUES of our diagonal operator. Thus, each component
of the solution has the form

c eλt

where λ is an eigenvalue of A.
NB In OTHER bases the components of the solutions will be LINEAR COMBINATIONS of the
exponents eλk t .

General case
In occurs that in general case each component of the solution of an equation

ẋ = Ax, x : R→ Rn, A ∈L (Rn,Rn), (2)

is a linear combination of n members of the form

tm
Reeλt or tm

Imeλt

where λ is an eigenvalue of A (λ ∈ C) and m is a natural number less than multiplicity of
λ.

Recall that the eigenvalues of a are roots of the characteristic equation

det(A − λE) = 0 (E denotes the unit matrix)

and that the multiplicity of an eigenvalue is just the multiplicity of the root.
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Case of one scalar equation of n-th order
x (n) = a1x (n−1) + . . .+ anx, x : R→ C, a j ∈ C. (3)

As we know (3) can be considered as a special case of (2). It follows that:
Any solution of (3) has the form

x(t) =
k∑

l=1

eλl t pl(t), (4)

where λ1, . . . , λk are the different roots of the characteristic equation

λn = a1λ
n−1 + . . .+ an, (5)

and pl is a polynomial of degree less than the multiplicity of the root λl .
NB This result remains true for non-homogenious equations x (n) = a1x (n−1)+ . . .+anx+
f (t), if f (t) has the form (4).

Examples.

1. ẍ+ x = 0. The characteristic equation λ2+1 has the roots±i; we have Ree±it = cos t ,
Ime±it = ± sin t . The functions cos t, sin t form a fundamental system solutions. The
general solution is c1 cos t + c2 sin t .

2. ẍ − x = 0. The characteristic equation λ2 − 1 has the roots ±1. The corresponding
functions et and e−t form a fundamental system of solutions. The general solution is
c1et + c2e−t . (In particular sh t and ch t are solutions.)

3. ẍ = 0. The characteristic equation λ2 = 0 has one 2-multiple root 0. The corresponding
functions from (4) are 1 and t . They form a fundamental system of solutions. The general
solution is c1 + c2t (as well known, of course).
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