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| ntroduction

Analysis 3-4 is a generalization of usual, one-dimensional analysis to the case of
arbirary finite dimensions.

More precisaly, instead of functionsR — R we consider functionsR" — R™,

Infact elements of finite-dimensional analysiswere developed already in 18" century,
but an appropriateframefor thisanalysisare normed spaces. These spaceswereintroduced
(independently and almost simultaneously (1916-1922)) by A. Bennett, F. Riesz, H. Hahn,
S. Banach, N. Wiener. The differentiation operator for mappings between normed spaces
was defined in 1925 by M. Fréchet. (More “weak” notion of differentiability was defined
early (1913) by R. Géteaux, but for thiskind of differentiability the chainruleisnot valid.)
This date can be consider as the birthdate of modern analysis.

* *x %

Our course contains 12 Chapters. In Chapter 1 we study normed spaces (up to Chapter 5
these spaces are alowed to be infinite-dimensional). In Chapter 2 we consider Fréchet
(and Gateaux) derivative. Chapter 3 is devoted to the most important theorem of analysis,
Inverse Function Theorem (which can be equivalently reformulated as Implicit Function
Theorem). As a tool for proving this theorem we prove at first so called Contraction
Lemma (thisis the main tool aso in the final Chapter 12). In Chapter 4 we study higher
derivatives, up to Taylor formula. In Chapter 5 we give some applications of the theory to
optimization problems.

Starting from Chapter 6 we restrict ourselfs just by FINITE-dimensional case.

In Chapter 6 we construct Riemann integral in R". Chapter 7 is devoted to two im-
portant technical results. In Chapter 8 we consider differential forms, which are in fact
generalizations of “length element”, “area element” and “volume element” of classica
“old” analysis. Chapters 9 and 10 are devoted to the crown theorem of the theory, Stokes
Theorem, which is a generalization of different known results of “old” analysis (Eu-
ler (1771), Green (1828), Ostrogradskij (1834), Stokes (1854)). For this end we define
manifoldsin R".

Thelast two chaptersarefacultativeand writtenin morecompressed style. In Chapter 11
we apply Stokes Theorem for study of analytic complex function, and in Chapter 12 we
apply Contraction Lemmafor proving of Existence and Uniqueness Theorem for ordinary
differential equations.

* k %

Some remarks on notations.

. A . .
If wewrite, eg.,a < b, thismeans“using A we concludethat a < b”.

Symbols < and > denote, resp., the beginning and the end of the proof. If we prove
some “small” assertion inside the proof of a“great” one, we use symbols <1 and > for
this“small” proof, et-cetera.

“Exerc.” over e.g. an equation mark means that to prove this equation is an exercize
for the reader.

The reader has to remember that misprints are POSSIBLE and to use ever his common
sense.






Chapter 1

Normed spaces

1.1 Norms

Let X beavector space over R. By anormon (or in) X wemean afunction ||-|| : X - R
with the following properties:

(i) ¥x € X: ||x]| > 0 (positivity); x|l = 0 & x = 0 (non-degeneracy);
(if) Vx e XVt e R: Itx]l = [t] |Ix]] (positive homogenity); in particular ||—x]|| = ||X]|
(symmetry);
(i) vx,y e X: [x+yl < [Ix]l + llyll (subadditivity).

If we interpret || x| as the LENGTH of the vector x then the
property (iii) expressesthe triangle inequality (A-in.).
A normed space X is a vector space equipped with a norm.

x iyl x+y

.

[1xIl (X e NS)
O iy Examples.
LR, [-D;
2. (R™, [I-lp), where |-|| , is defined for 1 < p < oo by the
formula
XNy == (XalP+ -+ XlP) P (= (Xa, . X))
For p = 2 we obtain the usual Euclidean length.
3. (R", [Illo0), Where
[Xlloo = max{|Xal, - - -, [Xnl}.

NB [IXlloo = liMp— o0 [IX[l p.

4. (5. Thisistheset of all sequencesx = (X1, X2, .. .) of real numberssuch that Z;’il xi2 <
oo, with the norm defined so:
X1 = > %2
i=1

9
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5. C([0, 1]). Thisisthe set of all continuousreal-valued functionson [0, 1] equipped with
the norm

X|| ;= max_ |x(t)].
11| te[O,l]l Ol

Second Triangle Inequality. Let ||-|| beanormin X. Then

X .
vx,ye X: IXI =1yl < Ix =yl
Nl llx—yll <0 Without loss of generality we can assume that [|x|| > |ly||

(since|lx =yl = lly — x|I). Weneed to verify that || x| — [yl <
[IX — y|. But indeed

¢ d ; A-in.

0 Iyl Y X1 % =y + vl < X =yl Dyl >

1.2 Balls

Let X beanormed space. Put for x € X,r > 0

Br(x) ;= {y € X | |ly—=x]| < r} (the closed ball with the center x and radius r);
I%r(x) ={y e X||ly—=x]| <r} (theopen ball with the center x and radiusr);

For balls with center at O we write for short
Br := B (0), Br := B (0).
Propertiesof balls. It is easy to verify (please!) that!
1) By (X) = X+ By; I%r(x) =x+|§r;
2) By =r B1; By =rBy;
3) B C B
4) ifry < ra, thenBy, C By,
5) Br = U By =UBu;

O<)a<r a<r
6) Br =ﬂBa =ﬂBa;
a>r a>r

NB Here and below we use the following notations:

A+B:={a+blae A beB} (A BcX),
TA:={ta|teT,ac A} (TcR, Ac X).

In particular

XxX+A=X}+A={x+alae Al (xeX),
tA={t}A={tajae A} (teR).

Notation. For ballsin R wewrite | (“interval”) instead of B. For example
I =[-1,1].

1In 3) and 4) we suppose that our normed space is non-trivial: X # {0}.
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1.3 Norm topology

Let X be a normed space. We define the topology r generated by the normso: aset G is
open if for each point X € G there existsaball B.(x) that is

contained in G:
GerovxeGde>0:B,(x) cG.
G B,(x)

Thefirst assertion of thefollowing theorem meansthat this
definition is correct.

Theorem 1.3.1.
a) Sodefined 7 isatopology.
b) Open ballsin X are open sets in this topology, and closed balls are closed sets.
¢) Boththe open ballsand the closed ballswith the center at x are bases of neighbour-
hoods of x in thistopology.

<d) G, et = |J, Gy € 7. Indeed if X € |G, then x € G, for some ap, hence
B:(X) C Gg, for somee > 0; afortiori B, (x) C |J Ga.

Further, G1,G2 ¢ 1 = G1 N Gy € 7. Indeed, if X € G1 N Gy, then x € Gy
and hence B, ¢ G for some ¢1 > 0. Analogously B, ¢ Go for some e2 > 0. Put
& :=min(eq, £2). Then B, (x) c G1 N Ga.

Thus r isatopology.

b) Let us provethat I%S(x) er.Letye Ioag(x). Then
s=y—x| <e.
Takeany 6 > 0 such that
0<ée—S (1)

Then
zeBs(y)=llz—yll<d= llz—x|

B 2-in. @ o
() < lz=yl+lly—xl <d+s<e = zeB:(x),
N e’ ——

<o =s

which meansthat B;(y) C If%g(x). Thus, I038(x) €.

That (B, (x))® € 7 can be proved analogously.

¢) If U isan open neighbourhood of x in 7, then (by our definition of ), B,(x) c U
for some ¢ > 0; afortiori I%S(x) C U. But Igg(x) is an open set (by b)) and contains x
(obvioudly), so ég (x) is an open neighbourhood of x, therefore B, (x) isa(closed by b))
neighbourhood of x. All isproved. >

By a norm topology we mean the topology generated by a norm.
NB Any norm topology is Hausdorff. (Provel)

Convergence and continuity
Convergence in a hormed space X means convergence in the topology generated by
the norm. It follows from the definitions that

Xn—— X € XS || Xp — X|| —— 0.
n— oo n— oo
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Continuity of amapping f : X — Y (where X, Y are normed spaces) means continuity
in topologies generated by the normsin X and Y. It follows from the definitionsthat f is
continuousat apoint X € X if and only if (iff)

Ve>030>0: |x—%|<d= [0 - TR <e @

(just asin usual analysis, only with ||-|| instead of | - |).
For short we write (2) in theform

[x=%|| > 0= | fx)— f(®)]| — 0,

or

[fx)— f(®)|———0

|[x—=%||—0

Theorem 1.3.2. Let X be a normed space. Then thenorm ||| : X — R isa continuous
function
<1 Continuity of ||-|| at apoint X means that

IxIl = ||%

| I%1 IxlI=[[x[| -0

But the latter relation istrue, since, by the Second Triangle Inequality,

[ixi = [%[] = ixir =] >

1.4 Equivalent norms

Let||-]l1 and ||-]|> betwo normson avector space X. We say that thenorm ||-||1 isstronger
than the norm ||-|| 5, and write
-l > 112,

if the topology 71 generated by ||-||; iS FINER than the topology 72, generated by |- || »:

I-lla > [I-ll2 “= 71 D 72.

Theorem 1.4.1. The following conditions are equivalent (TFAE):
a -~ N-ll2;
b) 3ri,ro>0: IO?,'r'i||1 c IOB‘r'é”z;
€) dri,ro > 0: B'rli"l c B‘rlé”z;

d) 3re,ra>0: rallg = roll-llo. (Whichmeansthat Vx € X: r1 X[l > r2 [IX]l2.).
<1° () = (b):
o1, 1.3 O def. Ol . O O|l.
Bl‘l”z € 1 27 Bﬂ”z €11 I3 - 0: Bﬂ l2 5 Bﬂ h o B‘l| l2 BL' ”1;

thus, wecanputry =¢, ro = 1.
2° (b) = (c):

1.2 |-lly 1.2 -1, (© -ll» 1.2 -llo 12 -
Bl 22 (M B 12 M oBll @ () Bl 2 () B2 2 ).

r>rg a>1 a>1 r>ra
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3° (c) = (d): Let (c) istrue. We need to verify that Vx € X: ra |[Ix[ly > r1 [IX]|o. Without

. 1 ©
lossof generality x # 0. Wehave|[rix/[[X[l1]l; = r1 = rax/IIx[l; € Bl = rax/|x|; e

B2 = lIrax/lIXll4llz < 12 = ralixllz = r2 IXll1.
4° (d) = (a): Let (d) istrue. We need to verify that 71 D 72. Let U € 72 and let X be an
arbitrary pointin U. By the definition of 7, for somee > 0

BI'l2(x)  U. D

Now, ||X|l; <r1 9Q IX]l> < r2, which means that I%l'i”l C §Ir|2-\|z. Multiplying by ¢/r> we

obtain B! I%ﬂ'”z. And the trandation by x yields (by the property 2 of balls, see 1.2)

ery/ra

3111 Oz oy D
Bgrl/rz(x) C Bg (X) C U.ThusU e 71. >

Example. In¢;

-2 = l-lloo s llloo # II-ll2
where
Xlloo :=sup IXi] (X = (X1, X2,...)).
ie{1,2,..}
(Prove!)

Equivalent norms
We say that two norms ||-||; and ||-||, on avector space X are equivalent and write

I+l ~ 1125

if each norm isstronger than the other, that is, if they generate one and the same topology:

-l ~ 1-llz 2= (-l > -z -2 = (1-ll) & 71 = 72.

[ Theorem 1.4.2. InR"

)

M, -~ M-ll2 ~ N lloo

< 1° |Ixlly = lIXll2 > [IX]ls (prove!), hence (by
g Theorem1.4.1) [I-ll1 = [Il2 = IIlloo-

2°n Xl > /Nlxl2 > lIXll1 (prove!), hence
oo > N-ll2 > 1I-ll1. >

NB In fact ALL normsin R" are equivaent (see
1.9).

1.5 Bounded sets

A set Ainanormed space X is called bounded if A iscontained in the ball B, for some
r > 0.
NB A set Aisbounded iff the number set {||X|| | X € A} C R is bounded.

Example. Each ball (closed or open), with any center, is bounded. (Prove!)
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Theorem 1.5.1. For equivalent normsthe set of all bounded sets is one and the same, that
is, if Il ~ [I-ll2, then

Alisboundedin ||-]; & Aisboundedin |||, .

<1 Thisfollows from equivalence (a) < (d) in Theorem1.4.1. >

Remark. The theorem suggests that boundedness can be expressed in terms of the ToPO-
LOGY 7 generated by the norm. And indeed A is bounded iff for each neighbourhood U
of zeroin r thereexistsd > O suchthat A c U.

1.6 Product

Let X1, ..., Xn benormed spaces. The vector space X1 x - - - x X can be equipped with
the norm

X1, - Xl i= 1 AIXallxy s -5 IXallx,) o, D

eRn

wherel < p < oo, and |||, isthe normin R" defined in 1.1. Just asin Theorem 1.4.2.,
it can be verified that for p = 1, 2 and oo we obtain equivalent norms. (In fact, the norms
(1) are equivalent for ALL p € [1, o], since all normsin R" are equivalent, see 1.9.)
Remark. Thenorm ||-|| , inR" isa special case of this construction (R" =R x - - - x R).
NB The topology generated by the norms (1) coincides with the product topology in
X1 x -+ x Xp, €ach X; being supplied with the topology generated by the norm.
Criterion. Let X1, ..., X, be normed spaces. Then

(X1, .., Xn) = (Re, ..., &) € Xax - x Xn & Vi [xi — %] — 0.
< Thisfollows at once from the definitions.
Theorem 1.6.1. For each normed space the algebraical operations
X xR — X, (x,t) » tx (multiplication)

and
+:XxX> X, (X,y) > Xx+y (addition)

are continuous.

< R A-in R

0<|tx—f%]| < |tx —t&]| + |t =% = Jt| |x = %]+t =1l|% H—»o
v [ x=%|—
—f| |t— t|—>0
t—f

hence ||tx — fX| — 0as(x,t) = (X, f). Thus, the multiplication is

D 0(t,x) X
continuous.
20

@
0= [0+ =9 L x4y -9 ———0
X
ly-yll—-0

hence | (X +y) — (R + §)| = O0as(x,y) = (X, ¥). Thus, the additionis continuous. r
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1.7 Natural topology in R"

The topology generated by the equivalent norms ||-[l1, [I‘ll2, lI-llec iN R™ (see 1.4) is
called the natural topology.
NB We ever consider R" with the natural topology.

Theorem 1.7.1. The natural topology zng in R" coincideswith the product topology zprod
(that is, the topology of the product R x --- x R (n times), where R is equipped with its
standard topology).

In particular the natural topology in R isits standard topology.
<1 For short consider the casen = 2.
0° Since the neighbourhoods of x are trandations by x of the neighbourhoods of 0 (by
Property 1 of balls, see 1.2), it is sufficient to verify that each neighbourhood of 0 in zpg
contains aneighbourhood of 0in zprod and vice versa. Below thenotation U e Nby means
that U is a neighbourhood of x.
1° Let U e Nbo(zprod). Then by the definition of the product topology there exist e1 >
0, &2 > Osuchthat

Udlyxly, D lpxl,=Bl> e Nb(ma). OK.
g:=min(e1,62) ~=———"
={(x.y)lIx|<e, lyl<e}
2° Let U e Nbg(zna). Then (since 7 is generated by ||-|| o) there exists & > 0 such that
U o Bll= =1, x I, € Nbo(rproa). OK. 1>

1.8 Bounded setsand compact setsin R"

A set A c R"iscalled bounded if it is bounded in one of the norms |I-/1, [I-ll2, IIlleo
(then, by Theorem 1.5.1., it it bounded also in the two others; in essenceit is boundedness
with respect to the natural topology, see Remark in 1.5).

Theorem 1.8.1. Aset K ¢ R" is compact (in the natural topology) iff it is bounded and
closed.

<1 For simplicity of notations consider the casen = 2.

0° We need the following important theorem of general topology:

Tichonov Theorem. The product [ ]; X; of (arbitrary many) topologicalspa-
ces (equipped with the product topology) is a compact space iff each X; isa
compact space.

1° Let K becompact (inRR2). Then K isclosed (asacompact set in aHausdorff topol ogical
space). Now the projections Ky and K> of K onto the axes x3

o and xp are compact (in R) as the images of a compact set by
continuous mappings. Hence, asis known from one-dimensional
K, analysis, K1 and K are bounded. So thereexistsa > 0 such that

k KicClai=12 ... whenceit followsthat
| | Kix Ko C la x 1a =Bl

K, i Thus K1 x K2 isbounded. A fortiori K ¢ K1 x K2 isbounded.
2° Vice versa, let K be a closed bounded set in R2. Then K B!{”OO for somea > 0.
But B!{”‘” = la x 5 iscompact by Tichonov Theorem, hence K is compact as a closed
subset of a compact set. >
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1.9 Uniqueness of the norm topology in R"

Up to equivalence there exists just one norm in R" — all norms in R"generate one and
the same topology:

Theorem 1.9.1. All the normsin R" are equivalent.
< Let ||-|| beanormin R". Show that ||-|| ~ ||-]I1.
1° |I-llx. > lI-ll: Consider the canonical basis {e1,...,en} of R", (& = (O,..., O, 1
0,...,0)). Forany point x = (X, ..., Xn) € R"it holds I
A-In.
X[l = lIx1€1 + - - - + Xn€nll < [IXa€1]l + -+ [ Xnenll
= |Xg| el + - - - + [Xn] ll&nl]
< M(IX1] + -+ [xn]) = M [IX]l1 .
M:=max{llesll,-- llenll}
Hence, by Theorem 1.4.1., ||-|l1 = II-]l-
2° ||l = II-ll1: Consider the unit sphere Sin the norm ||-||4:

S:={xeR"||x|;=1}.

This set is compact (in the natural topology). Indeed, S is obviously bounded, and Sis
closed as the pre-image of the closed set {1} c R by the continuous mapping |||, (see
Theorem 1.3.2.).

Now we claim that ||-|| is a continuous function on R" (with the natural topology).
Indeed, ||-|| is continuous with respect to the topology = generated by ||-|| (once again by
Theorem 1.3.2.) and tng iS FINER than 7 by 1°.

We concludethat ||| attainsits MINIMAL valuemon S, that is,

[Xllp =1= |lIx|]| = m, @
IXoll = m for some xg with [|Xoll; = 1.

Thisvalue m must be greater than 0, since otherwise xg = 0 and ||Xoll; = 0. It follows
from (1) that

S X
kIl IXlly > 1= |IX = lIXll1 | ———| > m.
B, —— | IXl1
X9 o] ——

>m
Hence

X[ <m=|x]; <1,
that is,

Bl c By

Thus, by the same Theorem 1.4.1., ||-|| = |I-ll1. &>

1.10 Linear mappings
For alinear mapping| we usually writelx or | - x instead of | (x):

IXx =1 -x=I(x).



1.10. LINEAR MAPPINGS 17

The set of all linear mappings from a vector space X into a vector space Y is a vector
space with respect to operations

(+mx:=Ix+mx, ()x:=tdx) (t e R),

and we denote this vector space by
L(X,Y).

The vector subspace of all CONTINUOUS linear mappings, in the case where X and Y are
normed spaces, we denote by
Z(X,Y).

Theorem 1.10.1. Let X and Y benormed spacesandlet| € L(X, Y). Then! iscontinuous
iff | is continuousat O.
< “Only if”: obvious.

“If": Let| be continuousat 0, that is, ||h|| = 0= ||Ih|| — 0. Then for an arbitrary
X € X it holds

[I1(x +h) =Ix] = [Ilh]] 0 0,
—_— Ihl—
=Ix+lh

which meansthat | iscontinuousat x. >

Operator norm
Let X, Y be normed spaces. We define the norm of a mapping!l € L(X, Y) as

I := sup [lIx]|.

Ixl<1

Very often one says “operators’ for linear mappings, that is why this norm is usually
named operator norm. (Below we will seethat thisisreally anorm.)

Example. For any k € R thelinear mappingR — R, x — kx hasthe norm |K|.
Basic Inequality (BI). ¥l € L(X,Y)V¥x e X: | lIx] < I Ix] |
< If x = O then our inequality istrivialy true. IT X # 0 then

i = (i )| = [ 5

Criteria of continuity. Let| € L(X, Y). Thefollowing conditions are equivalent:

‘ = IIXIIH I H_ (X o
——

<
Ix/1xN=1

a) | iscontinuous;
b) theimagel B; of the unit ball in X isboundedin Y;

c) Ik > 0Vx € X x| < kx|l (the norm of Ix admits an estimation linear in

IX11);

d) |l < oo (the operator normisfinite).

< (8= (b): Since| is continuous at 0, there exists & > 0 : 1 Bf < BY. Multiplying by
5~1 we obtain (by linearity of |) | BX c BY_,, which just means that the image | Bi( is

51
bounded.
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(b)=(c): If I B} c BY, then (without loss of generality x # 0)

eBY
Wlog ,_,\

x| & Illnllllxll < kil

EBX

(©=(d): If lIx|| < kx|l for al x, thensup <1 x| <k, thatis, Il]] < k.
- ——
<k [Ix]]
——
<1
(d)=@): If |Il|| < cothen0 < |lIX]| < I T» 0, hence ||l x| —> 0, that
X

IxIl—
is, | iscontinuousat 0. But then, by Theorem 1.10.1., | is continuous everywhere >

Remark. ||l|| = inf{k > 0| ¥x € X: [IIx]| < k|x]|}.

Theorem 1.10.2. The mapping £ (X,Y) - R, | — |I| isanorm.
< That ||I|| > Oisobvious. If ||I|| = Othen ||Ix] = Ofor all x with |x|| < 1 and hence,
by linearity of |, for al x, which meansthat | = 0. Further

[t = sup [[(tHx] = sup [ItdX)] = |t] sup x| = [t
X<t Ixl<1 Ixll<1
At last
lle+ 120l = sup e+ 12)x]l = sup fIlax +12x] < sup  llax]l +  [ll2x]|
Ixll<1 lIxll<1 Ixll<l ~—— ——

<tal XN <tzn Il
—~— ——"
<1 <1

< Al + 2l >
NB We EVER consider .2’ (X, Y) as a normed space with this norm.

Thecase X = R"

Theorem 1.10.3. Any linear mapping fromR" (with the natural topology) into a normed
space Y iscontinuous:
L@R",Y) = Z®R",Y).

<Letl € L(R",Y). Eachelement X = (X1, ..., Xn) of R" can bewritten asxie1 + - - - +
Xn€n, Where {e, ..., ey} isthe canonical basis, so if we putle =: &, then, by linearity
of I,

IX = X181 + - - - + Xnan. )

In view of Theorem 1.10.1. it is sufficient to verify that | is continuous at 0, that is, that
X = 0= Ix - 0.Butx — Omeansthat al x; — 0 (sincethenatural topology coincides
with the PRODUCT topology), whence it follows (by continuity of algebraical operations
in a normed space, see Theorem 1.6.1.) that

X1a1 + -+ Xpan — 0.

Thus, by (1), 1x — 0.
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(ANOTHER PROOF:

XI = T(xaer +-- )l < [xalll ler || +--- < max il (IXe| +---) < KIIX]l1,
—— N e’
a =k =Ixl

so | iscontinuous by Criterium (c) of continuity.) >

Evaluation at a point
Let X,Y be vector spaces, and let h be a FIXED element of X. The evaluation at h (or
delta-function at h) is the mapping

&h=0oh:LX,Y)> Y, I > Ih
Thismapping is (obviously) LINEAR.
Theorem 1.10.4. Let X, Y be normed spaces. Then for each h € X the evaluationat h is
CONTINUOQUS:
evh € Z(Z(X,Y),Y).
Ih
< |levnll = sup |levhl || < |h|l, henceby Criteria(d) of continuity, ev,, iscontinuous. >
<1~
Bl
< 1 i
——

<1

“Lemma’ from Functional Analysis
Mappings into R are usually called functionals in the case where the “first” space is
infinite-dimensional. (The name “Functional Analysis’ originates from this word.) The
vector space of all linear (resp., continuous linear) functionals on a given vector space
(resp., normed space) X we shall denote by X’ (resp., X*):

X' :=L(X,R), X* 1= Z(X,R).
Later we at least two times shall use the following:

Theorem 1.10.5. (“Lemma’ from Functional Analysis) Let X be a normed space. Then
for each vector x € X thereexistsa functional | € X* of the unit normsuch that its value
at x isjust the normof x:
=1, Ix = [IxIl.
<1 We give the proof for X = R" only. If x = 0 then we can take as| ANY functional of
thenorm 1. Let x # 0. Put (below ||-|| denotes||-|»)
e::ﬁ and ly:=e.y (yeRM

(where the latter point means scalar product). It is clear that || e]| = 1, so

= sup |e-y| <1, llel=le-el=1
lyl<1 == ey
< el Iyl -
prop. ~~——""—~—
of .o =1 <1

Since e belongs to the unit ball, over which we take the supremum, we conclude that
= 1.

At last
X ooxex x|

= X=—=—— = |X||.>
IIxI] IxI x|






Chapter 2

First derivative

2.1 Fréchet and Gateaux derivatives

The classic definition of the derivative

f h) — f
F(x) = lim LXMW =100
h—0 h

(h+£0)
can be written in the form (below we drop for short “h # Q")

JUNA
h h-o

where
r(h):= f(x+h)— f(x)— f'(x)h.

So we can reformulate the definition asfollows; afunction f : R — R isdifferentiableat
apoint x if there existsanumber | (= f’(x)) such that f admitsthe representation

vhe X: f(x+h)=fXx) +Ih+r(h),

wherer isamapping R — R, that satisfies the conditionsr (0) = 0 and

g
h h-o

1)

Such a mapping we call small.
A key point to generalize this definition is the idea that | can be considered as a
(continuous) LINEAR MAPPING R — R:

I:R—> R, he1lh

(we identify anumber | with the linear function with the (slope) coefficient|). Thisleads
to the following definition:

A mapping f : X — Y between normed spaces X and Y is differentiable (in a given
sense) at apoint X € X (notation: f e Dif (x)) if there exists a continuous linear mapping
| : X > Y suchthat f admitsthe representation

Vhe X: f(x+h)y=fx)+lh+r(h), 2)

21



22 CHAPTER 2. FIRST DERIVATIVE

wherer isamapping X — Y, that is SMALL (in this sense). There are two basic kinds of
smallness for mappings between normed spaces:
A mappingr : X — Y isFréchet-small (F-small) if r (0) = O and

lIr (i

— 3
Ihll 1hi—o0 ®)
r is Gatteaux-small (G-small) if r (0) = O and
. th
vhex: "™ 5 er) 4
t—0

NB For X =Y = R both (3) and (4) are equivalent to (1) (verify!).

Accordingly we speak about F-differentiability and G-differentiability. Very often we
drop the symbol “F”, so “differentiability” means ever “Fréchet differentiability” and
“f e Dif(x)" means“ f € F-Dif(x)".

Remark. Both our differentiabilities do not depend on the choice of EQUIVALENT norms
in X and Y. (Verify!)

The mapping | in the representation (2) is caled the derivative of f at x and it is
denoted by f'(x).

Examples.
Y ! 1 If X = R (“time") then we can identify a linear mapping
Il 8- : | : R — Y withtheelement| - 1 of Y and it is easy to see that
F-differentiability is equivalent to G-differentiability, and
‘ , i+ A — f(@) oo
f't)y-1= | thelimitin'Y).
I R ©-1= lim, At (thelimitin’Y)

: Below we shall denote the last limit by f(t) and call f(t)

%\\\ 1) y (whichisavector inY) the usual derivative of f at t (it isthe
3 velocity of apoint that movesin Y by the“law” f).

2. Any CONSTANT function is differentiable everywhere, with zero derivative.

<If f =c,then f(x+h) = f(X)+0.h+0,and Oissmall (in any reasonable sense!)

3. Any continuous linear mapping | is differentiable, and its derivative at each point is
equal to this mapping itself:

I'=1  (thatis ¥x e X' I'(x) =1).

<l(x+h)y=Ix+1h+0. >

4. Thefunction f : R" - R, f(x) = XI5 = x2+--- + X2 (X = (X1,...,Xn)) iS
differentiable everywhere, and

f'(X)-h=2x"-h,

where the point to the right means scalar product. (Prove!)

5. Let the function f : R2 — R is equal to 1 on the right branch of the
1 parabola {(t, t?)} wiTHOUT the origin (t > 0) and is equal to O at all rest
pointsof theplane. Then f isG-differentiableat O(= (0, 0)), with f’(0) =0

0 (e £ (R? R)), butisnor F-differentiable. (Verify!)
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Theorem 2.1.1. F-differentiability implies G-differentiability, with the same derivative.
< Itissufficient to show that if r : X — Y is F-small, thenr is G-small. Letr(0) =0

and
Ir (Wl
e
[hll 1hi—0
Then for each fixedh € X \ 0 (for short we write X \ Oinstead of X \ {0})

r(tﬁ) H _lresl 1Al — o0,

A

(5)

since||th|| = [t| Hﬁ” — 0 and hence, by (5), Hr(tﬁ) H/Htﬁ” — 0.But thisjust means
that i

T t—0
Thus, r is G-small. >

Theorem 2.1.2. G-derivativeis defined uniquely.
<1 We need to verify that if for agivenx € X

Yhe X f(X)+1th+r1(h) = F(X) + 20 +ra(h), (6)

wherel, 1o € Z(X,Y) andrq,rp are G-small, thenl1 = I, that is, for each h € X it
holdsl1h = I>h. But indeed (for t # 0)
wick 11(th) —12(th) g ra(th) —rath) _ ra(th) _ rai(th)

I1h — I,h 1 5,0
meh t t t t 150

whenceit followsthat I1h — Ioh = 0. >

Corollary 2.1.3. F-derivative is defined uniquely.
< It followsfrom Theorems2.1.1. and 2.1.2. >

Theorem 2.1.4. If f isdifferentiable at x, then f is continuousat x.

<1 By thecondition, f (x+h) = f(x)+lh+r(h),wherel € Z(X,Y)andr issmal. We
need to verify that if h — Othenlh +r (h) — 0. Sincel isacontinuouslinear mapping,
Ih - 0Oash — 0. Now, forh # 0

Ir ()l Ih

rh)|| = >
Ir Ml Il Ihl—0
——

-0

(for h = Owehaver (0) = 0), which just meansthatr (h) —» Oif h —» 0. >
NB G-differentiability does NOT imply continuity (see Example5).

2.2 Computation Rule and directional differentiability.

For practical computation of derivativesit is convenient to use the following
Computation Rule. Let f : X — Y be G-differentiableat agiven point x, andleth € X
begiven. Putfort e R

lp() = f(x+th)

>
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sothat ¢ : R — Y. Then ¢ isdifferentiableat 0, and

Fooh=¢@ = 2| fx+th|
ot li—o
(Asto ¢(0) sce Example 1).)
Y
/ ¢
/‘
P(0)=/(x) Q(D)=flx+1h)
X x+h |
0 1 t

< Let f/(x) =1.Wehaveg(t) = f(x +th) = f(x) +1(th) +r(th), so (fort # 0)

PO =p© _lam+ran o orey
t

= = h
t p0)=f(x) t leLin

-0

ast — 0, which doesmean that ¢ (0) = Ih. >
The Computation Rule suggests the following definition. We say that a mapping
f : X = Y isdifferentiable at a point X in a direction h if the function

p:R->Y, t— f(x+th)

isdifferentiable at 0. In such a case we call the vector ¢ (0) € Y the differential of f at x
by the increment h, and we denote this differential by Dy, f (x). Thus

F(x 4 thy = lim X F = 109 (1)
0 t—0

0
Dnf(x) == (0) = = t

Corollary 2.2.1. If f : X — Y is G-differentiable at x then f is differentiable at x in
each direction, and

vhe X: [Dnf(x)=f'(0h|

Viceversa, if f isdifferentiableat x in each direction and the mapping
l[:h—> Dhf(x), X->Y

iSLINEAR and CONTINUOUS, then f is G-differentiable at x, and f/(x) =I.

Remark. The mapping | in Corollary 2.2.1. is ever HOMOGENUOUS. More precisdly, if f
isdifferentiableat x in adirection h, then for any real number c it is differentiableat x in
the direction ch, and

|Den f () = cDn f (%) |

(Thisfollows at once from the last expression for Dy, f (X) in (1).) But thismapping| can
be non-linear (that is, non-additive), as the following example shows.
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Example. The function f : R? — R given (in the polar coordi-
nates) by the formula

f(e,0) =0 sn30,

the graph of which is shown on the picture (from: M. Krupka,
Matematicka Analyzalll, Opava 1999), is differentiable at EACH
point in EACH direction, but is NOT G-differentiable at the origin.
(Verify!)

The next lemmais an extension of (1).

Lemma?2.2.2. (on f(x+th)).Let f : X - Y. Putfor givenx,h e X

o) == f(x+th) (t e R).
Then

[¢() =Dnf(x+th)|

(If one side is defined then the other oneis also defined, and they are equal.)
@ im f((X +th) +zh) — f(x +th)

<1 Dpf(x +th)

7—0 T

7—0 T

o). >

2.3 Rulesof differentiation

First of al, differentiationis alinear operation:
Linearity of differentiation.(a) If f e Dif(x) then for each c € R we have also cf €
Dif (x), and

ety (x) =cf' ()|
(b) If f1, f2 € Dif(x), then f1 + f,  Dif(x), and

(14 1200 = 100 + 300

<1 (a) We have (cf)(x + h) = c(f(x + h)) = c(f (x) + f’(xX)h +r(h)) = (cf)(X) +
(cf’(x))h + (cr)(h), so we need to verify that cr issmall. But indeed (for h # 0)

eyl _ e il c| Ir (I
Ihl] lIhll [hil 1Ihi—0
——
r issmall
——0

(b) We have analogously (in obvious notations)
(f1+ f2)(x +h) = (f1 + f2)(X) + (f{(x) + F30))h + (r1 +r2)(h),

so we just need to verify that rq + rp issmall. But indeed
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Ira+r2)MI _ lirah) +ra(ll _ fira (il + lir2(h)l

T TR T
_ Il v ez wesmal
YT

Product Rule. Let X, Y1, ..., Yy benormed spaces, andlet fi : X - Yj, i =1,...,m.
We denote by (f1, ..., fm) the product mapping X — Y1 x --- x Yy, defined by the
formula

Y1
fur (fr, ..., fm)(X) 1= (f2(x), ..., fm(X)).
X The mapping (fy,..., fm) is differentiable (resp., G-
fy differentiable, differentiable in a direction h) at x € X iff
Ym each mapping f; isdifferentiable (resp., G-differentiable, di-

fferentiablein h) at x, and

X— Y1x...xYm

(f1, ..., Tm)(X) = (f{(X), ..., fh(X) (component-wise
Dn(f1,..., fm)(X) = (Dpf1(X),...,Dnhfm(x)) | differentiation).

<1 Consider, e.g., the case of F-differentiation. We have

(fy, ..., fm)X+h) = (fi(x+h),..., fm(x +h))
= (fa(x) + f{x)h +r1(h), ..., fm(X) + f,(Oh +rm(h))
= (f1(X), ..., fm(X)) + ({00, ..., fr,Oh) + (r1(h), ..., rm(h))
= (fr, ..., fm)) + (f{(X), ..., fn)Dh+ (r1,...,rm)(h).
Now, (f{(X),..., fn(X)) € Z(X,Y1 x --- x Ym) iff each fi € Z(X,Y;) (by the
definitions of product vector space and product topology), and (r1, ..., rm) is smal iff
eachrj issmall. Indeed

lIhll B ( Ihi”"""" by ) Ihi—0 0w [hil1hi—o0

since convergence in a product spaceis just convergence of each component. >
Chain Rule. Let f : X — Y bedifferentiableat a point x € X, andletg:Y — Z be
differentiable at the point y := f (x). Thenthe compositiongo f

X A y 8 7 isdifferentiable at x, and the derivative of g o f isequal to the
composition of derivatives of f and g:
X =y
f/ /
x 1%y 9% @0 () =g o Fl

<1°Put f'(x) =:1, g'(y) =: m, g(y) =: z. We have, by the conditions,

VAx e X: f(x+ Ax)=y+| Ax+ri(AX), (1)
VAyeY: g(y+ Ay) =z+mAy+rg(Ay), 2)
where
r{(AX)
I+ (a0 -

IAX]  1IAx]|—0
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rg(Ay)
o] @
IAY|l  1AylI-0
We need to verify that
VAXxe X: (go F)(X+ Ax) = z+ (Mo )AX +r(AX), (5)
where A
Ir (AX)]| X ©)
IAX|  1Ax]—0
2° But
r(Ax) = mr¢(AX) +rg(Ay), (7)
where
Ay =1 AX+r¢(AX). (8
Indeed
(@o F)(x+ Ax) = g(F X + Ax) L gy +1 Ax +1(AX))
B
Dy
@ z+m(l AX +r¢(AX)) +rg(Ay) @ Z+ (Mo l)AX +r(AX).
3° Now,
Ir (A%l @ [mre(Ax) +rg(Ay)| _ [mre(Ax)] + [rg(Ay) |
I AXl I AX]| - _ I AXl
o e [re(ay)| Ay
< Im]| F3 .
| AX]] Ayl AX]]
— trick
)
lIx[—0

So all will be proved if we show that

@rg(Ay)/llAyll = Oas|ix]| — O;

(b) |Ayll/]l AX] is bounded for sufficiently small || Ax||.
4° Proof of (a): r isequal to 0 at 0 and is continuous(since f and| are). So ||Ay|| — O
if |AX|| — 0, and (a) istrue by (4).
5° Proof of (b): we have

Ayl @ [ Ax+rean] 1 axi+ Jreax)]

TAX] — TAX]] = [AX]|
Bl ([T IJAX] + ||r ¢ (AX r(AX
IAX] lAX|l
~———
(©))
—
IAIXx—0

for somec > 0 and sufficiently small || Ax]|. >
Important special cases.

1) If f =1 e Z(X,Y) then| (go]) () = g'Ix) ol |

2 Ifg=1e 2, 2)then|(l o f)Y(x)=10o f'(X)]|(wecan“transfer” lo through
the brackets).
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3) If X =R, then\ (go f)(t) =g (f(t)- f(t)]|(recal that f (t) isan element of Y).
4) Inparticular,if X =Rand f =1then|(gol) () =g'(t)-(-1)|and
5) if X =Randg = then| (1 o 1) =1 - f(®)]

<1 All thisfollows from thefactsthat I’ = | and that f(t) = f'(t) - 1. >
Below we refer to Special Cases 1), 2), 4), 5) astol-Rule.
NB For G-differentiability Chain Rule is NOT valid, as the following example shows.

Example. Let f : R — R?, t — (t,t?), and let g bethefunctionfrom

&f 5) in (2.1) (where we used the letter f for it). Then f is G- (and even

< F-)differentiableat 0, g is G-differentiableat f(0) = (0,0),butgo f
isNoT G-differentiableat 0.

Lemma?2.3.1. (onevaluation). Let X, Y, Z benormed spaces, andletamapping f : X —
Z (Y, Z) be differentiable at a point x. Let k be a fixed vector inY,andletg: X —» Z
be defined by the formula

g(x) := f(x)-k (thevaLueof f(x) atk).

Then g is differentiable at x, and

vhe X: g()h=(f'(x)hk.

<1 Obvioudly, g = evkof (recal that ev : | — | - k, see Chapter 1), hence, by |-Rule
(evk € Z(2(Y, 2), 2)),

g'00h = (evko f'())h = ev(F'(0h) = (' (Oh)k. &>

2.4 Partial derivatives

Here we consider two related things: differentiation in a (vector) subspace and partial
differentiation.

Differentiation in a subspace
Let f : X — Y beamapping between normed spacesand let X, beavector subspace
in X (the notation X1 € X). We say that f is F- (resp., G-)differentiableat apoint x € X
inthe subspace X1 if f admitsin x + X1 the representation

Vhie X1 f(x+h1) = f(x) +11h1 +r1(hy),
wherel; € £ (X1, Y)andry: X3 — Y isF- (resp., G-) small. In such a case we write
f e Difx,(x) (resp., f € G-Difx,(x))
and we call |1 the derivative of f at x in the subspace Xj:

L =: fg(l(x).
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Example. A mapping f : X — Y isdifferentiable at a point x in a (non-zero) direction
hiff f isdifferentiable at x in the one-dimensional subspace Rh (= lin{h} = span{h}),
generated by h, and in such acase

frp(X) - th = tDp f (x) (t e R).

(Verify!)

Theorem 2.4.1. If f : X — Y is F- (rep., G-)differentiable at x, then f is F- (resp.,
G-)differentiable at x in each subspace X1 € X, and the derivative in X1 is just the
restriction of the* total” derivative:

f)/<1(x) = /(%) |x,-

<1 This follows at once from the obvious facts, that the restriction of a continuous linear
mapping onto a vector subspace is aso a continuous linear mapping, and the restriction
of asmall mappingisalso small. >

Partial differentiation
Let X1, ..., XpandY benormed spaces. We say that amapping f : X1 x...x Xp —
Y is F- (resp., G-)differentiable at a point X = (X4, ..., Xn) in thei-th coordinateif the
mapping

f(xls"'sxi—].»'»Xi"rl"" :Xn) : Xl 4 Y9 )h(’l g f(xla"'sxi—la)’ziaxi‘i‘ls"' 9Xn)

(that is, the mapping with al other coordinates FIXED) is F- (resp., G-)differentiable at
the point x; . We denote the corresponding derivative by
of (x)
o X

(e Z(Xi,Y))

and call it the partial derivativein X; at the point x.

Theorem 2.4.2. Amapping f : X1 x --- x X;; = Y isdifferentiable (F- or G-) at x in
thei-th coordinatesiff f is differentiable (in the same sense) at x in the subspace

Ox---x0x Xj x0x---x0,

and
of (x)

|
< Thisfollowsimmediately from the definitions. >

vh € X; :

hi = Fyxixe0™®) - (0., 0,hi, 0, 0).

Theorem 2.4.3. (on total and partial derivatives). Ifamapping f : X1 x --- x Xy > Y
is G-differentiable at a point x = (X1, ..., X) then f is G-differentiable at x in each
coordinate, and

=

Vh=(hy,....hn) e Xy x - x Xn? [F/(x)-h=>"

or, more short,

n

of (x) o @ of (x) :@af(x) .

f'(X) = —— . = -
0X1 0Xn o X

i=1
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Hereli @ --- @ Iy, for l; € Z(X;,Y), denotes the direct sum of the mappingsl|;,
defined by the formula

1@ Dl Xyx---xXn—>Y, (hy,...,hg)—>I1-h1+---+1n-hp.

At -h=10)(h1,....,hp) = /() D (0,...,0,h;,0,...,0)
i=1

n
Theorem 24.1. > H(x)(0,...,0,h;,0,...,0)
i=1

n
: Z fx..xxix...x0() - (0,...,0,hi,0,...,0)
i=1
n

Theorem 2.4.2. z of (X) h
= -Nj. >
oxi

i=1

2.5 Finite-dimensional case
We ever denoteby ey, . . ., e, the standard basisin R":

g:=(...,0,, 1 ,0,...00eR".

b 3. 2
i-th place

For amapping f : R" =R x ... x R — Y thepartia derivativein the i-th coordinate
appliedto the“vector” 1 € R (that is, the “usual” partia derivativein thei-th coordinate)
istraditionally denoted by

of
— (EZLRY)~Y).

By Theorem 2.4.2. (with h; = 1), and by the Examplein 2.4 (withh = g andt = 1),

of ()
OXi

=Dg f(X) | (@)

(Emphasize that of (x)/0x%; isan element of Y.)

Jacobi matrix

Theorem 2.5.1. (on representation). Let amapping f = (f1,..., fm) : R" > R" be G-
differentiableat apoint x € R". Then f/(x) isrepresented asalinear mapping R" — R™M
by the matrix of partials derivatives

ofix) i)
8X1 aXn

Ji(X) := : .. :
fm(x)  0fm(X)
8X1 aXn

Thismatrix is called Jacobi matrix of f at X.
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<1 By linear algebra, we need to verify that the i -th column of the matrix represents the
vector f/(x) - g. But indeed

00 - & T (0, ..., Fa0) & = (f10 - @, ..., Fax) - &),

and of (%)
i (X
f/(x)- & = De fj00 & ==,

>

Corollary 2.5.2. In conditions of Chain Rule, for mappings between finite-dimensional
spaces, Jacobi matrix of the composition is equal to the matrix product of Jacobi matrices
of the composed mappings:

Jgo 1 (X) = Jg(F(x))Jr (X).

<1 Thisfollowsfrom Chain Rule and the fact that the matrix of acomposition of two linear
mappingsis equal to the product of the matrices of these mappings. >

Example. How to computethe derivativeof thefunction f (x) = x* (x > 0)?Represent f
asacomposition: f = go A, whereA : R — R2, t i (t,1), g:R%2 > R, (X,y) — xV.
By |-Rule,

ox oy 1_6x+ay

— yyY-1 y - :
R A NIV (In)xY[,_,_, = (Int + 1t".
Gradient
In the special case of SCALAR functions f : R" — R Jacobi matrix is the row
of (%) of (x)
0X1 oxn |-

The corresponding vector in R"iscalled thegradient of f at x and isdenoted by grad f (x):
of (x) of (x))

s e RM.
8X1 aXn ( )

grad f (X) := (
In this situation Theorem 2.5.1. (Theorem on representation) says.

, 2

[#(0)-h=grad f(x) - h

where the point to the right means scalar product. Indeed

hy n
of(x)  af (x) L of(x)
(aXl ..._axn) h Dt

For any UNIT vector v € R" (||v]|2 = 1), the differential of amapping f : R" — R at
apoint x by theincrement v is called the derivative at x in the direction v and is denoted
traditionally by of (x)/ov:

of (x) A
= D; f (X).
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Theorem 2.5.3. If afunction f : R" — R is G-differentiable at a point x, then for any
unit vector v € R" it holds
of (x)
ov
(where the point means the scalar product).

Qof(x)/ov =D f(x) = f'(X) - v @ gad f(X)-v. >

Corollary 2.5.4. Thegradient vector of f at x yieldsthedirection
of the greatest growth of f at x and is orthogonal to the level line

of f passing through x.
@ <1 The scalar product grad f (x) - v ismaxima for the unit vector
% v that has the saME direction as grad f (x) and isequal to O for v
orthogonal to the gradient.

rad f{x)

=grad f (X) - v

2.6 Mean Value Theorem

In classic differential calculus, the following result plays an important role:

Theorem 2.6.1. (Lagrange). If afunction f : R — R iscontinuousin the closed interval
[0, 1] and is differentiable in the openinterval (0, 1), then thereexistsé e (0, 1) such that

f(1) — £(0) = ().
This result is NOT true for functions with vector values, as the following example
shows.
Example.Let f : R — R?,t — (cos2zt,sin2zt). Then f (1)—
f\ f(0) = (0, 0), but
f‘ (t) Prod. Rule
=1 hence || f (t)||, = 2z, which is never zero.
But the following ESTIMATE of the increment istrue:

(—2x sin2rt, 2z cos2rxt),

Theorem 2.6.2. (Mean Vaue Theorem, (MVT)). Let afunctiong : R — Y (whereY is
a normed space) be continuouson [0, 1] and differentiablein (0, 1). Then

lo(1) — O < sup ll®Il.
O<t<1

<11°Puty := ¢(1) — ¢(0). By Theorem 1.10.5. (Lemmafrom FA (see Chapter 1)) there
exists| € Z(Y, R) such that
=1, ly =1yl 1)
2° Consider the composition
R5Y LR
Itisdifferentiablein (0, 1) by Chain Rule.

3° We have ||y|| @ ly =1(p(1) —90)) = (I op)(1) — (I 0 p)(0). By Theorem 2.6.1. for
somed € (0, 1) it holds

(o) @) —(0p)©0 =(0p)®) 1. 6@) 2 1] 16@)] < sup 6)]. >
:ff O<t<1
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CAR-INTERPRETATION. If Y = R? and we consider t € R

astime, then ¢ describes a motion of a*“car” in the plane, and

¢ (t) isthevelocity of thiscar. Theinequality in Theorem 2.6.2.

supllgp()ll  (MVT) meansthat our car in one hour will be INSIDE the circle

O<i<d with the center at the original point, the radius of whichisequal

to the maximal value of the velocity of the car during this hour.

Remark. In fact the following much more strong result istrue:

By the conditions of MVT, the increment ¢ (1) — ¢(0) liesin

the closed convex hull of the set {¢(t) | 0 < t < 1} (shadowed
on the picture).

Corollary 2.6.3. Let X, Y be normed spaces, let x, h € X and
let amapping f : X — Y hasthe following properties:

a) the restiction of f onto the closed interval [x, x + h] (=
{x+th |t e[O0,1]}) iscontinuousand

b) f is differentiable in the direction h in the open interval
X, x+h) ¢(={x+th|te(0,1)}). Then

[fx+h)—f)Il < sup [IDhf(Y)I.
ye(X,x+h)

<QPut p(t) := f(x+th),t € R. By Lemma 2.2.2. (on f(x + th)), it holds ¢(t) =
Dp, f (X + th). So our assertion follows from MV T (Theorem 2.6.2.). >

o(1)-(0) o)

9(0)

supllp(o)l]

O<r<1

Corollary 2.6.4. In the situation of Corollary 2.6.3., let f hasthe following properties:
a) therestiction of f onto theinterval [x, X + h] is comtinuous and
b) f is G-differentiablein (x, x 4+ h). Then

[fx+h) = feoll < llhl  sup | ().
ye(x,x+h)

<1 Thisfollowsfrom Corollary 2.6.3. and the fact that

IDREI = | £y -h| 2 | o Ih >

2.7 Continuousdifferentiability

Let X, Y benormed spaces, let x € X, andlet f : X — Y be G-differentiablein an open
neighbourhood U of x. We say that f is continuously G-differentiable at x and we write

f e C&(x),
if the derivative mapping
f'iU - Z2KY), y—= fi(y)
iscontinuousat x. Thus

feCi(x):e | f'(x+h) — X ST 0. (1)

Theorem 2.7.1. (on ContinuousDerivative). If f : X — Y iscontinuously G-differentiable
atapointx € X, then f is F-differentiable at x.
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< 1° We have
f(x+h)y=fx)+ f'(x)h+r(h), f'(x) e Z(X,Y), r € G-small.
Putfort e R

wt) :=r(h) = f(x +th) — f(x) —tf’(x)h. 2
Then
r(h)y =w() — (). (©)
2° Wewant to apply MV T, so computethederivativeof . By Lemma2.2.2. (on f (x+th)),
w(t) = Dh f (X +th) — f'(x)h = (f'(x + th) — f’(x))h. (4
—_—
=f/(x+th)h
3° Now,
Irn) @ w@) = w© mvr 1 ap [t
Il = g, vl
g 1 / /
@ = sup [[(f/(x +th) — f'())h|
Ihll o<t<1
ZCH ety = G IR
1
< sup |(F(x+th) — /()| —=s 0,
O<t<1 [hil—0
since |[th|| = |t] |Ih]| m O uniformly in0 <t < 1. Thusr is F-small, so f is
-

F-differentiableat x. >

ClassC!
Let X, Y be normed spacesand let U bean open setin X. Wesay that f : X —» Y is
of classCl in U an we write
f e CL(U)

if fisdifferentiableat each point of U (that is, in U), and the derivative mapping
f'iU - Z2(KY), x-= /(%
is continuous.

Theorem 2.7.2. (C-Theorem on Continuous Derivative). Let f : X — Y becontinuously
G-differentiable at each point of an open set U in X. Then f isof classC! inU.
<1 Thisis animmediate corollary of Theorem 2.7.1. (on continuous derivative) >

2.8 Continuous partial derivatives

At first we prove one result on continuous differentiability in n fixed directions.

Continuousdifferentials

Lemma 2.8.1. Let X, Y benormed spaces, and let hy, ..., h, befixed vectorsin X. Leta
mapping f : X — Y bedifferentiableinthedirectionshs, ..., h, insome neighbourhood
U of a point x, and let all the mappings

Dpf:X> Dhf(X), U>Y  (=1,...,n)
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be continuous at x. Then f is G-differentiable at x in the vector subspace H in X,
generated (spanned) by the vectorsh; (H = lin{hs, ..., hy} = span{hy, ..., hn}).
< 1° If f1sG-differentiableat x in H, then

f;(X) - hj = Dp; f(x) i=1...,n),
sowemust havevcy,...,ch e R
f/(x)-(cth1+. . .+cnhn) = c1 f'(X)h1+. . .4y F'(X)hn = €1Dn, f (X)+. . .4-CaDh, f (X).
)

(Since H isfinite-dimensional, the so defined linear mapping f/, (x) is CONTINUOUS.) We
have to verify that for this f/, (x) it holds

: th
YvheH: f(x+h=fX+ f'(x)h+r(h), r(_)_)
t t—0
that is, that
vheH: f(x+th) — f(x) —tf,(x)h . 0.
t t—0

This means by (1) that we need to verify that Vcy, . .., ch € R:

f(x +t(cth1 + ... 4+ chhp)) — F(X) — t(c1Dn, T (X) + ... + cnDn, T (X))
t t—0

0.

By homogeneity of Dy f (x) in h, it holds ¢;Dp, f(X) = Dgh; f(X) so without loss of
generality we can assume that c; = ... = ¢y = 1 (take ¢ih; as NEw h;). Further, by
induction argument, it is sufficient to consider the case n = 2. Thuswe need to verify that

f (X +t(h1+h2)) — f(x)
t

~ (©n, (%) + D, (X)) — 0. )

2° Adding and subtracting f (x + thy) in the numerator, we can write the left-hand side
of (2) asthesum| 1|+ , where

_ fix+thy = f(x) _ Dn, f (%),

_ f(X +thy +thy) — ft(X +thy) — tDp, f (X)

So it is sufficient to verify that -0 and — Oast - 0.
3°[1]— 0ast — 0 by the definition of D.
x+th+th, 40 pytting (see the picture)

x+th,+6h, 9(0) := f(x+thy +0thy) —0tDp, F(x) (@ €R), (3)

X x+th, we can write intheform
1) —
7]- W =rO @
5° By Lemma2.2.2. (on f (x + th)), we obtain from (3)
¢(©) = Din,f(x+thy+0thy) —tDp, f (x)
homog.
Of_Dh

=" t(Dn, f (X 4+ thy 4+ 8th) — Dn, f (X)). (5)
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6° At ladt,
@ MVT 1
2] 2 2 1o - o1 " = s 9@

|t| |t| 0<f<1

2 sup D, f (x + thy +6thz) — Dr, f () — 0.

0<f6<1

since |thy + dtha|| < [t|(Ihall + 6 [Iha2l) < [t[(Iha]l + [Ih2]l) — O uniformly in &
0<6<1 t—0

and Dy, f is continuousat x. Thus, — Oast - 0. >

Continuous partial derivatives

Theorem 2.8.2. Let X1, ..., Xy and Y be normed spaces and let a mapping f : X1 x
.. X Xpn = Y haveall the partial derivativesof/oXj inanopensetU c X1 x...x X

and these partial derivatives be continuousin U. Then f isof classCtinU.

< For simplicity we consider only thecase X1 = --- = Xp = Y = R (thatis, f : R" —

R), which is the most important for us. In this case continuity of the partial derivatives

of/oX; means just continuity of the partial derivatives 6f/dx; = Dg f. By Lemma on

Continuous Differentials we conclude that f is G-differentiable in U. By Theorem on

Representation,
£(x) = (af(x) af(x)).

8X1 ’ ’ 8Xn

Since each component of this vector continuously depends on x, we conclude, that f’
continuously depends on x. Hence by Theorem 2.7.2. (C1-Theorem on Continuous Deri-
vative), f isof classCtinU.

Corollary 283. Let f = (f1,..., fn) : R" — R™M, and let all the partial derivatives
ofj/oxi (i =1,...,n; j =1,...,m)becontinuousinU c R". Then f isof class Ct
inU.

<1 By the Product Rule, 6f /ox; = (6f1/0Xi, ..., dfm/0Xi), so &f/ox; are continuous if
al ofj/ox; are. >



Chapter 3

| nver se Function Theorem

3.1 Lipschitz functions

Let X, Y benormed spaces, andlet A C X. Wesay that amapping f : X — Y isLipschitz
on A with a constant k > 0, and we write

f e Lipak

vxi, x2 € Al [ f(xa) — fll < KX — xall.

Wesay that f isLipschitzon Aandwewrite f € Lipy, if f isLipschitzwith some constant
k.If A= X orifitisclear what A we mind, we omit A andwritesimply f e Lip.
Examples.
1.]-]1:R—> R, x |x|,isLipschitz with the constant 1.
2. For any normed space X, thenorm ||-|| is Lipschitz with the constant 1.
3IffeZ(XY) then f elLip|f].
<Al fxa— fxofl = [1f(xa = x2)ll < [ fll X1 —x2. >

4. Thefunction x = +/]X], R — R, isNOT Lipschitz.

\x  Theorem 3.1.1. If f isLipschitzon an openset U then f is continuous
inU.
Q[ fx+h) = f)I < klh] oo 0. >

Y Theorem3.12.1f f € CL(x), then (for any e > 0), f isLipschitzin
some neighbourhood of x with the constant || f/(x) || + «.
<1 By the definition of C(l3 (X), there exists 6 > 0 such that for any
y € Bs(x) itholds || f'(y) — f/(x)| < & and hence
P15 - 160+ 100] < [ £ = F60 ]+ [ £60] < o] 00 =
———
<&
«y
Then vx1, X2 € Bs(x) it holds
<k by (1)
MVT ’_//—
Ifox) = f)ll < sup [/ lIxe = xell < Klixa = Xl . >
yelxa,x2]

37
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3.2 Banach spaces

We say that a normed space X is a Banach space (in honour of a Polish mathematician
Stefan Banach), and we write
X € BS

if X is complete as a metric space (with the metric o(x, y) := ||x — y||), that is, if any
Cauchy sequencein X converges.
Note that in a normed space

{xn} € Cauchy < || Xm — Xp|| — O.
m,n— oo

Examples.
1. R,R", C([0, 1]), £2 are Banach spaces.

2. Thevector subspacek in £2 which consistsfrom all FINITE sequences, that is, sequences
of theformx = (X1, ..., Xn, 0,0, ...) (n dependson x), equipped with the norm form ¢2,
isNOT a Banach space.

3.3 Contraction Lemma

It is the name of the following

Theorem 3.3.1. Let X € BS, let Abea cLOSED subsetin X, andlet f bea mapping from
Aintoitself, f : A . If f € Lipy k with k < 1 (strictly!), then the operator f has one
and just one FIXED POINT X, that is, a point such that

f(R) = %. 1)
(Note that we can rewrite (1) as f (X) = id(X).) In this
case we write
id
xernt]
& /. <10° The idea of the proof is clear from the picture: the
broken line leadsto X.
1° Take an ARBITRARY point xp € A and put

x1 = f(X0), Xo = f(X1),..., Xny1 = F(Xn), ... .
We have

X1 = Xoll =: &

X2 — X1l = I f (x1) — f (%)l < KXy — Xoll = ka, (2
©
lxs — Xall = I| f(x2) — f(x1)ll < Klx2 —xall < K?a,
[Xn+1 — Xnll < Kk"a. (3

2° {Xn} € Cauchy.
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trick

<K [Xm = Xnll = | Xm — Xm—1+Xm-1 — Xm—2+ -+ Xnr1 — Xn ||
suppose e e’
m>n
n m—1 > k<o
< [Xm = Xm—1ll +- - + [Xn41 — Xnll < QK" +--- + kM) — 0. Di>
—_— N ——— m,n— o0
<ak™-1 py (3) <ak" by (3)

3° Put X := limx,, (thelimit existssince X € BS). ThenX € A, since Aisclosed. Further,
since f iscontinuous (by Theorem 3.1.1.) it holds

A . . obv. . N
F) = IIm f(xa) = lIM Xni1 =" [iM xn =X,
=Xn+1

hence X isafixed point for f.
4° Thisfixed pointisunique. <« If X1 and x; arebothfixed pointsfor f,then|| f(x1) — f(x2) || <
—— ——

=X1 =X
N ” 1 2” = ” 1 2” = X1 2

<1

3.4 |somorphisms
Let X,Y e NS, andletl € Z(X,Y). Wesay that | isan isomorphism and we write
I € 1s0(X,Y) (or smply | € Iso)

if | isabijection, and if theinverse mapping| 1 (which is automatically linear, verify!) is
also continuous.
We say that X and Y are isomorphic (as hormed spaces) and we write

X~Y

if there exists an isomorphism from X onto Y.

Examples.

1. 1f ||-|l, and ||-]|» are two equivalent norms on a vector space X, thenid : (X, ||-|l1) —
(X, [I-ll2) is an isomorphism.

2.R" x RM =~ RMM,

3. Z[R, X)~ X.

4. (R",R) ~ R".

NB 3X € NS: Z(X,R) # X.

5. Z (2, R) ~ (5.

6.1fl €e Z(R,R),thenl elso < | #0.

7.1f1 € Z(R",R"), then| € Iso < detl # 0 (asis known from linear algebra).
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3.5 Inverse Function Theorem

Here is ageneralization of the classic Inverse Function Theorem:

Theorem 35.1. Let X,Y e BS, f : X - VY, x e X, y:= f(X). If f € Cé(f()
and f’(X) e Iso(X,Y), then there exists a neighbourhood U of X such that f is a
HOMEOMORPHISM of U onto f (U). Theinverse mapping f 1 isdifferentiable at ¥, and

(@ =@ 1)

<11° Reduction to the case f(0) = 0, f’(0) = id. Without loss of generality we can
assumethat X =Y, x =9y =0, f/(0) =id. <aPut f(h) = f(XR+h) - f(X).
It is clear that f : X — Y satisfies the condition f(0) = 0 and has at 0 the same
differentiability property as f hasat X. Thus, without loss of generality X =0, ¥ = 0.
Now putl := f/(0)and f := 1710 f (recall that =1 € Z(Y, X), sincel ¢ Is0).
By Chain Rule, f'(0) =110 f/(0) = id. If the theorem istrue for f, thenit is true for
—_——

f =lof (since f 1 = (f)~Lol~1). Thus, without lossof generality X =Y, f’(0) = id.

f
X Yo

g

So, the decomposition f (X + h) = f(X) + f/(X)h +r (h), Hrn(hhH)H —— 0, reduces

Ihj—0
to
f(h) =h+r(h), or f =id+r, (2
wherer satisfies the conditions
feCL(0) h
r(0) BRWS o 10y B 1 ST ooy, IO 3)

R —
Ihil  uhi—o

2° Reduction to the fixed point problem. Now note that to find the inverse function to f
means to solve the equation

fx)=y
with respect to y. But for aFIXED vy,
f(X) =y © x e Fix(id—f +y). 4
N——

@_,

K ({d-F+y)yX)=x fX)=y. o>
So (in view of Contraction Lemma) our goal isto find a set, where the mapping

g=—r+y gy ®)
f is Lipschitz.

Creid—f 3° By Theorem 3.1.2. applied tor, there existse > 0
suchthatr e Lipg, 3. Put

X U:= (f|BL.)(Be/2) (C By).

(Here denotes the pre-image, not the inverse mapping!)
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4° f e Bij(U,B;2). < Let y € B, Consider the

X mapping
£ i/ Lf y—r: X—=y—r(x), X = X.
p yr e — r . . . . . . 1
This mapping is Lipschitz on B, with the constant 5,
U y . : X sincer isLipschitz. Moreover, y —r maps B, into itself;
€ indeed,

- Xl <e=lly=rCol < Iyl + Irx)ll <e.
~— ——

: 1
- /2 < 3 Il

<e

By Contraction Lemma, there exists one and just onefixed point of y —r. But by (4)
this meansthat there exists one and just one point x € B, such that f (x) =y, that is, by
the definition of U, there exists one and just one point x € U such that f(x) = 0. >
5° Let now f~1 denotesthe (existing!) inverse mappingto f : U — B /2. For conveni-
ence introduce the following notation: for x e U, y € B2,

xeoye fx)=yox=f1y).

6° f 1 e Lip2. < Letx1 <> y1, X2 <> yo. Itholds
id=f—r

IXe =x2ll =" [I(f(x2) =r (x2)) = (f(x2) =r (x2)|| < llyr — Yol + lIr (x2) = r (xp)l|
~—— ~—— —_—

=y =y2 3 1
< 5 lIx2 = Xall

1
< llyr = yall + 35 [IX1 — X2ll -

Weconcludethat [|x1 — Xal| < 2ly1 — yall, thatis, | f ~2(y1) — f71(y2)| < 2[ly1 — yal.
o>

7° f € Homeo(U, B, /2). <1 f =id+r pa Cont; f~1 ¢ cont. s
8° (f~1y(0) = id (= (f/(0))™1). < We need to verify that the mapping

si=f"1-id

issmall (recall that f ~1(0) = 0, since f (0) = 0), that is, that

[0 -k
IIKII Ik|—0
or h K
=Kl o ifhek
Ikl 1kI—o0
But indeed
Ilh—kj Ih — Kl Ihl
= _
Ikl Ih] kIl 1kiI—o0
—_— —_

r=f—id 6°
= lrMml/Ihl——>20 <2
Ihi—0

since|k|| - 0= |h|| — 0. o>
——

0

6
<2|k||
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Corollary 35.2. Let f = (fy,..., f)) : R" — R" be continuously G-differentiable
at x (thiswill be so, e.g., if all the partial derivatives 6f;j /ox; are continuous in some
neighbourhood of x), and et Jacobi matrix Js (x) have non-zero determinant. Then there
exists a neighbourhood U of x such that f is a homeomorphism of U onto f (U), the
inverse mapping f 1 isdifferentiableat y := f (x), and

Jp-1(y) = @r )~

< R" isaBanach space, and f’(x) isan isomorphism iff det Js (x) # 0. >

3.6 Implicite Function Theorem

An important corollary of the Inverse Function Theorem (3.5.1.) is:
Theorem 3.6.1.Let X,Y,ZeBS, F: X xY — Z. Put

M := F~1(0).
Letm:= (X,y) € M, thatis, F(X,y) =0,andlet F Cé(m), oF/oY(m) e Iso(Y, Z)
(so that Y and Z are isomorphic). Then there exists a neighbourhood U of X in X, a
mapping f : U — Y and a neighbourhood Nof min X x Y such that

gf=MnNN. D

Thismapping f isdifferentiable at X, and

Fm\ ' oF
f/(k):-(aag“)) oaa;m). @)

In other words, since the condition gr f ¢ M meansthat F(x, f (x)) = O (for x € U),
Yy N the theorem asserts that the equation

) grf can be solved with respect to y:

y= f(x),

M the resulting (“implicite”) function f being differentia-
U ble at X, and its derivative at X can be expressed in terms
of partial derivativesof F at m.

X

=>

Before the proof consider amodel example.

Example. Let X =Y = Z =R, F(x,y) = X2+ y2—1, m = (0, 1). Here M isthe
unit circle with the center at 0. We have 0F /0| g1y = 0, 0F/dYl,1) = 2 # 0. The set
M N N (seethe picture below) is the graph of the function
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AZ

the front view

the view
from above

f)=vV1i-x2  (xeU=(-33),

and

[«3)jo))
XM

f/(0) = —==192 — 0,

3
<M

1
For the proof we need some lemmas.

Lemma 3.6.2. Let X1, ..., X be Banach spaces. Then their product X1 x ... x Xp is

also a Banach space.
<1 Completeness of all X; implies completeness of the product, since convergencein the

product is just convergence in each component. >

Lemma 3.63. Let f = (fy,..., fm) : Xe x ... x Xn = Yy x ... x Yy, and let
X € (X1,...,%Xn) € X1 X ... x Xp. Then

ofj(x)
o X

where:j and 7 areresp. the following imbeddings and projections:

=(mjof 01i)(X),

i Xi—=> Xy x...xXp, X (X1, Xi—1, Xy Xigds - -5 Xn)s
TiiYix. .. xYm=>Y), Yi,....¥m) =Y.
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< Thisfollows from the facts that
fj =7jo f

and fj o isjust the mapping f; with all the arguments but i -th one FIXED to be equal
the corresponding components of x. >

Lemma 3.6.4. Let X, Y, Z be normed spaces, Y and Z being isomorphic, and let

A XxY > XxZ

ab

id 0
A=(a)

whereid = idy, 0 € Z(Y, Z),a € L(X, Z),b e I1s0(Y, Z). Then A e Iso(X x Y, X x
Z), and
4 id o0
A (—b—loa b—l)'

ail a2 . v
A (a21 azz) @j € L(X}, Y,

be the linear mapping represented by the matrix ('d O):

Here

means of course that

, a;x a2\ (h1) . ([ auhi+ahy
Ah € Y1 x Y2 isrepresented by (3-21 a22) (hz) = (a21h1 n azzhz) ,

h e X1 x X isrepresented by (E;) (hi € Xj).

<1 Thedirect computation yields
idx O . idx 0 _ idoid—0ob™loa idoO+00b™1
ab b-loa b1 )~ \acid—boblca aoc0+bob™?

_fidx 0O .
and analogously

idxk O idx 0 _ (idx 0} .4 .
—bloab1)°\ab)™\ o0 id XXY -

Proof of Theorem 3.6.1.
<1 0° Theideaisto extend F to amapping G, to which we can apply the Inverse Function
Theorem (see the picture in Examplel).
1° Put
Gi=@,F): XxY > XxZ, XY~ X FXYy).

Note that G does NOT change the first coordinate! (On the picture vertical lines remain
verticall)



3.6. IMPLICITE FUNCTION THEOREM 45

2° We have )
FeCL(m)
G PrOd.ZRule (7[5_, F/) GG Cjé (m)

(theprojectionzy : X x Y — X isof course of class C! asacontinuouslinear mapping),
and

v 2Zam) omy(m) idx 0
G'(m) > Bl oflm) =(m m)
X oY oX oY

3° By Lemma3.6.4., G’ € Iso, and

idx 0
(G (m)~t~ (_ (aF(m))—l dF (m) (aF(m))_l)-
oY °ToX oY
4° By Lemma 3.6.2,, both X x Y and X x Z are Banach spaces, and we can apply the

Inverse Function Theorem. We conclude that there exists a neighbourhood N of min
X x Y such that G is ahomeomorphismof N onto G(N), G~1 isdifferentiable at

& F(m) = (X,0),
N and
G, v (G ((%,0) = (G’ ()™,
-1
G Note that G~ does NOT change the first coor-

dinate, since G does not.

U UxW

5° By properties of product topology, there exist a neighbourhood U of X in X and a
neighbourhood W of 0in Z, suchthat U x W < G(N). Put

N:=G U x W).
6° At last put

fi=mno0 G lo 11,
where 72 is the projection X x Y — X, (X,y) — X, and i1 is the imbedding X —
Xx Z, X+ (X,0).

1

XxY < XxZ

T2l Tn
f
Y — X

7° By Change Rule, f isdifferentiableat X, and

Lemmaz63. (G H2((%, 0))
=

8° Thelatter partia derivativeisjust the (21)-element of the matrix representing

f'(R) = (120 G L0 11)'(X)

G ((%,0) = (G'(m)~%
9° By 3°, thiselement is equal to

oEM)\ "t 8F(m)
_( aY ) STox
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Thus, (2) is proved.
10° And, by thevery construction, gr f = MNN. [Formal verification: Let (X, y) € MNN
(sothat x € U). Then

X, y) e M= F(x,y) =0= G(X,y) = (X,0) = (X, y) = G(x, 0)
=y= (120G ton)X)= (x,y) €grf.
=f
Thus NN M c gr f. Inverting the argument, we can analogously obtain the inverse
incluson.] >
NB Vice versa, Inverse Function Theorem can be deduced from Implicite Function The-

orem. [HINT: the equation y = f(x) can be written in the form F(x,y) = 0 with
Fx,y) =y—-f(x)]



Chapter 4

Higher derivatives

4.1 Multilinear mappings

Letamapping f : X — Y isdifferentiable (everywhere). Itsderivativeisamapping from
Xinto Z(X,Y):
f': X = Z2(XY), x— f'(x).

Itisnatural to define f”(x) as (f’)'(x), so
f7(x) e Z(X, Z(X,Y)).
It isalso natural to consider the mapping

(h,h2) = (f7(x)-h1) -ha, X x X = .
————
e Z(X,Y)
Thismapping iSBILINEAR, that is, linear in h, for fixed hy (evidently) and linear in hy for
fixed hy (since f”(x) isalinear mapping from X into Z (X, Y)).
Analogously higher derivatives lead to MULTILINEAR mappings. Let X1, ..., X, and
Y be vector spaces. We say that amapping u : X1 X ... x Xn — Y ismutilinear (or

n-linear), and we write
uel(Xg,..., Xn; Y),

if uislinear in each separate variable for fixed others, that is, if

Vief(l,...,n}: U(Xt,...,Xi—1, X + BYi, Xi41, - .-, Xn)
=oaUX1, ..., Xiy...r, Xn) + fUXL, ..., Yi, ..., Xn) (a, B €R).
(For 2-linear mappingswe say bilinear.)
For multilinear mappings one uses one of the following notations:

UX1,...,Xn) =U-X1...Xp =UX1...Xn = (U | X1, ..., Xn).

Examples.
1. Theusua multiplicationR x R — R, (X, y) — Xy ishilinear.
2. ThemultiplicationR x R x R —» R, (X, Y, 2) — xyzis3-linear.

3. Thescalar product R" x R" — R, (X, y) = >[L; Xi¥i, wherex = (X1, ..., Xn), Y =
(Y1, ..., Yn), ishilinear.

47
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4. The vector product R® x R3 — R3, (X, y) — X x yisbilinear.
5. The COMPOSITION
comp: L(X,Y) xL(Y,Z) > L(X,2),(,m)—» mol
and the EVALUATION
ev: XxLX,Y)>V, (x,1)—>Ix
are bilinear.
6. The DETERMINANT mapping

X1 X2 X3
det :RExREx R3S R, (X,V,2) > | Y1 Y2 V3
Z1 Zp 73
(X = (X1, X2, X3), .. .) is 3-linear.
Itiseasy to verify(!) that L(X1, ..., Xp; Y) iSaVECTOR SPACE.

Operator norm
Now let X; and Y be normed spaces. Then the vector subspace of L(Xq, ..., Xn; Y)
consisting from all CONTINUOUS n-linear mappings we denote by

L (X1, ..., Xn; Y).
Putforeachu e L(X1,..., Xp; Y)

lull := sup |Juxy...Xnll (operator norm).
I <1
IXnll <1

Examples.

1. |Imultiplication|| = 1;
2. ||scalar product| = 1;
3. ||vector product|| = 1;
4. |[comp|| < 1;

S llevl = 1

6. || det|| = 1.

Basicinequality. Letu € L(X41, ..., Xp; Y). Thenfor any (X1, ..., Xn) € X1 x ... x Xp

[luxa.. xall < IXIlIxall... Ixll|  (basicinequality (B1)).

< If x; = O0for somei then both sidesare 0. Let none of x; is0. Then

X1 Xn
el = u
u is IXall - IXnll
—— ——

‘||X1||---||Xn|| < [lulfixall - - - (%l . >
multilinear
eBi(1 EBfn

Normed space Z (X1, ..., Xn; Y)
Theorem4.1.1.Letu € L(X1, ..., Xp; Y). Then thefollowing conditionsare equivalent:
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a) ue Z(Xg,..., Xn; Y), thatis, u is continuous;
b) uiscontinuousat O;
c) |lu]l < oco.

<1 0° For short consider thecasen =2:u e L(X;Y; Z).

1° (a)=(b): obvioudly.

2° (b)=(a): Let (x, y) bean arbitrary pointin X x Y. We need to show that u is continuous
a (x, y). We have

[lu(x +h,y +K)—u(x, y)|| = luxk + uhy + uhk| < [Juxk]| + Juhy| + [Juhk]| .
.—,—z N — —— e —’
T, UG, Y)+u(x,k) 1 2 3

mu'ﬁ“n'+u(h,y)+u(h,k)

Soitissufficient to verify that[1],[2],[3] — Oas/h], kI — 0.1k = Othen[1] =0,

if k # 0 then
5 (550 ()

If kIl - Othen /K[l — 0 and hence /[Kl[x — O; further ||k/+/TKIT|| = IIIl/~/TKIl =
JTKI = 0. Thus[1] — Oas k|| — 0, by (b).
Quite analogously [2] — O as [|h|| — 0. Atlast[3] - Oas|lh| — O, [k| — O, by

(b).
3° (b)=(c): By (b), there exists 6 > 0 such that

IXI <, Iyl < 0= fluxy|l < 1. (1)

Then
Jlull = sup luxy|l <672 < 0.

Ix]|<1 A
lyli<1 =s-3u(ox)(dy)ll
—

@

< 1if IXI<Llyl<1

Bl
4 ()= (b): If x|, Ilyll = Othenjuxyll < [jull IXI Iyl - 0. >
—~—

©
< o0
Note that al the multilinear mappings from Examples 1)—6) are continuous (since al

they have norms < 1). Asto mappings from 1)—4) and 6), their continuity follows also
from

Theorem 4.1.2. In finite-dimensional case all the multilinear mappings are continuous.
<1 Analogously to the case of linear mappings. >

Theorem 4.1.3. The operator normisreally anormin Z(Xy, ..., Xn; Y).
We EVER consider £ (X4, ..., Xn; Y) asanormed space with the operator norm!
<1 By Theorem 1, the operator norm isFINITE onthewhole space Z (X4, ..., Xn; Y),and
it iseasy to verify that al 3 axioms of anorm are fulfilled.
Canonical isomor phisms

Theorem 4.1.4. For any natural k and n, k < n, it holds

g(xly7XnaY)%g(xl>sxk’$(Xk+la>Xn9Y))
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(the isomor phism of normed spaces), and the CANONICAL ISOMORPHISM
L(X1, oo X3 Y) > L(X1, e X L Kkt -5 Xns Y)), u> U,

UXLy oy XK) i= UKL, oy Xy yeves s )
——

n—k “freg”
arguments

conserves the norm:
lull = 11l

<1 0° For short consider the case n = 2, k = 1. We need to verify that
ZL (X1, Xo; Y) &~ 2L (X1, Z (X2, Y)).
1° ALGEBRAICAL ISOMORPHISM:

ag.
L(X1, X2;Y) S L(X1, L(X2, Y)). (2

Put for u e L(X1, X2;Y)
U(x1) :==u(xg,-) (e L(X2,Y)),
andforo € L(X1.L(X2,Y))
(X1, X2) '= (v - X1) - X2 (eY).
It is easy to see that the mapping
0: X1 > L(X2,Y)
islinear, that is, U € L (X1, L(X2, Y)), and the mapping
D:X1xXo—>Y
ishilinear, that is, v € L(X1, X2; Y), and that the mappings
u— tdando > v

are linear and mutually inverse (ﬁ: u, o= v). Hence u — U is alinear bijection of
L (X1, X2; Y) onto L (X1, L(X2; Y)), that is, (1) istrue.

2° TOPOLOGICAL ISOMORPHISM: If u € Z(X1, X2,Y) then ¥x1 € Xi: U(x1) =
U(X1, -) € Z(X2,Y) (sinceu is continuous). Now the (linear) mapping

U: X1 > Z(X2,Y)

is continuous since it has a finite norm equal to the norm of u:

Tl = sup [[Uxy]l = sup sup | (Ux1) - X2l = ull.
Ixli<1 Ixuli<lixell<l T~
—— =Uu(X1,X2)

ogvSLI
= SUPxy || <1, [Ixpl<1

Thus, U € £ (X1, Z(X2,Y)).
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Quiteanalogoudly itcanbeverifiedthatif o € £ (X1, Z (X2, Y))thent € £ (X1, X2; Y).
We concludethat u — Uisalinear bijection of £ (X1, X2; Y) onto £ (X1, Z (X2, Y)).
Since ||u|| = ||U]|, bothu — U and v — © have the norm 1 and hence are continuous.
Thus they are isomorphisms of our normed spaces. >
Remark. For X1 = X2 = R"and Y = R, (1) isin fact the well-known (from linear
algebra) isomorphism between bilinear forms and linear operatorsin R".

Differentiation of multilinear mappings

Theorem 4.1.5. (Quasi-Leibniz Theorem (QL)). Any mappingu € .Z (X1, ..., Xn; Y)is
differentiable, and its derivative is given by the formula

n

u/(X].» . -’Xn) : (hls . hn) = ZU(X].» s 5Xi—la hlsxl-'rla . ~:Xn):
i=1

or, more shortly

n

U’(Xl, RN} Xn) = @ U(Xl, e Xie1, o, Xi+17 ) Xn)- (3)
i=1

(The definition of the DIRECT sSUM @] ;li =11 & ... @ |, seein Chapter 2.)
<1 Thisfollowsat oncefrom Theorem on continuouspartial derivatives. Indeed, u islinear

and continuousin each its argument, henceVi € {1, ..., n}:
ou
N(Xls RN} Xn) = u(Xla s Xie1, 0, Xi+ls e Xn) (E g(xl s Y))
|

Now, each partia derivativeou/oX; : X1 x ... x Xp = Z(X,Y) iscontinuous as the
composition of two continuous mappings:

ou y
— = Uj ormj,
6Xi i i
where
Ti i X1 X...x Xp—>> XeX.ooo X XjX.oox Xp, (X, .00 Xn) > (X1, .00, Xiy e vty Xn),

Ui i X1 X ... x Xj X...x Xp—= Z(X,Y),
XLy e ey Xiy oo s Xn) > UXLy « ey XieTs s Xits - -+ » Xn)s
mj iscontinuousas any projection, and u; is continuousby Theorem on canonical isomor-
phism (sinceu is). >
Remark. We can rewrite (3) so:
U=@o(Uiom1,...,Unomn),

where @ denote the following mapping:

n
@ LXKY) % x L(Xn,Y) = L (X1 x ... x X, Y), (1., 12) > DI
i=1
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It is evident that this mapping @ islinear, and it is easy to verify (1) that it is continuous.

Corollary 4.1.6. (Leibniz Theorem). Let f : X - Y andg: X — Z bedifferentiable at
apointx,andletu e Z(Y, Z; W). Then the compositionu o (f, g) isdifferentiableat x,
and

(uo (f,9))'(x) = u (f'Ch, g(x)) +u (f(x),g'(0h).

f,
x 9 vz8w

<1 Thisfollows at once from Chain Rule and Quasi-Leibniz Theorem (QL):

Chain
rule

(uo(f,@)'h = W'((f,9(x))o (f,9)(x))-h
S———— S————
=(f(x),9(x))  =(f'(x),g'(x))
= U'(F(x), 90)) o (F00h, g'00h) E u(t'(0h, g(x)) + u(f (x), g Oh).
Examples.

1. If uistheusua multiplicationR x R — R, andif X = R, we obtain the classic Leibniz
rule: (fg) = f'g+ fgd'.

2. For themapping g : R" - R,x > X2+ ...+ X% = x - x = x2, we have (here
f = g=id,u = scalar product)

gx)-h=x-h4+h-x=2x-h

(thefirst point denoting the application of alinear mapping, the other points denoting the
scalar product!), so
g'(x) = 2x,

if weidentify avector x with the linear function h — x - h. (Compare with the usual rule
(X3 = 2x.)

4.2 Higher derivatives

Letamapping f : X — Y bedifferentiable everywhere (or inan openset U c X). Then
we can consider the derivative map

X - Z2XY), x> f'x).
We say that f istwo times differentiable at a point x, and we write
f e Dif?(x),

if f”isdifferentiableat x; wedefinethe second derivative f”(x) of f at x asthederivative
of f’ atx:
f700 = ()(x) (e Z(X, Z(X,Y))).

By induction, we put

f (n+1)(x) — (f(n))/ (x),

and we use in evident sense the notations

Dif'(x),  Dif"(U),  Dif".
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Besides we put

o
Dif! := Dif, Dif*® = ﬂ Dif".
n=1

Thus we have

f: X=>Y
f': X = ZXY)
f7: X = ZLX, Z(XY))

F0) X 5 L, LK, ... LKLY )

The space £ (X, L(X, ..., Z(X,Y)...)) of values of the n-th derivative ™ is
isomorphic (by repeatedly applied Theorem on isomorphism, see 4.1) to the space of
N-LINEAR mappingsfrom X x ... x X (ntimes) into Y:

LKL, LYY )~ LKL X Y) = 2K Y).

n times

The multilinear mapping, corresponding to f ™ (x), is given by therule

fOM(x)(h, ..., hn) = (.. ((F"(X)-h) -hp)...) - .

—~—

Usually we IDENTIFY f((x) and f (™ (x), drop the wave and write

f™hg, ..., hn.

Example. For g : R" —» R, x — x2 := x - x (see 4.1) we have q” = (2 scalar product),

that is, Yx € R":q”(x)hiho = 2h; - hy. (Prove!)

4.3 Rulesof differentiation

They are in essence the same as for the first derivative.
Linearity. If f, g € Dif"(x) thenVa, g € R:af + g € Dif"(a), and

(@f + B X) = af W(x) + pg™ (x).

<1 By induction.
Product Rule. Let f = (fy,..., fn) : X = Y1 x ... x Yn. Then f e Dif"(x) iff each
fi e Dif"(x), and

£ (x) = (ff”’ x),..., O (x)) :
<1 By induction. >

Chain Rule. If f € Dif"(x) and g € Dif"(f (x)),thengo f e Dif"(x). (Theexplicite
formulafor (g o f)(™(x) isvery cumbersome, and we drop it.)
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<1 For simplicity we consider only the case n = 2. By Chain Rule for the first derivative,
(go ) =comp(f’,g o f),

where
comp: Z(X,Y)o Z(,2) > Z(X,2), (,m— mol.

Since f and g are 2 times differentiable at x and at f (x), resp., the mappings f’ and ¢’
are differentiable at x and f (x), resp. The mapping comp is differentiable (everywhere)
by Quasi-Leibniz Theorem. So (g o f)’ isdifferentiableat x by Chain and Product Rules
for thefirst derivative. But thismeansthat g o f is2 timesdifferentiableat x. >

Computation Rule. Let f : X — Y be n times differentiable at x. Then for any
hi,...,hy e X

an
oty dtn |- —y—o

0 0
- - f(X+tlhl++tnhn) .

For short we shall write the last expression as

fMWo)hy, ..., hp = f(X+tihy +... 4+ thhp)

0
o oty

0
oty

0

o ot

0

<1 For simplicity consider the case n = 2. It holds
0 0

—| —| f(X+tih1+1toh
ot |y g (X + t1hg + tohp)
= f/(X+t1h1)h2tri=Cke\lh2 -(f(x+t1h1))
C.R. for
the 1. der.
1 |—Rule 0 1
= — (evh2~f (X+t1h1)) = &h,r —| F'(xX+t1hy)

C.R. for
thelz.deri

(Fy ()
= &Vh, -(f”(X)hl) = (f”(X)hl) . h2 = f//(X)hlhz. >

(Recall that evy, denotes the (continuouslinear) mapping of evaluation at a given point
h, see Chapter 1.)
[-Rules.

f
Q) Let X 5 Y5 7, f e DifP(x),1 € Z(Y, Z). Then

(o HPOhy.. .hp=1- (f(p)(x)hl...hp),

or, shortly,
(o H)Px) =10 (fP(x)),

where we consider the p-th derivative f (P)(x) asa p-linear mapping.
In particular, if X = R then

(o f)(P)(X) =1. f(p)(x)’

wherewe consider f(P)(x) asan element of Y.
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f
b) Let X 5 Y 5 Z,1 € Z(X,Y), f € DifP(Ix). Then

(f o)Oh1...hp = FP(Ix)(hy)... (hp).

<1 For short consider p = 2.

a)
. 0 0
(o 1)’ 0ohahy =R 1 2| 1o £)(x + tahy + tohy)
|—rule for 1. der. © 0
= — . —1 f(x+t1h toh
ol 6t20(+11+22))
|—rule for 1. der 0 0
=711 —| —| f(x+4tih toh
(5t106t20 ( +11+22))
Comp:.RuIeI ) f”(X)hlhz.
b)
0 0
(f o1y’ (0hihy PR Z 1 T (£ 1) (X + tihy + thy)
Lis linear ¢ 1 4 t11h+talhy)
Comp_.RuIe

7(x)(1hy)(hy).

4.4 Higher partial derivatives

Let f: X1 x...x Xn — Y. Of course we define partial derivatives of higher orders

inductively:
A of )
OXiy...0Xi, — oXiy \ aXi, \" T\ oXi, )T ’

LI
= O+ v+ Q0 —m—
oXiy ... 0Xi,  9Xj oXi,

or, shortly,

(i1,....ipe{L....n}.

So
oPf(x)

VA v i, & Xigs o0 L Xip, Y) ...
Xy ... 0Xi, € LKy, ZXigs .., 21X, Y) )

N LKy, Xip3 V),

Th. on
1SOm.

and we have identity oP f (x)/8Xi, ... X, with the corresponding p-linear mapping:

oPf oPf
ﬁhl...hpz ((( axi(i()hl) hz)...) hp (hkeXik),

Asinthe case of thefirst order, if each X; = R (that is, X3 x ... x Xn = R"), we put

ot IS N W 1 (€Y)
iy ...oXi, — U\ aXi, ...aXi, '
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Lemma4.4.1l. Letamapping f : X1 x...x X, — Y be ptimesdifferentiableat x. Then
for anyis,...,ip € {1,...,n}andfor anyhy € Xj,k=1,..., p,itholds

oPf(x)

——— " hi...hy= fPx)h;...h,
8Xi1...8Xip ! P ()ha P’

where .
hg :=(0,...,0,h,0,...,0),
Ik

that is, the partial derivative applied to the vectors hy, ..., hy is just the " total”
derivative applied to their imageshathy, . . ., ﬁp by the canonical imbeddings of X;, into
the product space X1 x ... x Xp.
<1 1° We use below the following result: If f : X — Z(Y, Z) isdifferentiable at x then
for any fixedh € Y themappingg : x —» f(x)h, X —» Z isaso differentiable at x, and

vk e X:g'(x)k = (f'(x)k) h.

(See Chapter 2.)
2° For short let p = 2. We have

/)0, 0,00, ..., 0)

12

Comp. 5 5
Rie 21 21 f(x+t(0,....h,...,00+1(0,....k,...,0))
Com&R“'e(af(x+t1(0,.,.,h,...,0))/5xi2)k

o (0] AfxHuO. . h O,
oty 0 o Xi,
Comp. 2

o 0 o< f(x
Rule (( ) (x)h) e T

0Xi, 0Xi, 0Xj, - 0Xj,

Theorem 4.4.2. (on representation). Let a mapping f : X1 x ... x Xy, = Y be p-times
differentiable at x. Then its p-th derivative at x can be represented by the matrix of the

partial derivatives:
f(P)(x) ~ w
oXij .. .8Xip i

in sense that

vhl, ... hP e X1 x ... x X, hkz(hk,...,hﬁ)f

n

P
FPoot.. P = 3 _TT9 1 e
ipzlaxil...axip p

< In notations of the previouslemma,

fP(x)ht. . hP = (hi+hl)... (P +hP)
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P (x) is n R R
mutiner S t®oht + hi >
17 ip
ig,oip= _—

4~i1'(ap(f(x))/a<xil...xip))hill...hipp

Corollary 4.4.3. Let f : R" — Y be p-times differentiable at x. Then f(P)(x) can be
represented by the following matrix with elementsin Y:

f(P)(X)N &
6Xil...6Xip . ’

inthesensethat for any h!, .. .hP e R"  (hX = (h¥, ..., hK))

n
oPf
f®ooht..hP = > hi...hf ot (€Y).
| L "0 0 Xi; ...0Xi
11,..., Ip= ‘/—'—/_p/
eR oy

Hereall hf¢ are real numbers, and hf, ... h{ isjust the usual product of real numbers.
Remark. For the case p = 2 and Y = R we obtain as the representative of f”(x) a

"LISUa]" X N-I IatIIX

.....

This matrix is called the Hesse matrix of f at x (and its determinant is called the Hessian
of f at x).

Example. For themapping q : R" — R, X = x° = x - X we have
2 0
vx e R": £7(x) ~ =2-1
0o 2

where 1 denotes the unit matrix. It corresponds of course with the fact we know that
f” = 2id.

45 ClassCP

We say that amapping f : X — Y isp-times continuoudly differentiable (resp., p times
continuoudly differentiableinanopenset U c X oratapoint x € X) or that f isof class
CP (resp.,isof classCP in U or at x), and we write

f e CP(resp., f eCP(U)or f e CP(x)),

if fisptimesdifferentiableeverywhere (resp.,inU or in aneighbourhood of x) and the
derivative f (P) is continuous (resp., continuousin U or at x).
Thus,

f eCP:= P ¢ Cont.
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We put also
o0
cO:= Cont, C® = ﬂ CP.
p=0

The mappings of class CP we call aso, for short, CP-mappings.

Example. Any continuous linear mapping is of class C*. (Indeed, the first derivativeis
a constant mapping, and all the other derivatives are zeros.)

Lemma4.5.1.
c’'>5cloc?o...o0CP ... 5 C® =Dif>.

<1°DifPtl c CP. 1 f e DifPtl = (P ¢ Dif = f(P e Cont = f € CP. >

22CPH cCP.<q f eCPHl = f e DIfP*1 S f e CP. o>
3° C*® c CP <« Obvioudly. >
4° C* c Dif*® < Obvioudy. b

5° Dif* c C® <1 f e Dif*® = Vpe N f e DifP*?! S vpe Nif eCP = f ¢
C®. > >

Lemma4.5.2. Foranyk € {0, 1, ..., p}

feCPleo 0 ccPk

a(f0)PH—f

Theorem 4.5.3. Any continuous multilinear mapping is of class C*.
<1 Use induction. For linear mappings the assertion is true, by Example above. Let our
assertion is true for k-linear mappingswithk < n — 1, and let

ue Z(X1,..., Xn; Y).
By Remark after Quasi-Leibniz Theorem,
U=®o(Uiony,...,Unomn),

where u; are continuous (n — 1)-linear mappings, and & and z; are continuous linear
mappings. All these mappingsare of class C*°, by theinductive assumption and henceare
infinitely differentiable. By Product and Chain Rules, u’ is aso infinitely differentiable.
Henceu isinfinitely differentiable and therefore (by Lemma4.5.1.) isof classC*. >
Remark. In fact the n-th derivative of a continuous n-linear mapping is a CONSTANT
mapping, and hence all the subsequent derivatives are ZEROS:

u™ = congt, u™d — o, ulta —o, ...
Viz,ifue Z(X1,...,Xn;Y) thenvx € X1 x ... x Xpn:
uWx)ht...h" =

= > uh{® . g™ (hkz(hk,...,h';,) € X1 X ... x xn) )
ceGp
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where G, denotesthe group of all permutationsof theset {1, ..., n}. [Thiscan be proved
by using Computation Rule. (Prove!)] E.g., for bilinear u

u”(x)hk = uhiks + ukzhy. (2

Note that in the case of MULTIPLICATION (u : R? — R, (x,y) — Xy), Equation (1)
follows at once from Representation Theorem:

01 01 k1
u”(x) ~ (1 O) , henceu” (x)hk = (hy hy) (1 0) (kz) = hiks + kiho.

Note also that it follows from (1) that u™ (x)h® ... h" doesNoT change by any permu-
tation of the vectorshl, ..., h" (for bilinear case it is quite obvious, see(2)). Thisis no
accident! See the next section.

Product

Theorem 4.5.4. (f1,..., f)) e CP < f1, ..., fm € CP.
<1 Thisfollows at once from Product rule for higher derivatives and from the topological

fact that (fl(p), o fn(qp)) is continuous iff each fi(p) is. >

Composition

Theorem4.55. f,ge CP = go f € CP,
<1 By induction. For p = 0 al is O.K. (the composition of continuous mappings is
continuous). Let our assertion istruefor p — 1. We have, by Chain Rule,

(go f) =compo(f’, g o f).

The mapping comp : (I, m) = mol isacontinuous bilinear mapping (see 4.1) and hence
is of class C™ (by Theorem 4.5.3.). A fortiori it is of class CP~1, by Lemma4.5.1. The
derivatives f’ and g’ are both of class CP~1, by Lemma4.5.2., and f isof class CP~1
by Lemma4.5.1. Hence ¢ o f isof class CP~1 by the induction assumption. Then, by
Theorem 4.5.4. (on product), (', ¢’ o f) isof classCP~1. So, once again by theinductive
assumption, the mapping compo(f’, g’ o f) isof class CP~1. Thus, (go f)’ € CP1,
which means, by Lemma4.5.2,that go f € CP. >

CaseR" —» R"
Criterion. Amapping (f1, ..., fm) : R" — RMisof classCP iff al thepartial derivatives
of the order < p of each function f; exist and are continuous.
<1 Analogoudly tothecase p=1. >

4.6 Symmetry of higher derivatives

Here we prove that for CP-mappings the derivative f (P)(x) is a symmetrical multilinear
mapping.

A mapping f : X" — Y (for arbitrary sets X and Y) is called symmetrical if its value
does not change by any permutation of its arguments:

f e Sym: o Vxy,...,Xn € X Vo ean f(Xg(l),...,Xg(n))= f(X1,...,Xn).
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(Recall that G, denotes the group of permutations of the set {1, ..., n}.) The set of all
symmetrical n-linear mappings from X" — Y (for vector spaces X and Y) we denote by

(Respectively, for continuous case we use the |etter .Z.)

Lemma 4.6.1. Let for amapping ¢ : R?2 — R the second partial derivative 62¢ /oyox is
continuous at the origin. Then

%(0,0) _,. A% (0 (t,0),(0,1)
dyox tl0 t2 '

Here A2y denotesthe SECOND DIFFERENCE of ¢. Recall that thefirst difference Ao (x; h)
of ¢ at x by h is defined so:

Ap(X;h) = App(X) i= (X +h) — p(X). 1

Higher differences A"p(x; hy, ..., hy) of ¢ at x by h1, ..., h, are defined inductively.
E.g.,

AZ%p(x; h1, hp) := Any(Any@)(X) = Any o (X + hp) — Ap, o (X)

L px+hi+hp) —p(x+h) —p(x+h)+ex). (2
x+h,
©
©) Note that (asit is clear from (2)) the second difference is
i +hy+h, SYMMETRICAL in the increments:
4 A%p(x; h1, hg) = A%p(x; h, hy). ©)
x+h,
At2A2p(0; (t, 0), (0, 1)) =t7?A1,0)(A0.09) (0, 0)
trick: g(x):=
A,h9(X,0)=

PO 29 - g0))

Lagr. Th,;
for some

BV g o

g'(x)=
6(p£§,l)_
S50 (000, 09,0
N oX ox
Lagr. Th,;
for some
0 0
Y 122, oyt
0y 0X

2% (0, 7) 0%9(0,0)
= —
0yox  tlo  dyox

>

since 62¢p /oyax is continuousat (0, 0) and (¢, z) — (0,0) ast | 0. >
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Corollary 4.6.2. Let for a function ¢ : R? — R the partial derivatives 6%p /oyox and
829 /ox0oy are both continuous at (0, 0). Then they are equal there:
52

ayox

82¢)

0.0 -~ oxay

0,0 .

<1 This follows from Lemma 4.6.1., by symmetry of the second difference in the incre-
ments. >

Lemma 4.6.3. Let for a mapping ¢ : RZ — Y (where Y is a normed space) the partial
derivatives 62p /0x10%2 and 62 /%201 are continuous at a point X. Then

_ %%
< 0X20X1

62(/)
0X10X2

X

<1 1° Without loss of generality we can assume that X = 0, since our function ¢ has the
same differentiability properties at X, asthe function

G:h> pX+h),R2> Y

at 0. (This follows at once from Chain Rule, since the mapping h — X + h has at each
point the derivative equal toid.)
2° Put
62(/)
0 0X20X1

_
o 0X10X2

y: (eY).

Our @misto show that y = 0.
3° By Lemma from Functional Analysis (see Chapter 1), there exist | € £ (Y, R) such
that 1]l = 1andly = ||y||. Then

Iyl =ly =1 %9 | % I—rue *(0p)|  *(op)| 462

0X10X2|g  0X20X1|q 0X10X2 |q 0X20X1 |g ’
since the second partial derivative

o G .

ﬁ — | o ¢ (|’ ] = 1’ 2)

0X{0Xj |-Rule for OXi OX;|
X=R
is continuous at O together with 8% /oxi0X;. >
Lemma4.6.4.Letp : R" — Y beof classCP. Thenfor anys € Gpandanyiy, ..., ip €
{1,...,n}itholds
0Py 9P
8Xi0(1) - Xig(p) OXi; .. Xip '

In other words, partial derivativesdo not depend on the order in which we differentiate.
<1 1° It is sufficient to prove this for p = 2, since then we can TRANSPOSE any two
NEIGHBOUR partial differentiations, and by such transpositions we can obtain any permu-
tation.
2° for p = 2 our assertion follows from Lemma 4.6.3., since all partial derivatives at the
second order of a C2-mapping are continuous. >

Theorem 4.6.5. Let f : X — Y beof class CP. Then for each x € X the p-th derivative
f(P)(x) is symmetrical.
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Comp.
Rule oP

< f(p)(x)ho—(l)...hg(p) m o
o ...0l;

fX+to@ho@ + .- +to(pho(p)

Ogvtlhl+m+tph p

464, oP CF(é)ng'
8 | T+ tphp)

fP)hy. .. hp. >
oty...otn o (hs...hp

(We can apply Lemma 4.6.4., since the mapping (t1,...,th) —» f(x+tithi +... +
thhn), R" — Y is of class CP as the composition of the C®°-mapping (1, ...tn) —
X +t1h1s + ... + tahy (aconstant plus a (continuous) linear mapping) and f € CP.)

Corollary 4.6.6. Let f : X1 x ... x X; = Y beof classCP. Then partial derivatives

oPf

BXil...Xip

(i1,...,ine{l....n})

do NOT depend on the order in which we differentiate.
Thismeans, e.g., that 82 f (x)/6X18 X2 and 82 f (x) /8 X20 X1 define one and the same
bilinear mapping X1 x X2 — Y:

021 (x) % (x) h
0X10X2 2= 0X20X1 2

vhy € X1, hy € Xzf

< Thisfollowsfrom Theoremin view of Lemma4.4.1. >
Remark. This corollary justifies notations of the type

53
X20Xo

4.7 Polynomials

Let X,Y be vector spaces. We say that a mapping p : X — Y is a homogeneous
polynomial of degree n, and we write

p e Pa(X,Y),
if there exists an n-linear mapping

ueL®X;Y) (=L(X, ..., X;Y))

n

such that
p=uocA,

where A = Ay, isthe diagonal mapping, defined so:

AX=o XMV i=Xx...x X, x> (X,...,X).
3 n

>

In other words,

p(x) = u(x, ..., X).
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In the case where X, Y are NORMED spaces, we say that p is a continuous homoge-
neous polynomial of degree n, and we write

p e Pn(X,Y),

if thereexistsu e £ ("X; Y) with the same property.
If p=uo A wesay that u generates p, or that p is generated by u.
We put also

Po(X,Y) := {al the CONSTANT mappings X — Y}

(the polynomials of degree 0).
In what follows we consider only homogeneous polynomials, and we will drop
“homogeneous’.
Examples.
1. Each linear mapping is a polynomial of degree 1, that is, P, = L.
2. The power mapping x — X", R — R isacontinuous polynomial of degreen.

3. The maping (x, y) — x3 + 4xy? R? — R is a continuous polynomial of degree 3.
<1 Thispolynomial is generated, e.g., by the following two 3-linear mappings (R%)2 — R:

((X1, Y1), (X2, ¥2), (X3, Y3)) > X1XoX3 + 5(X1Y2Y3 + X2Y3y1 + X3y1y2),
(X1, Y1), (X2, ¥2), (X3, ¥3)) = X1X2X3 + 4X1Y2Ys3,

the former being symmetrical, and the latter being not. >

4. Each n-linear mapping is a continuous polynomial of degreen.

< Forn =2, eg., abilinear mapping u : X1 x X2 — Y is generated by the following
bilinear mappingU : (X1 x X2)% — Y:

Ut (X1, Y1), (X2, ¥2)) = 3(U(X1, Y2) + U(x2, y1)). >

5. Thefunctiong : R" — R, X = X% = X-X = X3
of degree 2 (generated by the scalar product).
6. More generally, for any linear operator A : R" — R", with the matrix (ajj), the

mapping (quadratic form)

+...+ x,% isacontinuous polynomial

scal n
d.
R”—>R,X|—>(Ax)pr9 X = E aij Xi Xj (X = (X1, ..., X%n))
i,j=1

isapolynomial of degree 2. (Prove!)
7. ThefunctionC([0, 1]) —» R, x — fol x2(t) dt isapolynomial of degree 2. (Prove!)

Symmetrization

For any mapping f : X" — Y, whereY isaVECTOR SPACE (X" := X x ... x X),
we define its SYMMETRIZATION sym f by the formula

. 1
VX1, ..., %0 € X: | (sym f)(X1, ..., Xp) = o Z f(Xe)s -+ o> Xo(m) |
" 6e6y
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Example. Let f : R2 - R, (X, y) = X — 2y. Then

(sym H)(x,y) = S(F 0 y) + F(y. %) = 3(x = 2y) + (y — 20)) = =X 5.

Lemma4.7.1. Letu € L("; Y). Then

a) symu € Lgm("X; Y);

b) u € Leym("X; Y) & symu = u.
<1 @) Forany r € G, it holds

(symu) (X¢(2), - - - » Xe(n)) —
we replacel n:

=3 ux, (e@) X (o (M)
——— ———

by o (1) etc "EGH —(cor)() ~(co0)(M)
Q,:_TOO-
if o runs_over Sn Z U(XQ(D’ B XQ(n))
toc also runs over Gy QEG”

S ymu)(xa, ..., Xn),

which meansthat symu is symmetrical.
b) "=": if uissymmetrical then

1
(symu)hl...hnd_ = 2 Uhsy . Moy = Zuhy. B = by,
—,—/

aeGn —uhy..hn

hencesymu = u.
<" if symu = u then u issymmetrical by a). >

Lemma 4.7.2. If a polynomial is generated by u then it is also generated by symu.
<Letp=uoA.Then

1
((symu) o A) = (symu)(X, ..., X) = o Z ux,...,x) =u(x,...,x) = px),
" oe6y

thatis, p= (symu) o A. >

Lemma 4.7.3. Each polynomial is generated by an UNIQUE symmetrical multilinear
mapping.

In other words, if ug o A = Uz 0 A andug, uz € Sym, thenuy = ua.
<1 For conTINUOUS mappings this follows at once from Theorem on differention of
polynomials it the next subsection, which says that if p = uo A and u € Zym, then
u = 1/n! - pM(0). For "algebraical case” we give below a scetch of the proof (you may
omit it).

For any given hy, ..., hy put

ﬂ(tl,...,tn)::U(t1h1+...+tnhn,...,t1h1+...,tnhn)
Zt:?uh]_h]_‘l——f—tr?uhnhn

Then 8"z /oty . .. 0tn|o is equal to the coefficient by tito . . . t,. This coefficient is equal,
by symmetry of u, to nluhz ... hn. Henceuhs ... h, isuniquely defined by . But = is
uniquely defined by p, sincez (t1, ..., ty) = p(tith1 + ...+ thhp). >

Corollary 4.7.4. 1f a polynomial is generated by two multilinear mappingsthen they have
one and the same symmetrization:

UioA =UzpoA = Symuj = Symuy.
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< It follows from Lemmas 4.7.1.-4.7.3. >

Differentiation of polynomials
The following theorem is a generalization of the fact that

xM® =nin=1)...(n —k+ x"K

Theorem 4.75.Let p € Pn(X,Y), p=Uo A, u € ZLym("X,Y). Then

a) pisofclassC®;
b) foranyk € {1, ..., n} it holds

pM € Pr_k(X, Loym(*X; Y)),

viz,fork < n

p® =nn—=1)...(n = k+ Dug o An_k, (1)
where
Uk (XL, - -+ Xnok) “= U(XL, - ..y Xnks > - 5 )5 2
——
k
that is,

P (x)h1...hk=n(n=1)...(n—k+Du(x,...,x, hs,....h), (3)
N e’
n—k

andfor k =n
p(x) = nlu.
¢) For any natural k > n
p =o0.

<11° p € C*® by Theorem on composition of CP-mappings, since p = uo A, and
both u (as a continuous multilinear mapping) and A (as a continuous linear mapping) are

C°-mappings.
2° We have
Chain
P'(X)h = (Uo A)(x)h Rule uU(Ax)-Ah=U(x,...,X)o(h,...,h)
Quasi—
LebZ kX, LX) 4 U %) "2 nux, L x, h),

which meansthat for k = 1 the formula (1) istrue. Let usfix this:
(U o An)/ = Nnujz o An_l. (4)
3° Let(1)istrueforl, ..., k. Then

p® =n(n—1)...(n—Kuko An_k.

Hence
pkD = (P& =n(n—1)...(n—k+ DUk o &n k)’
(4),applied to

oAp—
M =1 ... (n—Kk+ D = K) U1 0 Anky—1,
—— ——

2 =An—
(=)uk+1 n—(k+1)
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which meansthat (1) istruefor k + 1, and, by induction, b) istrue.
4° Since p™ = congt, all the subsequent derivatives are zero. >
Remark. You can obtain (1) using Computation Rule. (Do it!)

Corollary 4.7.6. Let pbea continuouspolynomial of degreen, generated by a (continuous)
symmetrical n-linear mapping u. Then p(0) = 0 and

0, ifk #£n,

® 0y —
PO = nlu, ifk=n.

4.8 Taylor Formula

At first alemma:

Lemma4.8.1. Letamappingr : X — Y bek times differentiable at 0, and let

r0=0, r'©=0  r"©0=0,...,r®00 =0

- K (- T . )
ry= O(”h” )((:’ K 1hI=0, )0 °)-

<1 By induction. 1° For k = 1 we have

Then

rQ+h) =r@+r'©Oh+r(h
=h =0 =0

(that is, r isequal toitsrest term), sor (h) = o(]|h]|) by the definition of differentiability.
2° Let for k — 1 our assertion istrue. Then

Ir (Il lr () =r© myr 1

sup [r’cthy| b

IIh| ¥ Ihik IhI% o<t <
i r'(th
tr|=ck su tk_l ” ( k)ﬂ
O<t<1 [th]*= Ihl—=0

by the induction assumption; indeed if ||h|| — O then ||th|| = |t| |h|| — O uniformly
int e (0, 1), and hence |r’(th)| /lith|*~1 — 0, since r’ satisfies the conditions of the
lemmafork — 1. >

Taylor Formula

Theorem 4.8.2. Let f : X — Y beofclassCKinU c X. Thenfor x e U

fHh) = 00+ /00 + 317002+ ...+ F FO0n< +r (h), )
where
(s) S._ £(5)
S x)h® = f (x)h....h,
S times
and

r(h) = o(llh][%).
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<1 0° We can rewrite (1) in the form

2

where
f(h):= f(x+h) — f(x),

and p; denotes the polynomial generated by f @ (x) (which
is a continuous symmetrical i -linear mapping, since f is of
class

CP in U). Thusthe graph of f (see the picture) is also the graph of f when considered
with respect to the trandated (on the picture dotted) axes. By Lemma 4.8.1., all we need
isto verify thatr (0) = 0,r’(0) =0,...,r®©) =0

1° r (0) = 0, since f(0) = 0 and each polynomial is equal to O at 0.

2Forany j=1,...,k

k
2 1 :
r(J)(O)() f(J)(O) Z_' pi(J)(O) — 0.
i=1 —
obe(n(x) 4.;6.[ (j)!f(J)(X) :;: ;J

CaseR" - R

Corollary 4.8.3. Let a function R" — R have continuous partial derivatives up to order
kinanopensetU c R". Then for any x € U

2
f(x+h) = f<X>+Za (X)h' 2 Z Zxr(fi(:fhlhj

1 akf(x)
+F Z mhu...h”< +r(h),

(h=(h,...,hn) € R

wherer (h) = o(||h||%).
Here ||-|| is ANY norm in R". (If ||-||; is another norm in R", then r (h) = 0(||h||‘{)
also, since any two normsin R" are equivalent.)






Chapter 5

Extreme Problems

|. PROBLEMS WITHOUT CONSTRAINTS

5.1 Generalized theorem of Fermat

Definition. Let X be atopological space, and let f beafunctional on X, f : X —» R. We
say that f hasalocal minimumat apoint X € X, and we write

X € Locmin f,
if fattainsat X its minimal valuein some neighbourhood of X. Thus,
% e Locmin f 13U e Nbgvx e U f(x) > f(X).
Theorem 5.1.1. Let X be a normed space, and let a functional f : X — R hasa local

minimum at a point X.

a) Iffor someh e X there exists Dy, f (X), then Dy, f (X) = 0.
b) If f isG-differentiableat X, then f/(X) = 0.

<1 @) If X € Locmin f then 0 € Locming, wherep : R —» R, t — f(X + th). By the
classic Fermat's theorem, ¢ (0) = O; but Dy, f (X) = ¢(0).
b) Itfollowsfroma), since f'(X)h = Dy f (X). >

Example. If X = R" and f has the partial derivatives of the first order at the point
X € Locmin f, then all these partial derivativesare equal to O:

oty _ot® _,
ox1 T oxn

5.2 Necessary and sufficient conditions of locmin

Theorem 5.2.1. (on necessary conditions and sufficient conditions of the second order).
Lete X eNS, f: X - R, f € C2(R).

69
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a) (Necessary conditions) If X € Locmin f then f/(X) = 0, and

vhe X: f”(%)h? > 0. (1)
b) (Sufficient conditions) If f/(X) = 0and Ja > 0 such that

vhe X: £/(R)h? > a |2, (2)
thenX € Locmin f.
< By Taylor formula,
fR+h) = f®)+ f/(k)h+%f”(>?)h2+r(h)’ )
where
r (h) = o(Ih||?). “)

a) Let % € Locmin f. Then f/(x) 'meorem s

f (X) for al sufficiently small t € R. Hence,

0. Further let h € X. It holds f (X +th) >

$t217(R)h2+r (th) = 3 f”(X)(th)2+r (th) D (g +th) — F(®) = F/(R)(th) > 0 (5)

>0 0
for all sufficiently small t. But
f(th) = o(t), (6)
since (without loss of generality h £ 0)
[r (th)] [r (th)]
i
t [th]© t=0
e e’
@
t—0

So (5) ispossible, only if f”(x)h? > 0.
b) Let /(%) = 0, and let (2) be fulfilled. Then

FR+h) = f0) 2L 7 @h2+r(h) > 4 IhI12+o(Ih]?) > 0
——
2

> alhl?
for al sufficiently small ||h||. Hence, X € Locmin f. >

Conditions (1) and (2) in (5.2.1.) are, respecively, the condition of non-negativity
and the condition of strict positivity of the second derivative f”(X) in the sense of the
following definition:
Definition. Let X € NS, u € L(X, X; R) (bilinear functional).

a) uissaid to be non-negative if the corresponding polynomial is non-negative, that

is, if

vh e X: u(h,h) >0, (7)
and positiveif the corresponding polynomial is positive at any non-zero vector, that
is, if

vh e X\0: u(h, h) > 0. (8)
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b) uissaidto bedtrictly positiveif

Ja > 0vh e X: u(h,h) > a ||h|?. (9)

It is evident that
strict positivity = positivity = non-negativity
In general the inverse implications are not true:

(Counter-) examples.

1. Thefunctional RZ x R2 — R, ((X1, Y1), (X2, Y2)) — X1X2 iS non-negative, but is not
positive.

2. Thefunctional £2 x €2 = R, (X,y) = >.ic1(1/ih)Xyi is (evidently) positive, but is
not strictly positive (verify!).

Finite-dimensional case

In FINITE-DIMENSIONAL case positivity is equivalent to strict positivity: If u
L(@R", R"; R) is positive, then u is strictly positive.
<1 Denote by Sthe unit spherein R" (defined by the equation ||x|| = 1), put p:=uo A,
and consider the restriction p|s. It is clear that this restriction is continuous (since in
finite dimensional case any bilinear functional is continuous). Further, Siscompact, being
closed (S= ||-[| 7 (1)) and bounded. Hence, p|s attainsits minimal value, say a. Sinceu
ispositive, we have a > 0. Thus,

X =1= u(X,X) >a > 0. (10)
Soforanyh #0
h h h h
uh,h) =u (nhn —— |Ih|| —) = |Ih|2u (—, —) > a |h|?,
) IIhl] Il IhI” Ihl]
N——— —
(10
> a

which meansthat u is gtrictly positive. >
Further, in FINITE-DIMENSIONAL case the positivity condition (2) takes the form

n

. 2§ (%
vh=(h1,....hn) e RMNO: > o1 (®)
ij=1

0X;0X;j

hih; > 0. (1)

This condition is none more then the condition of positive definiteness of Hesse matrix of
the function f at the point X. Thus, by 1.9, for f : R" — R, strict positivity of f”(X) is
equivalent to positive-definitenessof Hesse matrix of f at X. Thelatter may be established
with the aid of SILVESTER CRITERION from algebra:

SILVESTER CRITERION. A sguaire matrix A is positive definite iff all its principal
minorsdet A (k =1, ..., n) are positive.

Azi”azz pz| - Ay
a

A, —il Gy Gy Ayz| - Ay,

Ay = B1 Gy g3 | Gy,

L ) an3 ann
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Remark. For the case of local MAXIMUM we havetoreplaceall “>" in (1) and (2) by “ <”.
Thestrict NEGATIVITY of f”(X) isequivalent to NEGATIVE definiteness of the Hesse matrix
A; the latter is equivalent to the conditions: det A; < 0, det A > 0, det Az < 0, det A4 >
0,...

<1 Apply Silvester criterionto —A. >

[I. PROBLEMS WITH CONSTRAINTS

5.3 Setting of the problem

Definition. Consider the following EXTREME PROBLEM WITH CONSTRAINTS (for definite-
ness, the case of minimum): for agiven function f : X - R (X € NS) and a given set
A c X (the constraints), to find al pointsin A, wherethe RESTRICTION f|a hasitslocal
minimum:

Locmin(f|a) =7 (D)

Of course, we equippe A with the induced topology, so that

ae Locmin fla & 3U e Nba(X)Vx e U N A: f(x) > f(a) (ae A.

If A= X, weobtain aproblem without constraints.
Definition. By smooth (extreme) problem we shall mean a problem (1) with A given by
an equation
A=g0), (2

whereg : X — Y isa(sufficiently) smooth (e.g., of class Ct) mapping from our normed
space X into some another normed space Y. In other words,

A= {xe X|g(x) =0}. ©)

Example. The problem with the constraints A ¢ R? given asfollows: A = {(x, y}x = 1}
isasmooth problemwithY = R and g(x) = x — 1.

5.4 General (non-smooth) problems: necessary condition
of locmin

At first consider a motivating example. Let f : R —» R, A = {(x, y)|x > 0}, f e Dif,

v andleta = (X, ¥) € Locmin f |a. Then

f'@=0 if a eintA(thatis, if X > 0),
1222 of (@) of(@ A o
] / X >0, oy =0if aefrA(hatis, if X =0).

X
A7 This follows from a general theorem to be proved below,
& butitisclear by itself: inthefirst case we haveinfact, locally
= a grad f (that is, in some neighbourhood of a), a problem without

D <1
constraints, so Fermat theorem is applicable.
In the second case (X = 0) our function f cannot have a strictly negative derivativein x
at a, sinceit would mean that f STRICTLY decreasesat a in x-direction, which contradicts
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to loca minimality at a. The conditions of (a)/éx > 0, of (a)/0y = 0 mean that the
gradient (of (2)/0x, of (a)/ay) of f and the unit outer NORMAL vector v = (=1, 0) to
A at a have opposite directions. In general, as we shall see, the vector opposite to the
gradient at a point of local minimum, must lie in the NORMAL CONE to A at this point.

Tangent vectors

Definition. Let X be anormed space, A c X,a € A. We say that avector h € X is
tangentto A at a, and wewriteh e T4 A, if there exist asequence {an} of pointsin A and
a sequence {Tp} of positive real number, such that a, convergesto a and Tgl(an —a)
convergesto h:

a
heTaA o ITal C (0, +00)Han} C A an — a, a”T— Sh
n
It isobviousthat aways0 € T4 A (takea, = a) andthat if h € Ty Athenth € T, Afor
anyt > 0 (take Tp = t~1Ty). Thismeansthat To A is
a CONE with the vertex at O (the vertex belonging to the
cone).

-1
t, (a—a)

Examples.

1. For a motion f : Rd—> RR3 the velocity f/(t) at a
“time’

moment t is tangent to the trajectory at the point f (t).

2. For adifferentiablefunction f : R — R any vector of
the graph of the derivative at a point x (considered as an
element of Z (R, R)) istangent to the graph of f at the

‘f\ point (x, f (x)).

| 3. If Ais open then ANY vector is tangent to A at each

0int:
f’(.x) X p
Vae At TaA=X  (verify!).
In particular
VX e X: Ty X = X.
4. To{0} = {0}.

5.1f Y € X (this notation meansthat Y isavector subspacein X), then
vyeY: TyY =Y.

Lemma5.4.1. Let f : X — Y bedifferentiable at a point a, and let

@278 ,h (anheX, Tn>0). 1

— a
an ? Th n— oo

Then

f(an) — f(a)

T — f'(@h. @)
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5 f(an) — f(a) feDif(a) (f@+ f'(@(@n—a)+r(@a—a) - f@

Tn oD llan—al
trick an—a rapn—a) llan—a
= f(a — f/(a)h. >
@5~ * Jazal T @
—— —_— ———
@ ) @
—h lan—al—0  —lhl
— reSmall

f/(a)eCont
—— f/(a)h

-0

Normal vectors
NORMAL vectorstoaset A C X arenot “in reality” vectorsin X, they are covectors,
that is, elements of the space
X*:= Z(X,R)

(whichis called the DUAL spaceto X; recall that R* ~ R, (R")* ~ R").
Definition. Let X € NS, A c X, a € A. We say that an element h* € X* isnormal to A
at a, and we write

h* € Na A,

if h* (asalinear function on X) is NON-POSITIVE on the tangent coneto A at a:

h*eNaA:=VvheTaA: h*-h<0. ©)

(Recall that wewritelh =1 - x = I(h) for linear |.)
In the case X = R" you can IDENTIFY alinear function

I(X1,...,%Xn) =l1x1 + ...+ InXn

with the vector (I1, ..., In) (in the same R"!) and think about | - h as about the scALAR
PRODUCT.
Once again, it is clear that N5 A isa cone, containing O as the vertex.

Examples.

1. For a(smooth) curvein IR3, the normal cone at a point is the normal planeto the curve
at this point.

2. Let K+ and K~ be the positive and the negative quadrantsin R?,
resp. Then

NoKT =K~, NoK~ =K.

3. For an oPEN set A the normal cone at any point istrivial:

Vae A: NaA={0}  (verify!).

In particular Vx € X: Ny X = {0}.
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Necessary condition of locmin

Theorem54.2. Let X e NS, f : X > R,ae AcC X, f € Dif(a). Ifa € Locmin f|a
then
—f’(a) e Ng A.

< Let ussupposethat — f/(a) &€ Na A. Then, by definition, 3h € T A:
— f'(a)h > 0. 4
By definition of atangent vector, 3a, — a (a, € A) 3Ty > O:

an—a
Th

an — a, - h.

for al sufficiently
great n since
apn—a and aeLocmin f|a ¢ ;
(recall that Tn>0) an) — f(a) Lmsa41 4 -
<’ ( )T @ > f/(a)h < 0, acontradiction! >
n

Remark. That werequireinthetheorem f e Dif(a),notmerely f € Difg(a), isessential,
as the following counter-example shows:

Example. Let A bethecirclein R? shown on the picture, and
z gff’(O) let f : R? — R bedefined by therule

T 0Oif(x,y)e A
A f(x,y) = [ :
’ x if not.
ALY Lz
Y Then f e Difg(0), with f/(0) = (1, 0),and0 € Locmin f|a,
0 but

—1(0) = (=1,0) ¢ No A = {(X, ¥)| x = 0}, (= y-ai9).
The point isthat the set A is not “star-like”.

NB InthisexampleTogr f # gr f/(0). < gr f = (Ax0)U(gr /(0)\ A) (seethepicture);
Togr f = gr f/(0) U x-axis o>

Remark. For f e Dif, the generalized Fermat theorem follows from Theorem 5.4.2. and
Example 3 from prewious set of examples.

5.5 Smooth problems: sufficient conditions

IDEA OF LAGRANGE. Theidea of Lagrange was to reduce the problem with constraintsin
guestion:
Locmin fla =? (A =g~%(0))

to a problem wiTHoOUT constraints for some new function @ (instead of f). The mosts
simple way to construct @ : X — R, starting from f and g, isto consider some LINEAR
(continuous) function A : Y — R and to put

d:=f+100. (1)

Such a function @ is called LAGRANGE FUNCTION, and the functional 2 € Y* in (1) is
called LAGRANGE MULTIPLIERS (plural).
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If Y =R, then 1 € R* ~ R isjust anumber (Lagrange multiplier), if Y = R", then
A e (RM* ~ R"isavector (11, ..., 4n) (Lagrange multipliers).

Theorem 5.5.1. (sufficient conditionsfor a smooth problem). Consider a smooth problem
Locmin f|a =2, A =g }0).

If for some A € Y* Lagrange function ® = f + 4 o g has a local minimum at a point
a e Athen
a € Locmin f|a.

<aelocmin(f +400Q) M- 2 e Locmin (f+100)|a = aelLocmin f|a. >
——

- a4 (% 0 g)lA
e e’
91a=0,

Remark. The condition “31 € Y* : a € Locmin(f + 1 o g)” is NOT necessary for
“a e Locmin f|A”, asthe following counter-example shows:

Example. X =R?, Y =R, f(X,y) =X, g(X,y) =X +x% heae A= {x =0} U{x =
—1},0 € Locmin f|a, but VA € R: 0 ¢ Locmin(f + 4g). (Verify!)

5.6 Smooth problems: tangent coneto A = g=*(0)

Theorem 5.6.1. (on the tangent cone to a graph).

Y Y Let X,Y e NS, f : X —» Y,andlet f e Dif(x).
gr f7(x) Then
(x,f(x)) T foor f=gr f'(x). &y
erf ‘ Here gr f dentotesthe graph of f:
X X X

o fi={Xx f(xX)|xeX}cXxY.

<L or f/(x) € Tix, fxy) Or f. < Let (h, k) € gr f/(x), that is, k = f’(x)h. Take ANY
sequence Ty, | 0, and put Xp := X 4+ Tn h, yn := f(Xy). Then (Xn, Yn) € gr f, and

f eCont(x),Th h—0

Xn, Yn) = X+ Tnh, f(X+ Trh)) — e x, f(x)),
(Xn, Yn) — (X, (X)) X+ Tnh, f(X+Tnh)) — (X, f(X))
Th B Th

obv (h, f(x+Tn) — f(x)) TEPIO9 (h, #/(0h) = (h, K):
Tn h n— oo

hence, (h,K) € Tx, f(x)) or f. o>
2° Tix, txy or f cor f/(x).
< Let (h,K) € Ty, fx9r T, thatis, I{xn} € X, IHTn} C (0, +00):

Otn, £ Om) ——— (X, (), @

(Xn, T(xn)) = (x, (X))
Th n

— (h, k). 3)
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Relation (2) means that
Xn— X, f(xn) — f(X). 4

Relation (3) means that

Xn — X h, f(Xn) — f(X) Sk

Th Th ®)

By Lemmab.4.1., it followsfrom (4) and (5) that

f(xn) — ()

T - f'(x)h. (6)

Comparing (6) with the second relation in (5), we conclude (by the uniqueness of limit in
a Hausdorff space) that k = f’(x)h. But thismeansthat (h, k) € gr f'(x) o> >
Remark. In Step 1° we used just G-differentiability of f at x, but in Step 2° we have
used F-differentiability essentially, and this condition of F-differentiability is essentia
for validity of the theorem, as the following counter-example shows:

Example. Let A be a CIRCLE, shown on the picture, and let f : R2 — R be defined by
therule

OiIf(x,y) €A

b fx.y) = xif(x,y)e A

Then f e Difg(0), f'(0) = 0, gr f'(0) = R x 0, but Togr f =
(R? x 0) U (R(1, 0, 1)). (Verify! Compare Ex. 2.9! That examplealso is

0 2 suited!)
Theorem 5.6.2. (on the tangent cone to g~1(0)). Let X,Y e BS, g : X = Y, A =

g71(0),a € Af(thatis, g(a) = 0), g € Cg(a), g'(a) € Sur (that is, g'(a) is SURECTIVE:
g (@)X =), and let the kernel

K :=kerg'(a) :=(g'(2)) " X0) = {k| g'(@)k = 0} ©)

pre—image, rather
than the
inverse mapping!

SPLITS the space X in the sense that there exists a vector subspace L in X such that:

(i) K, L € BS (when equipped by the induced norm);
(i) X=K @@L (thatis, X =K +Land KNL ={0});
(iii) X &~ K x L (that is, more precisely, the mapping (k,1) » k+1, K x L — X)is
a (linear) homeomorphism). Then

[ TaA=kerg/(a). 6)

Note, that K as the pre-image of a closed set is CLOSED, so the condition K € BS
is fulfilled automatically (a closed set in a complete metric space is a'so complete, when
equipped by the induced metric).

Note also, that in FINITE-DIMENSIONAL case (X = R") ANY vector subspace splits
the whole space 1, so you can forget about this condition if you wish deal just with
finite-dimensional situation.

14 Choose an orthonormal basein K, and extend it to an orthonormal basisin R"; the subspace, generated
by the “new” basis vectors, will be the desirable L. >
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<1 1° Without loss of generality (wlog) we can assumethat a = 0. Otherwise we consider
a new mapping g : X — Y, defined by the rule g(h) = g(a + h). It is clear that
§(0) = ¢g'(a), and that A := g—l(O) =g 1(0)—a= A—a, thatis, Aisthetransation
of A byf thevector —a, so that Tg A=TaA.

L A 2° By (i)-(iii), we can assume that g isamapping K x L — Y.
Denote by gj. and g; the corresponding partial derivatives:
Ok = d0)-(k L0l = dgO-(@Ol.
v & %Ok 5 g0 KO, gOl = dO 0D (@
U 3° gk (0) = 0. < K = kerg'(0). o>

4° g; (0) e Sur. <1 Since g'(0) is surjective

vyeY3IkeKxL:y=g©- k2 gxOk+g O =g O.
—_——
30
=0

This meansthat g; (0) is surjective. >>
5° g (0) € Inj (that is, iSINJECTIVE). <xi Let| e L and g (0)l = 0. Then

g0 - (0.1) € gk (0)0+g( (O =0,
0 0

which means that
0,1) ekerg(0) =K x0  (weidentify K and K x 0O!).
If follows (by (ii)) that | = 0. o>
6° By 4° and 5°, g| (0) € Bij (isBIJECTIVE). Hence, g (0) € Iso(L, Y), infinite dimensi-
onal case automatically (any linear map is continuous!), and in general case by so-called

Openness Principle from functional analysis.
7° By Implicit Function Theorem, 3U € Nbg(K) 3V € Nbg(L) Jp : U — V :

Lgro=ANU xV),

2. ¢ € Dif(0),
3. ¢'(0)=—(g, (0) "t ogy(0) =0
inversemap!

%o

It followsfrom 3), that gr ¢’ (0) = K x 0 = ker g’(0).
8° By Theorem 5.6.1.,gr¢’(0) = To A. >

Theorem 5.6.2. says in particular that the tangent coneto A is aVECTOR SUBSPACE
in X. In such a case any normal vector is ORTHOGONAL to each tangent vector:

Lemma 5.6.3. (on orthogonality). Let X € NS, A c X,a € A. If Ta A is a vector
subspacein X, then
Vh e TaAvh* € Ng A: h*-h=0.

If h* . h = 0then we say that h* and h are orthogonal (in finite-dimensional case it
is usua orthogonality).
<1 By the definition of a normal vector, h* - h < 0. But we have also —h € T, A (since
Ta A is avector subspace), so it holds aso h* - (=h) < 0, that is, h* - h > 0. Hence,
h*.h=0. >

Coroallary 5.6.4. In conditions of Lemma 5.6.3.,

vh* e Ny A: Ta A C kerh*.
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5.7 Smooth problems: necessary condition

Theorem 5.7.1. (on Lagrange multipliers). Let X,Y € BS, and let (see the diagram)
A:=g}0),ae A, f eDif(a),ge Ci(a),dg'(a) e Sur.If

a € Locmin f|a, (@D}
then
A eY(=ZY,R): (f+10g)(a)=0. 2
————
=0
x _f R
—
g™ )
Y

Thus, the theorem says, that there exists Lagrange multipliers 4 such that the corre-
sponding L agrange function satisfies at the point a Fermat condition.
Before the proof consider amodel example:

Example. Let X = R%, Y = R, f(x,y) = X2+ VY2 g(X,y) = x — 1. Here A =
{(x,y)Ix=1},andVb e A: ThA={x =0}, NpA={y=0)}.
—_—
=:{x=1}
Now, 1 € R* &~ R may be here identified with areal numbers, so our Lagrange function

hasthe form
g O(x, y) = X2 +y? + A(x = 1).
NA f R d Condition (2) gives (for a =: (%, )
/ . '(@) = (28 +1,29) = (0,0).  (3)
X
level k/ Condition a € g~1(0) gives
lines of f [ grad fla)=(2,0) Xx—1=0. (4
I?Vel It follows from (3) and (4) that
lines of g _
TA A X=1 y=0(thatis,a=(1,0), 1 = -2

Thus the unique candidate for a point of local minimumisa = (1, 0), and it is easy
to verify that really a € Locmin f | a.

The necessary condition — f’(a) € Na Ameanshere (since T, A isavector subspace
of R?) that grad f|aL T A. So grad f |, is orthogonal at a both to the level line of f (as
the gradient of f) and to the level line of g (whichisjust A). It follows (by the formula
dp/ov = grad g -v), that both f and g have zero derivativein the direction of the common
tangent line to these level lines, that is, zero derivative in y: 9f/0y|a = 09/dyla = O.
Further, g/0X|a = 1 # 0, so far some 7 € R it holds of /0X|a = 109/0X|a (namely, for
1 =2, for we have 6f /ox|a = 2). So, for this Z, both f and g have ONE AND THE SAME
partial derivativesat a and hence one and the same derivative at a. Hence their difference
f — /g haszero derivative at a.

We see that our desired Lagrange multiplier is

A==
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Roughly speaking, by adding Ag to f we “rotate” the graph of f around the HORIZONTAL
line, passing through the point (a, f (a)) and parallel to the mentioned common tangent
line, until we obtain the HORIZONTAL tangent plane to the graph.

THE PROOF. <1 1° To avoid appealing functional analysis, werestrict ourselves by the
FINITE-DIMENSIONAL case (X = R", Y = RM).
2° By Theorem5.2.1. — f’(a) € Na A.
3° By Theorem 5.6.2,, T, A = kerg/(a).

obv

4 kerg'(a) C ker f'(a). < kerg'(a) = Ta A 2 ’%6‘4' ker(—f’(a)) = ker f’(a). >
5° ALGEBRAICAL LEMMA (on passing through). Let X, Y, Z be vector spaces, and let
9 € L(X,2),y € L(Y, Z). Let y be SURECTIVE. Then the following two conditions are
equivalent:

(8) kery c kerg;

(b)3IZ e L(Y,Z) : 9 =7 oy (p can be“passed through y ).

X ¢ y4
yN e
Y

<« (b)=(a): Let x € kery, that is, yx = 0. Then ox 2 7(yx) = 0, that is,
<~

0
X € kero.
(&= (b): Takeany elementy € Y. Sincey € Sur,3Ix € X : yx = y. Put
7Y =X

This definition is correct, that is, doesn’t depend on the choice of x. Indeed, if we have
another x” with the property y x’ = y then

@
y(X'=X) =X —yx=0= X—Xekery = xX'—x ekerp = p(X'—x) = 0= ¢px = px.
By the very construction, 9 = 2o y. >
6° By 4°, we can apply 5° to the diagram
x f@ g

E—
g'(a)" 7
Y
and concludethat 31 e L(Y, R)(= Z(Y,R),sinceY =RM) : f'(a) = 70 g'(a).
7° Put 2 = —4. Then

Chaine
Rule

(f +209) (@) f'@)+1og(@=f'@—iog(@)=0. >

5.8 Problemswith equations and inequalities

As an application consider a classic extreme problem with equations and inequalities to
find local minimums of a given function R" — R on the set

A=XeRNg(X)=0,...,0k(X) =0; gkr1(X) = 0, ..., g (X) > 0}.
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(All the function are supposed to be sufficiently smooth.)
Description of amethod. At apointa € Locmin f |5 wehavefori = k+1,...,| either
gi(@) =0orgi(a) > 0.

According to which of these two possibilities is realized, there 2! =% possibilities. A
method of solution the extreme problem isto consider one by another all the possibilities
and apply to each of them Theorem on Lagrange multipliers (TLM) with an appropriate
g.

We illustrate this method on the following simple example:

Example. Let
A= {x] g1(x) =0, g2(x) > 0}.

Put
A= g71(0), Az = g;%(0), By := g; (0, +00)).

The sets A; and A, are closed (as the pre-images of the closed set {0}), and the set B; is
open (as the pre-image of the open set (0, +00)). It isclear that

A= (A1N A U (A1 N By),

the two intersections being digoint. Let a € Locmin f | .
There aretwo possibilities: 1) a € A1 N Ag; 2) a € A1 N By.
In thefirst case

a e Locmin fla | AnAcA
=
ae AN A

aelocminfip, na, -
N e’

OV (g1.09-10)
Thuswe can apply TLM with g = (g1, g2) : R" — R2,
In the second case

a e Locmin f|A] A1NBoCA

a e Locmin f a e Locmin f .
ae AiNBy € |A1ﬁBz = ae | Aq

~—
()

(Proof of the last implication: since B, € Op, there exists (U € Nba(R™) : U c By =
(A1NB)NU =A1NU)
Thuswe can apply TLM withg = g1 : R" —» R.






Chapter 6

Riemann integral in R"

6.1 Partitionsand cubes

A partition of a(bounded closed) interval | = [a, b] isafinitesequence p = (o, 1, . . ., t),
such that
B, t, ot t, 1

‘ ‘ ‘ l; a=t<t1 <...<tk=

a
In such a case we write
pePatl.

We say that theintervals J; = [ti_1, tj] are the intervals of the partition p, and we write
Ji € Intv p.

AcubeQinRMisaproduct 11 x ... x I of nintervals I; = [a;, bj] (maybea; = b; for
somei), wewrite
Q € CubeR".

The volume of a cube is defined as the product of the lengths of its edges:
vol Q := (by —a1)...(bn — an).

For example, any point x € R" considered as aone-point set {x} isacube of zero volume.
A partition P of acube Q = 11 x ... x I isasequence (p1, ..., pn), Where p; isa
partition of theinterval I;:

PePat(ly x...xIp) P =(p1,...pPn), pi €Partl;.

A cube S of a partition P isaproduct J; x ... x J,, whereeach J; is
an interval of the partition p;:

S SeCubeP:©S=J x...x Jn, J €lntvp.

Let P = (p1,..., pn) @and P’ = (p, ..., p,) betwo partitions of acube Q. We say that
P’ isarefinement of P and we write

P~ P
if for suchi the sequence p; is a subsequence of p.

83
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6.2 Riemann integral

Let f : M — R, M c R". Inthis chapter we ALWAYS supposethat f isbounded, that is,
itsimage f (M) is abounded subset of R:

f e Bdy (& f(M) € Bd(R).
If f € Bdy then we can EXTEND f to abounded function on the wHOLE R" by putting
f(x) =0forx e R"\M.

So without loss of generality (wlog) we can (and we shall) assume that our functions are
defined on the whole space.

For agiven cube Q in R" and agiven partition P of Q wedefinethelower sumLp f
and the upper sumUp f of f, correspondingto P, by the formulas

Lp f = (inf f)vol S, Up f = (sup f)vol S.

Se%eP S Se%‘;eP S
(Here, e.g., infs f denotesthe infimum of f on S, that is, inf( f (S)).) By boundeness of
f, boththeinfs f and supg f are ever FINITE.

The lower integral of f over Q is defined as the suPREMUM of all lower sums, and
the upper integral asthe INFIMUM of all upper sums:

L/ f :=sup{Lp f|P € Pat Q}, U/ f:=inf{Up f|P e Pat Q}.
Q =:L Q =:U
Aswe shall seein aminute (Lemma 6.3.3.), the set L lies TO THE LEFT of the set U, so
L U both integrals are finite, and the lower one is less (by “less’ we
[ a— mean “ <", for “ <" we say “strictly less’):

/N R
L/ f < U/ f.
L =
y o o<
We say that f isintegrableover Q inthe sense of Riemannif the lower sumiSEQUAL
to the upper one;

f e (R)Int :@L/f:U/f.
L U (RIntq Q Q
4 A% N ) i . .
' In such acasethiscommonvalueiscalled the Riemannintegral
If of f over Q and is denoted by

(R)/Qf or (R)/Qf(xl,...,xn)dx1...dxn.

Asarulewe shall drop (R) and “in the sense of Riemann.”

Examples.
1. f =const =c; fQ ¢ = cvol Q. < For any partition P of Q

Lpc= Z cvolS=c z - vl Q,

SeCubeP SeCubeP

and analogously for Up c. >
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le——
(x--

s .
2f=-1 0 1 f[_l 1 f = 1 (doesnot dependonthevaluea at 0). < Exercise. >

3. The Dirichlet function fpj; : R — R, defined by the rule

o 1ifxgQ
fD'f(X)—[Oier@

is NOT integrable over, say, [0,1]. <VP € Part[0,1]: Lp fpir = 0,Up fpir = 1, s0
Lf[O,l] foir =0, Uf[O,l] foir=1 >

4. Any function CONTINUOUS on a cube (that is, in each point of this cube) Is integrable
over this cube. This follows from the LEBESGUE THEOREM below. For n = 1 we obtain
the classic integral of one-dimensional analysis.

The Dirichlet function from example 3 isan example of so called indicator functions:
Definition. Theindicator (or characteristic) function of a subset M of aset X is defined
by therule

) lifxeM
M) = [Oifx¢|v|

6.3 Criterion of existence of Riemann integral
Let f € BA(R"), Q e CubeR".
Lemma6.3.1. VP e PartQ: L, f < Up f.

QVSe CubeP:infsf < supgf. >
Lemma6.3.2. If P, P’ € Part Q and P’ > P then

Lpf<Lp f<Up f<Upf.

<1 The middle inequality is true by Lemma 6.3.1. Let us prove the
left one. Any cube S of the partition P is built from some cubes
S, ..., S of the partition P’ (k dependson S), and so

—S volS=vol S +...+vol §;
\ hence
T
S; (inf f)vol S = (inf f) vol S| +...+ (inf 1) vol §
—— ~——
ginfszlf sinfs/kf

If we sum these inequalities over all S € CubeP, we obtainLp f < Lp/ f. Theright
inequality may be proved analogically. >
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Lemma6.3.3.VP, P’ e PartQ: Lp f < Up: f.
< Takeapartition P” of Q suchthat P” = P and P” = P’. Then

~
- <

L

P

6.3.2. 6.3.1. 6.3.2.
( Upf Lpf < Lprf < Uprf < Up f.>
LP

Criterion o ntegrablllty A bounded function f : R" — R isintegrable over a cube Q
inR" if and only if

\\j‘

\

Ve >03dP ePatQ: (0<)Up f —Lp f <e. (1)
L U
A =ef

I
c

< 1°Let f elntg, thatissupL = inf U = ¢, where
={Lp f|P € Part Q}, U :={Up f|P € Part Q}.

Let ¢ > 0 be given. By the definitions of supremum and infimum

<e2 =ef2 EIP’ePartQ:c—Lp/fgg, )
L.f e Upnf .
L uls EIP”ePartQ:Up//f—CSE. ©)
Let P be arefinement both of P’ and P”. Then
Up feLpf S Up folpf 232808 . Ok

2° Viceverse, let (1) betrue. Then
infU—-supL <Upf —Lpf <e.

L U <Up f >Lp f
L.f U,f Since ¢ was arbitrary we concludethat inf U —supL < O, that is,
infU < suplL.
But by Lemma6.3.3.,
infU > suplL.
Hence,
infU=suplL,

which meansthat f € Intq. >
Remark that thedifferenceUp f —Lp f which appearsin Criterium, may be written
intheform
Apf=Upf—Lpf= > (supf —inf f)vol S

SeCubep S
Thisjustifies the following
Definition. Let f € Bdrn, M C R". We define the oscillation of the function f on the
set M so:

Qmf :=(sup f) — (inf ).
M M

If M = R" we omit M in the notation.
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Example. Qsin = 2.
Thus

Apf = Z (Qsf)vol S.
SeCubeP

Lemma 6.3.4. (on monotony). If P’ = P then Ap f < Apf.
< It follows at once from Lemma6.3.2. >

Exercises.
1

4 L fogzxn = 3 (not depending on taking A WITH the boundary or
WITHOUT).

ol1n1
2. flapid (: f;xdx) = 3(b? — a?) (do not use Newton-L eibniz formulal).
3.1f f,geIntg then f +g e Intg,and [o(f +9) = [o F + [5 0.
[Hint:infs f +infsg < infs(f + @), supg f + supgg > supg(f + 9).]

Below we omit for short “if...then...”.
4 fqcf =c o f.
5f<g=[of < /o0
6.|Jo | = JoIfI-Hint Qglf| < Qs ]

7. f = gon Q\F,#F < oo (F iSFINITE) = fQ f = ng (changing a function on a
finite set does not change the integral).

8.VP e PartQ: fQ f =2 sccuep fs f.

6.4 Null sets

We say that aset N ¢ R" isaset of Lebesgue measure zero or anull set if forany ¢ > 0
there exists (AT MOST) COUNTABLE family {Q;} of cubesin R", which covers N and is
such that the sum of the volumes of the cubesisless than ¢:

N e Null i< Ve > 0HQi}ien : Qi € CubeR", | JQi DN, D volQi<e.
ieN ieN

(We can, without loss of generality, assume that the family isjust countable, since adding
to our family any countable number of one-point set does not change the sum of volumes.)
In the integration theory null sets are “negligible” in a sense, as we shall see.

Remarks.

1. Emphasizethat Q; may have zero volume.
2. A cube Q has PosITIVE volumeiff it has the non-empty interior:

voIQ>O<:>(OQ;£ﬂ.

3. We obtain an EQUIVALENT definition if we replace the condition UQ; o N by

UéiDN-

ieN
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(Proveasan EXERCISE. [Hint: for fixed |4, . . ., I (thelengths of the edges of acube)
thefunctiont — (I1 +1t)...(In+t), R — Riscontinuousand strictly increasing
a0.])

Examples.

1. Any point (that is, aset {x}) isnull. <1 {x} € CubeR", vol{x} = 0. >

2. Any finite set isnull.

3. Any countable set is null. <« Numerate the points of our set into a sequence {x;} and
take Q; = {Xi}. >

4. Any straight linein R2 isnull. <« EXERCISE. >

5. A setin R" which hasan INTERIOR pointisNOT null: M # 0% = M ¢& Null. Inparticular

no cube with positive volumeisnull; infact, vol Q > 0 < Q ¢ Null (prove!). (But there
exist NOT-NULL sets (even in R) with the EMPTY INTERIOR, cf. Exam. 6.7 2.)

Lemma 6.4.1. Any subset of a null setisnull.
<1 Obvioudy. >

Lemma 6.4.2. The union of a countable family of null setsisa null set.
< Let Nj € Null foreachi € N, andlet & > Obegiven. Let uswritee =1+ 62+ ...,
whereeach ¢j > 0. For eachi there exists acountablefamily {Qj; }j ey of cubes, such that

UQioN., D volQij <.
j j
Then thefamily {Qjj }; j e (Whichiscountable!) covers( J; N and satisfiestheinequality

Zvol Qij = Z(Zvd Qij) < Z&‘i =¢. D>
i,j i j i

——
<&j

Lemma 6.4.3. If anull set N in R" is coMPACT then for any ¢ > 0 there exists a FINITE
family Q1, ..., Qk of cubes such that urlei O N, Z:‘zlvol Qi <e.
<1 By Remark 3, there exists a countable family {Q; } of cubes such that

UQoN  SvlQ<e

ieN ieN
By compactness of N we can choose a finite subcovering, and this finite family is what
we need. >

Remark 4. Thecompactnessconditionin Lemma6.4.3. isessential (see Exercise2 below).
Exercises

1. The Cantor set, the intersection of the sequence

n=1 | !
0 1
n=2 -
0 1/3 2/3 1
n=3 — —
0 1/9 2/9 2/37/9 8/9 1

isa(compact) null set.

2. Let M be the set of rational numbersbetweenO0and 1, M := QN [0, 1]. Then M
iS NULL as a countable set. Prove that there exists no FINITE family |4, ..., Ik of
intervals, such that Ul; D M and >’ length I; < 1. [Hint: useinductionin k.]
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6.5 Oscillation

Let X be anormed space, let M c X, and let f : X — R be a bounded function. The
oscillation of f on M at apoint x € X (usually x € M) isdefined by
the formula

om f(X) = IaTa Qp;0nm |,

By(x) where Q isthe“global” oscillation, defined in Section 6.3:

Quf =supf —inf f.
M M

This limit exists since SUPg; ()M f Ll andinfgyoonm f Taso | 0.1f M = X we omit
theindex M.

Examples.

1Lf=_1T2 ;0f(0)=1 owof©) =0, o_1qf©) =1

—]

f(x) = IXI”C’”"éo f(0) = 2.
9 [0 if x=0; ot ©

e AN A
N VTmNY

Remark. Thevaluewwm f (X) doesnot changeif wereplacethenormin X by any equivalent
norm.

Lemma 6.5.1. Let X be a normed space, M ¢ X,x € M,andlet f : X - Rbea
bounded function. Then f iscontinuousat x if and only if the oscillation of f at x isequal
to zero:

flm € Cont(X) & owom f(X) =0

<"=": Let f|m iscontinuous at x. Consider arbitrary ¢ > 0. By supposed continuity
there exists ¢ > 0 such that

vy €Bs)NME[f(y) - F(0] < 5.

Then
sup f < f(x)+ 4, inf f>fXx) -
Ba(x)EwM 00 +3 B500NM )
whence it follows that
Qp;onm T < e.
Hence
om F(X) <e.
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Since ¢ was arbitrary we conclude that my f (X) = 0.
"<":Letom f(X) =0,andlet ¢ > 0 begiven. Then there exists > 0 such that

N

Qp;nm f < e. (1)
fx)
o)

Hencefor each y € Bs(x) N M it holds

00— WIS sp f— int f2
X) — Su — In &,
= Bg(X)EWM Bs(x)NM -

which meansthat f |y iscontinuousat x. >
Lemma 6.5.2. Let X be a normed space, M c X, andlet f : X — R be a bounded
function. Then for any ¢ > 0 the set

A; = {Xx € M|om f(X) < &} (strict inequality!)

iSOPEN IN M.
< Let x € A;. We need to show that there exist § > 0 such that
Bs(X) M C A, )
But indeed (since wm T (X) < ¢) thereexist § > 0and (0 <)’ < ¢
B,(y) such that
Qp,rm f <&’ ©)

B,) Lety e I%a(x) N M. Obvioudly thereexists y, 0 < y < 4, such
that B, (y) € Bs(x). Then B, (y) " M c Bs(x) N M, and hence

3
Qg, ynm < Qesoonm f < &/,

which implies that
omf(y) <é& <e.

Thismeansthat y € A;, and (2) istrue. >
Let usreturnin R", equipped, say, by the Euclidean norm (||-|5).

Lemma6.5.3. Let Q beacubeinR", and let f : R" — R be a bounded function such
that

Je>0¥xe Q: wof(x) <e (drictinequality!). (4)
Then there exists a partition P of Q such that
Z (Qsf)vol S < evol Q.
SeCube P

<11° Consider arbitrary point x € Q. By (4),
35x >0: QB(;x(x)ﬂQf <é. (5)

Let Qx be a cube with the center at x such that (OQX # ¢ and Qx C By, (x). (Such acube
exists, since ||-[loo ~ II-1l2.) Thecubes{(ogx} forman open covering
of Q. By compactness of Q, we can choose a finite subcovering,

QX %.y

Q

B () Qo O ) (X1, Xk € Q).
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Thus, (ngl U...uJ (OQXk D Q. Thereforeif we put Qi := Qx N Q, it holds
QU...UQk=Q.

2° Obvioudly each set Q; isacube, and there existsapartition P of Q such that each cube
Sof P iscointained in some Q;, that is,

ScQxNQC B(;Xi )N Q.

Then
0, 0,
5
Qgsf < QBﬁxi onof < e
Hence,
o o > (@sfjvalS<e > volS=evol Q.
SeCubeP . SeCubeP

6.6 Lebesguetheorem

The following result is fundamental .

Theorem 6.6.1. (Lebesgue). Let Q bea cubeinR", andlet f : R" — R be a bounded
function. Denote by discontg f the set of all pointswhere f|q isnot continuous:

discontg f := {x € Q| f|o ¢ Cont(x)}.
Then f isintegrableover Q if and only if discontg f isa null set:
f e Intg < discontg f e Null.
< For short put A := discontg f, and put for eache > 0
A; = {xe Qlogf(x) > e}

(This set is COMPLEMENTARY in Q to the set A, from Lemma6.5.2. (with M = Q).) We
have

)
AngS.Z. (x e Q| wa(X) > 0} CEV U{x e Q] a)Qf(X) > %},
k=1
that is,
keN

"=" 1° Let f e Intg. We need verify that A e Nul. In view of (1) it is sufficient (by
Lemma 6.4.2.) to show that for eachd > O

As € Nul . )

Let & bean arbitrary positive number. By (Corollary of) Criterium of integrability (Section
6.3) there exists a partition P of Q such that

> (Qsf)volS<e. ©)

SeCube P
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2° Denote by N the union of the boundaries of all cubes of P:

N= |J frs

SeCubeP

Obviously, N € Null; hence there exists a countable (end even finite, since N is compact;
see Lemma6.4.3.) family {Q;j} of cubesin R" such that

U Qi O N, Zvol Qi <e. (4)

3° Now denote by S the set of al cubes S of P such that at least one INTERIOR point of S
belongsto Ay:

S:={Se CubeP|SN As # 0). (5)
Itisclear that
VSe S:Qsf > 46 (6)

(sincefor somex e Sit holds wf (X) > 9). Further,

6
> sesVol S @ > sesd HQsf)vol S=06"13 o s(Qsf)vol S
trick (7)

obv

-1 ®
< 07 D sccupep(R2sf)vol S < ed™

4° The cubesfrom {Q; } and from S altogether cover Ay, since each point of As either lies
in N or isinterior for some cube S, and

4,
> vol Qi+ > vol's 20 @+ o,

SeS

But here § isfixed, and ¢ is arbitrary. We concludethat (2) istrue.

"&" 5° Let A e Null. We provethat f e Intg, using the same Criterion. Let ¢ be
an arbitrary positive number. Theset A; = {x € Q| wq f (X) < ¢} isnull (since A; C A)
and is compact (A; isbounded since A, ¢ Q, and A; isclosed since (A;))°*NQ = {x €
Ql wg f(X) < &} isopenin Q by Lemma6.5.2., hence A; is closed in Q and therefore
is closed (since Q is closed!)). By Lemma 6.4.3., there exists a finite number of cubes
Q1, ..., Qk suchthat
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9,

[%QZ 0,

9,

It isclear that

(since White C (A;)°).

White

T T
F— =i =1 — .

Il Il

P" 1l 1

\H 1

Il Il

Il I
\ A / r
1Y L]
:,l‘/"/’ ]

93
k . e}
U 3 > A (8)
i=1
k 9
A ;VOI Qi <e. ®
6° Put

vx € White : wof(X) <e

Black

Black := (UK., Q)N Q

(shadowed on the second picture), and

White:= Q\(U*_,Q;) (= cl(Q\ Black)).
(10)

7° Obviously there exists a partition P’ of Q such
that each cube S of P’ lies either in White or in
Black.

Put

W = {S € CubeP’| S c White},
B :={S € CubeP’| S c Black]}.

Itisclear from (9) that

> volS <e. (11)
SeB
8° For each S' € W there exists by Lemma 6.5.3.
(inview of 10)) apartition Py such that
Apy f <evolS. (12)
9° Finally, there exists a partition P of Q such that
P~ P
and
vS e W: Plg = Pg.

(Here P|g denotes, naturally, the “restriction” of
the partition P to S'.) Let usshow that P iswhat we
need.
10° For thisend put

0 <)M :=Qqf

(M isfinite, since f e Bd). Itis clear that

VS e CubeP: Qsf < M. (13)
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11° Now,

Apf= D (@sfivas= D > (@sHvas+> > (@sfvas

SeCube P S'elWV SeCube P S'eB SeCube P
Scs Scs

We have
6.3.4. (12)
[1]=Apf < Apyf < evol S, (14)

(153)2 Z MvoIS:MZ Z voISOQVMZVOIS’(lgl)Me (15)

S'eBB SeCubeP S'eBB SeCubeP SeB
Scs sScs
Thus
(14),(15) obv
Apf = Z+ < Z evol S+Me = ¢ ZVOIS’+Mg§e(voIQ—|—M).
SeWw SeWw SeW
——

obv
< vol Q

But ¢ was arbitrary small. So by Criterium, f e Intg. >

Exercises.
1 Let
1 if x e Qandx = &, p, q being
f(x)= mutually prime integers,
0 ifxgQ.

Provethat discont f = Q (denseinR!). So f isintegrable over any (bounded) interval.

. Let f : R" - RM™ f = (fq,..., fm), Q € Cube(R"), and let each component
function f; isintegrable over Q. Let further g : R™ — R be a cONTINUOUS function.
Prove that the compositiong o f

R" SRS R
is integrable over Q. (In particular the product f; f> of two integrable functionsis inte-
grable.) [Hint: discont(g o f) c U™, Discont f; ]
6.7 Jordan measurable sets
Now we define the integral over ARBITRARY (bounded) set. Let f be abounded function
on R", and let M be a bounded set in R". We say that f isintegrable over M and we

write f € Inty, if the product y\ f (recall that yy denotes the indicator function of M)
isintegrable over some cube Q O M, and in such a case we put

/f:Z/XMf.
M Q
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(The result does not depend on the choice of Q, and sometimes we shall drop Q.)
Further we say, that M is Jordan measurableif the constant function 1 isintegrable
over M, and we define the volume of M as the corresponding integral:

M eJMeas:@EI/ 1=/XM =:vol M.
M

This definition evidently agrees with our original definition of volume for cubes.

Theorem 6.7.1. A bounded set M in R" is Jordan measurable iff its boundary is a null
Set:
M e Meas < frM e Null.

<1 Thisfollows at once from L ebesgue Theorem, since Discont yp = frM. >

Remark. A null set (and even countable!) may be non-Jordan-measurable (Example 1
below); an open set may be non-Jordan-measurable (Example 2). [All the null setsand all
the open ones are LEBESGUE MEASURABLE.]

Example 1. Theset Q N[O, 1] is not Jordan measurable. (Cf. Example 1.2 3.)

Example 2. We construct a bounded open set in R by the following procedure. Write

%2814—82—}-... (i > 0)

(eg.&i =2771).
Sep 1. Take theinterval of the length e1 with the center common with the center of
theinterval [0, 1]:

€
‘ | ‘
| ' |

0 1

Sep 2. Take 2 open intervals, each of the length %82 with the centers common, resp.,
with the centers of 2 intervals complementary in [0, 1] to the open interval constructed in
Step 1:

1 1
| 28 € 28 |
‘ } T } ‘
0 1

Sep 3. Take 4 open intervals, each of length %63, with the centers common, resp.,
with the centers of 4 intervals complementary in [0, 1] to the open intervals constructed
in Steps 1 and 2:

Theunion M of al constructed by this procedure open intervalsis a (bounded) open
set, which is not Jordan measurable (but is LEBESGUE MEASURABLE, with LEBESGUE
MEASURE 1/2).

Exercises
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1. Provethe assertion of Example 2. [Hint: prove at first that frM = [0, 1]\M; then
prove by inductionin k, that there exists no finite covering of fr M by intervalswith
the sum of thelengths < 1/2 (cf. Lemma 6.4.3.).]

. Any coMPACT null set is Jordan measurable (and its volumeis equal to 0.)

3. Provethat

N

volM =0= M e Null
and that if M € JMeas then

volM =0« M e Null

4. f eBd,voM=0= [, f=0.
5.
VoM =0 Ve > 03k e N3Qy,..., Qg € Cube: [J*; Qi O M,
Z!‘zlvol Qi <e¢
& Ve>03keNIQu,..., Qe Cube: JQ oM,
Z:(:1V0| Qi <e¢

6. volM = 0= vol M = 0. (Remark that M € Null % M e Null!)

6.8 Fubini Theorem

This theorem says about possibility to reduce calculation of the integral over a product to
calculation of integrals over the factors.

Theorem 6.8.1. (Fubini). Let A be a cubein R", let B be a cube in R™, and let f :
A x B — R bea (bounded) integrable function. Put for each x € A

[(x) := L/B f(x,-), ux) = U/B f(x,-).

Then both the functions| and u areintegrable over A, and

Ju ==L

(Recall that the “x-section” f (x, ) of f isthefunction A - R,y — f(X,Yy).)
<1 1° Obvioudly, any partition P of A x B may bewritten asapair P = (Pa, Pg), where
Pa € Part A, Pg € Part B. We have

SeCubeP & S=S)p x S5, SpeCubePp, Sg e CubePg.

2° Forany P = (Pa, Pg) € Part(A x B)

Lpf= > (irslff)voIS= > (inf f)voI(SAxSB)

Sax Sg

SeCube P SaeCube P —
ShcCube P =vol Savol Sg
= > > (Sinf f)voISB vol Sa.
SacCubePa \ SgcCubePy A% S8
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3o <infg,l. < Vx e Sa: infs,xsg T <infpgxsg T =infsg T(X,-). Hence

vx e Sail] < Z (iggf(x,~))v0ISB=LpBf(x,~)§L/Bf(x,~):I(x).

SgeCube Pg

We concludethat | 1] < infs, |. o>
4 Lpf <Lp,l.

2 3 .
xLpfZ Z [1]vol s < Z (IQf|)VO|SA=LPA|.I>f>
SacCube P SacCubePy A

5° Up f > Up, u.<xi Analogously. >t

I<u
6°Lpyl <Upyu. < Lpyl < Lpyu<Upyu. D>

7° By 3°-5°,
Lp f <Lp,l <Up,u<UpHf.
It followsthat
sup Lpf< sup Lpl< inf Up,l< inf Up f.
PePart(Ax B) PacPart(A) PaePart(A) PePart(Ax B)
=/axp | =L [ul =U [p! =U [axg f
Therefore

L/I:U/Iz/ f,
A A AxB

which meansthat [,| = [, g f-
8° The other equation may be proved analogously. >

Example. Let

: 1 ifx=%yeQ
I — 2° s
oY) = [0 otherwise.

Then!| = O,u= X{1/2} and

Dirichlet | — 0
function / f = [ {[0’1] {10,11 ] -0

[0.1]2 oY = Jiog X11/2
(Remark that f isintegrable, though it has a NON-integrable section f (1/2, -).)
Notations. It is convenient to use the following “classic” notations:

[r=[tonaay. [roo=[roxnd. [fen= [ ey

(and analogously for L [, U [). E.g. we use these notations in the corollaries below.

Corollary 6.8.2. (change of the order of integrations).

(/AXB f(x’y)dXdY=)/A<L/B f(X»Y)dY)dX=/B(L/Af(x,y)dx)dy

(and any fromtwo “ L” or both of them may be replaced by “ U” ).
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Corollary 6.8.3. (reduction of adoubleintegral to arepeated one). Let, in the conditions
of Fubini Theorem, for each x € A thefunction f (X, -) isintegrable. Then

/AXB f(x,y)dxdy:/A(/B f(x,y)dy) dx.

The condition of Corollary 6.8.3.isfulfilled, e.g., for continuousfunctions(since any
section of a continuousfunction is aso continuous).
In particular, for f € Cont we have (by induction)

b1 bn
/ fz/ / f(X1,...,Xn)dX1...dXn
[a1,b1] ... x[an,bn] ag an

=/:n(...(/:f(xl,...,xn)dxl)...)dxn.



Chapter 7

Partition of unity. Change of
variables

7.1 Smooth indicators

For afunction f : R" — R its support supp f is defined as the closure of the set, where

¥ f isnot equal to O:
L ~NJ

supp f supp f 1= cl{x e R"| f (x) # O}.
We say that a C*°-function f isasmooth indicator of aset A c R"if f|a = 1.

G  Theorem 7.1.1. For any open set G in R" and any compact set K ¢ G
there exists a smooth indicator f of K with the supportin G:

supp f flk =1, supp f c G.

. R
<1 1° Theoremistrueforn = 1, K = [a, b], g = (c, d). ca bd
<Kl Sep 1.

/i
—PX i —7/2 <X < 1)2 N
f =1€ ’ ;
1(X) {0 if not. vz 0 w2
Itiseasy to verify that f; € C*®° andsupp f1 = [—7 /2, 7 /2]. s
2
Sep2.va <b3Ifp e C®: fy > 0, supp f2 =[a, b]. a b
TC/2 _
<1 Put fp:= f1ol, wherel = b o>
-2

Jup

Sep 3.Va < bEIfa’b e C™: fa,b > 0, fa,bl(_oo,a] = 0,
fa,blib,+00) = 1.

ZL <}<mfa,b(x):z(/:fz)/(/abfz).u»

99
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Step 4. Choose€andd suchthatc <€ <a,b <d <dandput f := feq — fy 4.
A

SN

K< ¢ & a b dd Db Db

2° Theoremistruefor K = Q1, G =62, where Q1, Q2 € Cube(R").

<K Let Q1 = [ag,b1] x ... x [an, bn], Q2 = [c1,d1] x ... x [Cn, dn]. By 1°, for each
i =1,...,nthereexistsasmoothindicator f;
of [a, bj] withsupp f; C (¢, di). Put

thatis,

f(Xe,...,%n) = fa(Xa) - ... fa(Xn).

Itisclear that f iswhat we need. o>
3° General case. For any x € K there exist cubes Q) , Q%
such that

(o] o]
x €Q%, Qy CQy, Y C G.

o’
The cubes Q, cover K. By compactness of K, we can
[0}

» (o]
0 Q. choose a finite subcovering, say Q 7, ..., Q, with the
! corresponding “outer” cubes Q7, ..., Q. By 2°, for each

i =1,...,kthereexistsasmooth indicator fi of Qi with

supp fi CCC’Q{’. Put
k
fi= Z fi.
i=1

Itisclearthat f € C®, f >0, flx > 1, supp f c G. Atlast, put

—h

1i = fo,lo f~,

where fo1 =70 1 (seeStep 3of 1°). Itisobviousthat f iswhat we need. >

7.2 Partition of unity

Let A c R", and let O be an open covering of A (the notation: O € OC(A)). A family ®
of C®-functionsR" — R iscalled apartition of unity for A submitted to O (the notation:
® € PU(A, 0)), if

HVped:0<p<I;
2) ¥x € A 3JU e Nbyx such that only FINITE number of functions from ® are not
identically zero on U (the condition of local finiteness);

3) Vx e Al Y, o9 (X) = 1(thissumisFINITE, by 2));
4) Vo € ®3U € O : suppgy C U (@ issubmitted to O).

Remark. For any cOMPACT set K C Athereexistsonly FINITE number of functionsg € ®
suchthat ¢|k # O.
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<1 Thisfollows from 2) and from compactnessof K. >

Theorem 7.2.1. For any A c R" and any open covering O of A there exists a partition
of unity for A submitted to O.
<1 Case 1. Aiscompact. Without loss of generality we can assumethat O iSFINITE.

[0} [0}
1°¥x € AdUx € O 3Q%, Q% € Cube(R") : x eQ}, Qx CcQ
[0}

A 7 Q) C Ux. The cubes Q) cover A. By compactness of A
Q. we can choose a finite subcovering, say 6 b 6 «» With the
Q" corresponding outer cubes Q7 ... Qf. .
U, By Theorem on smooth indicators applied to Q; and Q{’, for
eachi =1, ..., k there exists asmooth indicator fi for Qi with
supp fi c(ogi”.

[*] o]
2°Puton Qi U...UQ, =G

fi
Y .

(Obvioudy, f1 + ...+ fk > 1 0on G, hencethisdefinition is correct.)
3° Onceagain by Theorem on smooth indicators, applied thistimeto A and G, there exists
asmooth indicator fp of A with supp fo c G. Put

.| fowi onG,
Pi=10 onGS

Itisclear that @1, . .., pk arejust what we need. Indeed,

o 1°
suppy; C supp fi cQ{’ c U forsomeU € O,

=1
Case2. A= U2 A, Al € Comp, Aj C '%‘i+1-

A= Uf&i), each set K = Ai\f&i_l is compact (verifyl), each set G; = f&iH/Ai_z is
open, and
Ki c Gj (seethe picture). Put

and
2
=N

A

Note that in this case A is open (since

O ={UNGjJuU € O}.

Then O; is an open covering of K;, and by Case 1,
thereexistsaFINITE partition of unity @; for K; submitted
to O;. Now put

V/3=§:Z¢~

i=1 ped;

This definition is correct since each point of A liesin some G;, and for eachi al the
functionsfrom ®; with j > i 4 3 have the supports oUTSIDE G;, so on each G; our y is
the sum of a FINITE number of functions ¢.
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At last put for each ¢ € UC, @

r._ 9
@ = —.
W
The family of al such ¢’ is what we need.
Case 3. Aisopen. Putfori =1,2,...

U
T 777>

S e

"o,;'l’ A = ANUEN B
a / Here B; denotesthe ball of radiusi with the center
,4;41//

o . . .
%;;A,{%{z at 0, and dist(x, \_() de_notes the distance from a point
x toaset Y, that is defined by the formula

Ui = {x e R"|dist(x, frA) < 1},

frA B, dist(x, Y) := ian X =yll.
ye

For any fixed set Y the function
oy ==dist(-, Y)

is continuous (verify!).
We claim that

o
ViiA e Comp, Al C A, and A= U A
i—1

<k We use the following simple fact from topology: The difference of s set and an OPEN
neighbourhood of its frontier is closed. (Verify!)

By thisfact AN UiC e Cl. Further, B; is bounded and closed. Hence A; is bounded
and closed, that is, Aj € Comp. (Note that Uj is open since U = g;a((—1, +1)) and
ofra 1S continuous function.) Other relations are obvious. >

Hence we can apply Case 2.

General case. Put G := UycoU. By Case 3, there exists a partition of unity for G
submitted to O. Itis of course also a partition of unity for A. >

7.3 Partition of integral

Now we show that having a partition of unity ® for A we can represent the integral [, f
asasum of integrals [, ¢ f overg € ®@.

Lemma7.3.1. If A, B are Jordan measurable then
AUB, ANB, A\B, B\A (1)

are also Jordan measurable.

< Recall that a set is Jordan measurable iff its frontier isanull set. ThusfrA and frB are
null sets and hencetheir union also isanull set. But the frontier of each from 4 setsin (1)
liesinfrA U frB (verify!) and henceisnull. >
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Lemma 7.3.2. If Alisa (bounded) Jordan measurable set then for any ¢ > 0 there exists
a coMPACT Jordan measurable subset K of A such that

vol(A\K) < e.

(Notethat A\K isJordan measurableby Lemma7.3.1.)
< frAisacompact null set, hence by Lemma 1.4.3 there exists a finite number of cubes
Q1, ..., Qk such that

k k
U Q, o frA, > volQi <e.

i=1 i=1

Put

k
K:=AJQ.
i=1
This set is bounded (obviously) and closed (as the difference of a set and an OPEN
neigbourhood of its frontier, see the end of the previous section). Hence K is compact.

By Lemma (7.3.1.), K is Jordan measurable (each (Ogi is obvioudly Jordan measurable).
Atlast, A\A c UQ;, hence

VOl(A\K) < D vol Qi < &. 1>

Theorem 7.3.3. Let A be a (bounded) Jordan measurable set, and let f be a (bounded)
function integrable over A. Let O be an open covering of A by Jordan measurable sets,
and let @ be a partition of unity for A submitted to O. Then

IREDIRE @

ped

where the series converges ABSOLUTELY.

(Recall that a series Zgoe(l) a, (a, € R) converges absolutely to s if for any ¢ > 0
there exists aFINITE set ®¢ C @ such that for each FINITE set @', satisfying the condition
®y C @' C O, itholds

S—Za¢

Pped@’

<e.

In such acasethe series > pew 18] also (absolutely) converges.)
<1 Consider anarbitrary ¢ > 0. By Lemma7.3.2., thereexistsacompact Jordan measurable
set K c A such that

Vol (A\K) < e. (3)

By Remark to the definition of a partition of unity, the set ®g of al functions ¢ from ®
such that ¢ |k # 0, isFINITE. For any finite ®' such that ®9 c ®’ c @ it holds

2l B ) (-2

ped’ ped’

sum is
finite
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sup
A pe®  ped Pe®\ D/

Z¢gm/SwIA=1 IfI/A<Zq)—Z¢):M/A Z \

@3
= M/ goSM/ 1= Mvol(A\K) 2) Me.
Ped\ D/ A\K A\K

/
=0lk=0 PED\®

———
<1
Since ¢ was arbitrary we concludethat (2) istrue. >
Remark. 1. Since 3, ¢|a = 1, we can rewrite (2) so:

[ Zet=3 [t

ped ped

that is, we can change | and > with places.

Remark. One can use (2) to EXTEND the definition of [, f to non-Jordan-measurable
or/and non-bounded sets A and non-bounded functions f. But we shall not need such an
extension below.

7.4 Change of variables

The following result is a generalization of the known rule of classic analysis concerning
achange of avariablein an integral.

By a change of variables in R" we mean a (C1-)diffeomorphism g of an open set
G c R" onto an openset H c R", that is, a C1-bijection G — H such that the inverse
mappingg~! : H — Gisalsoof classCt.

Since any C1-mapping is continuous, both g and g~! are continuous, thus g is a
homeomorphism.

Remember: any (C1-)diffeomorphismisahomeomorphism.

Sincegtog=idandgog~! = id, it follows by Chain Rulethat for any x € G and
fory :=g(x)

@HWege=id  gxo @y =id.
Hence (remember!)

vx € G: g'(x) € Iso(R") (< detg’(x) # 0).

Theorem 7.4.1.Letg: G — H (G, H c R") be a (C*-)diffeomorphism. Then for any
integrablefunction f : H — R it holds (below we prefer write g(G) instead of H)

.
GAHSR / f=/|fog|detg’|. )
9(G) G

<1 |. PRELIMINARIES. 1° Thistheoremistruefor integralsin the extended sense mentioned
in last Remark. But we shall prove this theorem only for our ”old” notion of the integral,
and by this reason we shall suppose that our sets G and H are bounded and G is Jordan
measurable. (It followsfrom (1) with f = 1 that H must then a so be Jordan measurable.
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2° We say that a Jordan measurable set A ¢ G is nice for a diffeomorphism g and we
write

A e Nice(g),
if for any (bounded) integrable function f (on H)

/g(A) =/A<f > g)ldetg]. @)

It follows from (2) with f = 1 that g(A) isthen also to be Jordan measurable. Thus our
aimisto provethat G isnicefor g.

II. CONDITIONAL PART.
@ h iii,R 1° A e Nice(h), h(A) e Nicek) = A e
Nice(koh). < Forany f integrableonk(h(A))
it holds

/ f=/ (f ok)|detk’|=/(((f o k)| detk'|) o h)| deth’|
k(h(A)) h(A) A

(py)oy =
((POV)(WO/)/(f ko h)| det(k’ o h)|| deth’|

det(BoC)=
<detB)<derC)/(f k o h)| det (K o h) o h') |. o>
—_—

Ch. lule(k hy

2° If an open Jordan measurable set A admits an open covering O by sets each of which
isasubset of A andis nice for a diffeomorphism g then Aitself isnicefor g.
<k1 For any set S ¢ G put for short

S:=g(S).

Since g is a homeomorphism, the sets U with U e O form an open covering of A; note
that each U is Jordan measurable, for U is nice (see |, 2°). Denote this covering by O.

By Theorem 2.2 there exists a partition of unity ® for A submitted to O. For any ¢ € ®
put g := ¢ o g~ (sothat ¢ = § o g). Itisclear that the functions ¢ with ¢ € @, form
a partition of unity for A submitted to O. Denote this partition by ®. We have for any
integrable function f

A 06

/g(A>f Z/ g PRECY Z/ fG

ped

H -1 Supp ¢
818

—— UENlCe(g)Z/ ((fa)og) |detg/|
0'0 2 ‘/’v_/
R g€ fo
//” é ~(fog) (7 © §)
=@
Supp @=supp ¢
U e
MEL S [(Foordage " [ (1ogideg) o

ped
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3° Let Qbeacubein g(G). Iffor anycube Sc Q

/1=/ | detq] 3
S g9

(thatis, (2) istruefor g~1(S) and f = 1), then both pre-images g~1(Q) and g~1(Q) are
nicefor g.
<k1 @) The pre-imagefor any cube S c Q with vol S = 0 aso has zero volume.

<K
0= /1“/ |detg|>m/ 1"“_—>>°/ 1=0.
o ——""Juas )

>m>0

(*): | det ¢’| is a continuous function on the compact g~1(S) which is nowhere 0. >
b) For any cube S ¢ Q and any bounded function f on G

[ . t=0
frg=(s)

<xx frg=i(9) g~1(fr S). Since fr Sisafinite union of cubes with zero volume

it follows by a) that fr g‘l(S) is a finite union of zero volume sets and hence has itself

zero volume. But the integral of bounded function over avolume 0 set isequal to 0. >
¢) For any integrable function f on Q it holds

geHomeo

VP ePat(Q:Lpf= > (inff)valS
SeCube P =[5l

b

EY / @inf 1) |detg’|§)/ (f o g)| detg].

-1 S -1
SeCubep’/97(9 2 __ Q

<(foQ)lg-1s)

It follows that fQ f < fg_l(Q)(f o g)| det g’|. Analogously we conclude that the inverse

inequality istrue(consider Up f). HencefQ f = fg_l(Q)(fog)|detg’|.Byb)weconcIude

thatalsofé f _f 1(Q)(f o Q)| detg’].

[I. ABSOLUTE PART. 1° For any permutation o € Gy, each Jordan measurable set
A c R"isnicefor s,, where

S()‘(Xla R Xn) = (Xo'(l)a cees XU(n))‘

(Itisclear that s, isalinear bijection R" — R"
and henceis a diffeomorphism.)
o, <K1 The matrix of s, has evidently the determi-

% nant equal +1, so

/(fosg)|dets[,|:/ fosg:/ f (Xo(1)s - - s Xo(my) AX1 . .. X
A — A A

=1
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change the order orf] integrations
Py FUbirg Theorem f(y1,..., yn)dyi...,dyn =/ f. oo
s (A) S (A)
2° Theoremistruefor n = 1.
<k For any [a, f] € 9(G)(C R) it holds

IR v L
1=f-a "= / g =" / 9']-
/[a,ﬂ] g7 g7 8])

Hence by 1, 3° the pre-image of any open interval in g(G) is nice for g. Since these
pre-images (which are open intervals) cover G we conclude by I1, 2° that G isnicefor g.
3° Now argue by induction. Let Theorem istruefor n — 1.

4° For any point X € G there exists an open neigbourhood Uy such that

Olu;, =kohos;, (4

where ¢ € &y, and k and h are diffeomorphism, each of which DOES NOT CHANGE AT
LEAST ONE COORDINATE.
<1 5° We have, putting g =: (91, ..., On),

w0

o

o 5

dagGo=| |2 (S M+ S )|
O0n O0n Xn X

5X1 aXn R

(*): decomposition of the determinant corresponding to the last row.
Since det ¢’ (X) # 0, we have

o

o #0, Mnilg # 0 for somei.

%
Take as o the TRANSPOSITION of i and n. Theng o s, =: § satisfies the conditions
o9

M 7é 0, Mnn|S,,_1()A() # 0

5%
If we decompose § into the composition of diffeomorphismsh and k as above, we obtain
the diserable decomposition (4), sincegos, =go S 0S = 0.

N—_——

=id
Thus without loss of generality we can assume that

ﬁa i =n, sothat
0
%0 Mmigzo O

a%n |4

) ik 6° Put
\ h(X) = (gl(x)s SRR gn—l(x)’ Xn), (6)
8 so that h DOESNOT CHANGE THE LAST COORDINATE.

We have
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elei o1 0%
5X1 T aXn_l aXn
deth’| ' : : Mol 2 0
o 00n—1 00n—1 0On—1 oo .
6X1 T 6Xn_1 aXn
o ... O 1

R
By Inverse Function Theorem, there exists an open neighbourhood Uy, of X such that

h|u, € Diffeo.
7° Now put
k:=goh™?® 7)
(k is a diffeomorphism as a composition of two diffeomorphisms). This k DOES NOT
CHANGE THE FIRST N — 1 COORDINATES. Indeed, if X = (X1,...,Xy) and h(x) =

(Y1, ..., Yn), then, by (6), y1 = 91(X), ..., ¥n—1 = On—1(X), Yn = Xn, SO

K(y1, ..., Yn) @ g(x) = (91(X), ..., Gn(X)) = (Y1, . . ., ¥n—-1, Gn(X)). D>
8° Ug € Nice(h).

<1 For short put X = (X1, ..., Xn—1, Xn ) = (Y, 2),
e Z e e N~
0 =y =z
0, LY h(y,2) =: (a(y. 2),2). For any cube Q = Q1 x Qzin
h(Uy) it holds
y 0, v
Fubini .
/ g Theorem [ / dy & / dz / | det (a(-, 2)) |
Q Q2 Q1 Q2 (@27 (Qu) —
=oh/oy
deth'= ahéay ahiaz —detoh/ay Fubiri
- / dz/ | det h| Therem | deth’].
Q2 J@-2HQu h-1(Q)

By |1, 3° we conclude that for any cube Q c h(Uy) wehave h—l(é) € Nice(h). But such
the pre-images cover Uy, <o, by I, 2°, Uy isnicefor h. o>

9° h(Uyg) Nice(k). <1 Quite analogoudly. >t

10° Uy € Nice(g). <1 Thisfollowsfrom (4), 1°,5°,6° and 11, 1°. >

11° G e Nice(g) <« Thisfollows 1, 2°, since the neighbourhoods Uy, X € G, cover G
and arenicefor g, by 7°. o> >

Corollary 7.4.2. Let g be a diffeomorphism of an open set G ¢ R" onto an open set
H c R",andlet A c G.Ifvol A= 0thenvol g(A) = 0.

< Exercise. >

NB If gismerely ahomeomorphismthenvol A = 0 % vol g(A) = 0. (A counter-example
can be constructed using two Cantor type sets, the usual one, with zero volume, and a
modification, with a positive L ebesgue measure)
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Differential forms

8.1 Tensors

By tensor of rank k (or k-tensor), k = 1, 2, . . ., on avector space X we mean ak-LINEAR
functional
U: Xx...x X—>R.
——— ——

k—times

The set of all k-tensorson X we denote by L*(X):

LK(X) :i= L(X x ... x X; R).
k

It is convenient to put

Lo%(X) = R.
Notations. Our main special caseis X = R", with points X = (Xg, ..., Xn). We denote
by e, ..., e thecanonical basisin R":

g:=(,...,0,1,0,...,0),

and by z;j the canonical projectionsin R":

TiX = X.
Itisclear that
1 ifi=j,
7i€) = dij = [0 if not.J (1)
Examples.

1. LY(X) = L(X, R) =: X’ (thedual vector space); 1-tensors are oft called covectors.
2. For asmooth function f : R" —» R

F0(x) e LEn®RM c LK®RM,
where Lgm(X) denotes the set of all SYMMETRIC k-linear functionals.

109
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3. For any A € L(R", R™) we can define a 2-tensor ua by the formula
ua(h, k) := (Ah, k),

where (-, -) denotesthe scalar product in R". (The correspondence A — ua isabijection
L(R", R") — L2@R").
4. (Elasticity theory.) Let f (x) denotesthe position of apoint x of a (3-dimensional) body
after a deformation. The 2-tensor generated (in the sense of previous Example) by the
operator

(/00 + /()T —id

(here f/(x) e L(RR3, R3); the symbol T denotes the transposed matrix; we identify linear
operatorsin R" with their matrices) is called deformation tensor.
The 2-tensor generated by the operator v — F, wherev isthe unit normal vector to some
5 flat section of the body, and F is the force that acts “on 1 cm?” of
v 2, the surphace of that graf of our persected body for which v is OUTER
F hormal vector, is called the stress tensor. The known Hook law says
that the stress tensor at a point linearly depend on the deformation
tensor at this point. The corresponding matrix describesthe elasticity
properties of our body at the point in question.

5. The determinat can be considered as a tensor:

det(hy, ..., hn) i=

(whereh; = (hj1, ..., hin) e R").
The main operations over tensors are TENSOR PRODUCT and PULL-BACK.

Tensor product
Letu e LP(X),» € L9(X), p, g > 1. Thetensor product u ® v is defined by the formula

ug® l)(h]_, ceey hp+q) = U(h]_, ey hp) 'U(hp+1, Cey hp+q) .
eR eR

Itisclear that u ® v € LPTA(X).
Fort e L9(X) = R itis convenient to put

t®u:=tu.

NB Ingenera u® v # v ® U.

Example. INR", zj ® 7 corresponds (in the sense of Example 3) above) to the operator
A with the matrix with just one non-zero element which is equal to 1:

0:0
A R ]
0:0
i1
< (mi @ mj)(h,K) = (zih) - (zK) = hikj = (Ah, k). >
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Theorem 8.1.1. The operation & is distributive and associative:
UU+uw)R®v=U1 R0+ U2 R0, U® (v14+0v2) =UR®v1 4+ UR o2,

tu®ov) =(tu) v =uQ (tv), URRw=UR (v ® w).
< Easy exercise. >

Theorem 8.1.2. (on basis of LX(R")) For any k = 1,2, ... the products zj, ® ... ® i,
(ij €{1,...,n}) forma basis of the vector space Lk(R”). Hence,

dimLK@®R") = nk.

<1° letu e L*@R"). Then

n n
u(hla"'ahk):u zhlilala'-'azhkikak

i1=1 ik=1
uelk .
= Z hii; . . . ki ug,,...,e)
Il""’lk:l=(7ri1®...®7rik)(h1,...,hk) =18,
n
= Z Qi 4 7Tiy ® ... @ miy | (hy, ..., hy).
i1,..,ik=1

Hence,

that is, our products span LX(RM).
2° They are linearly independent. Indeed, let

n
u= z . i T, ®...07, =0
i1,...,ik=1

Applying thisto &, ..., &), we obtain, by (1),

Pull-back

Let X,Y be a vector spaces, and let | € L(X,Y). For any v € LK(Y) we define the
| v pull-back | *v of v, putting

X —
* [*v)(h1, ..., hk) :=0(hy, ..., 1hy).
Itisclear that

I*v e L*(X).

So we “pull” the tensor » “back” to X.
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Example. For k = 1 we obtain the operator 1* : Y/ — X’

R which act so:
l*y/ ;| '\ y/ |* / / I
X | v y =yol
I* <a(*y)h=y'(h)y=(y ohh. >

X’ — Y
This operator between the DUAL spacesiis called the dual operator to |. Note that | *
act in the oPPOSITE direction.

Theorem 8.1.3. Pull-back RESPECTS tensor product:
f*lu®o) = (f*u) ® (f*o).

<1 Basy exercise. >

8.2 Asymmetrictensors

A tensor u € LX(X) (k > 2) is caled antisymmetric if it has value O at any point
(h, ..., hk) which has two equal components. The set of all antisymmetric tensors we
denote by AK(X). Thus,

ue AKX):=u(..,h,....h,...)=0.
It is convenient to put
AHX) == LX) (= X)),
A%(X) = LOX)(= R).
Remark. An equivalent description is such: atensor is antisymmetric iff it changes the
sign by any transposition of its arguments:

ue AKXy e ut..,h ...,k ..)=—-uC..,k....h,..)

(al others arguments remain unchanged).
<“=":u..,h+k ...,h+k ..)=u..,h,....h, .. )+u(...,h, ... Kk ..)+

=0 =0
uG...,k...,h..)4+ul..,k ...,k ..)),

henceu(...,h,...,k,...)+u(.=..,k,...,h,...)=O.
“<"u(...,h,....,h,..)=—u(...,h,...;h,..), henceu(...,h,...,h,..)=0. >
Examples.

1. det.

2.Let Ae L(R",RM), and let ua be the corresponding 2-tensor. Then
ua e A°2R" o AT = —A.

(Weidentify A with the corresponding matrix.) <t Exercise. > Operators A satisfying the
condition AT = — A, arealso called antisymmetric. A typical exampleisrotation by 90° in

R?, e.g. counter-clock-wise, with the matrix ( 10

) . The corresponding antisymmetric
tensor isjust det.
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A ua(h, k) = (AN, K) = (k. k2) (‘1’ ‘é) (ﬂ;) — hiko — hoky = det(h, k). &
Thus,

0-1
(1 O) «—— det.

Operator alt
From any tensor we can make an antisymmetric one. Viz., put for u e LK(X)

1
@tuy(hs,.., ) =5 > (Sno)uheq, -, ho)-

" oeBy

(Inthe sum the signs dlternate (+, —, +, —, . . .), whence the notation.)
Recall that sgno denotesthe sign of a permutation. It is clear that altu is ak-tensor.

Examples.

1.alt(-,-) = 0. (Recall that (-, -) denotesthe scalar product, whichisasymmetric 2-tensor.)
More generally, alt sends ANY symmetric tensor to O:

ue Sym= atu=0.
NB Theinverseimplication is not true! See Exercise 8.2.2. 3) below.
2.1f u <> A(thatisu = ua), thenadtu < 3(A — AT). (Verify!)
Theorem 8.2.1. The operator alt hasthe following properties:

a) at e L(LK(X), AX(X)), that is, altu is an antisymmetric tensor, and the mapping
U~ dtuislinear;

b) ue AX = atu = u, thatis, AX isINVARIANT under alt;

c) at? = dlt, that is, at isan IDEMPOTENT operator; (alt®u := at(atu));

d) dtu=0= Vo: dt(u® v) =0 (“ bad sheep principle’ : one bad sheep spoils all
the crew).

<@ Thesumdefining (@tu)(...,h,...,h...) can be splitted onto pairs of the form
4+u(...,h,...,h..)—u(..,h,....,h..),

where our two h appear on one and the same pair of places (different for different
pairs). Hence the sum is equal to O.

b) vu e Ak:
1
dtuthy, ..., h) = 2. (o) o). .- Mro)
0By =(sgno)u(hy,....hx)
1
= o Kuthe, ... ho) = ulha. ... h).

c) By a), altu € AX, hence
dt(@tu) 2 atu.
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d) @tu® v)hs...hpiq
1

Zm Z (sgno)(Uhg (1), - - -, No(p)) @M (p11)5 - - -5 No(pta))-

UEGerq

If, for afixed og we consider all the ¢ such that
{e(D),...,a(p)} ={o0(d),...,00(p)} (as NON-ORDED <£t!),

o(p+1) =oo(p+1),....,0(p+0q)=00(p+0),

then the sum over all such such ¢ isequal to 0, since alt u = 0. But the whole sum
splits onto such subsums. >

Exercise8.2.2. 1) dtosym = 0.

2) symoadt=0.

3) Give an example of u € L3(R3) suchthat u # 0, symu = altu = 0.

NB Such an u is not the sum of its symmetric part symu and antisymmetric part alt u.
Only 2-tensors have this property.

Answer:
2@, j.0=(1,23),
ueejec= 1 —3 if(i.j.k) =(3,2.1),
0 otherwise.

Using the operation alt, we can make from tensor product an operation over antisy-
mmetric tensors.

Exterior product
Forue AP(X) (p > 1),v € AYX) (q > 1), the exerior product u A v is defined by the

formula
_(p+a)

p!q!

UAD

at(u ® v).

Remarks. 1) u ® v itself isnot in general antisymmetric (give an example!).
2) The coefficient in this formulais chosen to obtain the coefficient 1 in the formula (1)
below.

Example. In Rz, w1 Ao = det. < (71 ® m2)(h, k) = m1h - 2k = hiko; hence (71 A
72)(h, k) = (1+D!/ (A 1) dt(z1®72) (h, K) = 2(3(m1®72)(h, K) - F(T1®72) (K, h)) =
hiko — kiho = det(h, k). >

Exercise 8.2.3. Provethat foru € AP,u e AY

una v)hl R hp+q = Z (sgna)(uh,,(l) L. h,,(p))(l)ha(p_,_b R h,,(p.,.q)) (1)
0€Gpiq
c(D)<0(2)<...<a(p)
o(p+l)<..<o(p+0q)

Theorem 8.2.4. The operation A has the following properties:

a U+v)Av=U AD+U2AD, UA(w1+02) =UADL+UAD2,
tuAd)=(tu)yAv=UA (o)t eR (distributivity);
b) unv =(=1)P% Au(ue AP, v e AY) (“ semi-commutativity” );
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C) WAD)Aw=UA@AW)=(Pp+g+D!/(pPaIradtu®v Q@ w) =UuAv AW
(ue AP, e A9 we A") (associativity);
d f*o Av)=(f*u) A(f*p) (pull-back RESPECTS exterior product).

<1 @) Obvious.
b) Consider the permutation

oo — 1 ... p p+1l...p+g
1+q9q...p+q9 1 ... ¢

It is clear that sgnog = (—1)P9 (1 is transposed q times, then 2 is transposed g
times, ... pistransposed g times).
Each permutation o € &g can bewritten antheformoe = ¢’ o go. Then

o (p+1) = ¢'(oo(p+1) = o'(D),...,0(1) = ¢'(00(q+1) = o'(@+1), ... (2)

and
sgno = (sgno’)(sgnoo) = (—1)PIsgno’. (3

Hence

(uAU)(hl,,hp+q) M

ﬁ,_/
=.C

m Z (sgna)u(hs (1y,....0, ()0 (Mo (p+1)5 - - - » No (p+q))

ce®S p+q
o=0"000
2.3 ¢
= x> CYREe) Mg, @)oo, he@)
.D'/EGerq

= (=DPcat @ u)(hy,...,hprq) = (=DPIU A D) (hy, ..., hpiq).
c) Toverify that
+q+r)!
uUAD) AW = %aﬂ(u@v@w)

we need (after canceling constant factor) to verify that

at(@tu®v)) ®v) =dtu® v Q@ w).

(1 [2]
But[1]—-[2] alt_eLalt((alt(u@v))@w u®v®w) = alt((alt(u ®v) —URD) QW)
(3l
bad Sheep Priciple atel

0, since alt[3] ¥E" a2 ® ») — dtu® v) 3'=

d) Easy exercise. >

Corollary 8.2.5. For any antisymmetric tensor of obD rank its exterior product by itself
isequal to 0.

Jlfue AK k e Odd, thenu A u 2 (—1)<, whence 2(u A u) = 0.
———
_1
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Basisof AK(RM)
Theorem 8.26. For any 1 < k < ntheset {nj, A... A7 |i1 < ... <ik}isabasisof
the vector space AK(R"). hence

. K mny _ n . n!
dmA*R"™) = (k) = 7k!(n—k)!'

<1 By Theorem on basis of LK(R™), we can writeany u € AK(R™) asalinear combination
of 7j, ® ... ® miy:

n

u= Z Ty Q... QT (4)

(the first dots mean a number coefficient). It follows that

uThiZ'l'altu(é)altz...ml®.--®7Tikalt:ELZ"'alt(”h@'”@mk)
Thgz.‘l.z---”il/\-~-/\~-~7Tik Th8.2é,b),cor. Z .. Ty A T
i1<...<ik

Thus, our set spans AX(R"). The linear independence can be proved just asin the case
of LY@®R"). >

Corollary 8.2.7. The space A"(R") is 1-dimensional. Hence (since det € A"(R™)) any
element of A"(R™) hasthe form

cdet (ce R).

Corollary 8.2.8. InR",

|7r1/\.../\7rn:det.|

<1 By Corollary 8.2.7., 71 A ... A Ty = cdet. Applying both sidesto (ey, ..., ey) and
taking into account that zjej = djj, we concludethatc = 1. >

Corollary 8.2.9. For k > n
AK@®R") = {0}.

< This follows from the PROOF of Theorem 8.2.6. >

Theorem on deter minat
Theorem 8.2.10. Let A € L(R", R™). Then

| A" det = (det A) det |

Here det A denotes the determinant of the matrix of A in the canonical basisin R".

NB Let X be an arbitrary n-dimensional vector space, and let A be a linear operator in
X, A € L(X, X). Then the determinant of the matrix of this operator in basisin X does
not depend on the choice of the basis. <« The matrix in a “new” basis has the form
BMB™1, where M is the matrix in the “old” basis, and B is the “transition matrix”. But
det(BMB~1) = det Bdet M (det B)~1 = det M. > So we can say about the determinant
of an operator (in afinite-dimensional vector spaces).

<1 By Corollary 8.2.7., A* det = cdet. Hence



8.3. DIFFERENTIAL FORMS 117

(A*det)e;...en =cdete;...en=cC
[1 =1

def. of the matrix

* f at
LT det(Aer) . (Ae) T TE T detA

We concludethat c = det A. >
Theorem 8.2.10. meansthat alinear operator A changesthe volume by det A times. (It
follows also from Theorem on Change!)

Corollary 8.2.11. If det A = 1, then A* det = det.
In other words, an operator with the unit determinant does not change the volume.

Examples.
1. Forany uy, ..., un € AXR") (= L(R"))

ULA...AUp=|... ... ... det,

where ujj are the coefficients of the linear functionu; : R" — R,

UiX = Uj1X1 + ...+ UinXn.

2.Foranyus,...,uc € AXR"), k<n

uihy ... ushg
(UrA...AUhL.. . hg =

In particular

(wiy Ao AT h =

(Note that the determinant of the transposed matrix is the same.)

8.3 Differential forms

Let X beanormed space, and let U bean open set in X. A differential formw of degreek
(k=0,1,2,...) (or k-form) on U isasmooth (that is, of class CP for some p) mapping

w:U = AKX),

that is, a “tensor field” on U, al the tensor being antisymmetric. As to smoothness, we
consider w asamappinginto NORMED sPace AK(X) (avector subspacein L*(X) equipped
with the induced norm). We denote the set of all k-formson U by

k).

Examples.
1. Any smooth function f : U — RisaO-form.
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2. For any smooth function f : U — R itsderivative f’ isa1-form.

3. Asaspecial case of the previousexample, 7 e ALRM: for any point x € R" we have
m{(X) = mj. Thus 7] isaCONSTANT 1-formon R". It is denoted traditionally by

dx;.
Soforany x e R"andany h = (hy,...,hpy) e R"

(dxi)(x) -h =h;j.

4. On R", a CONSTANT mapping w(X) = dety is k-form. We denote it also by dety, or
simply det.
The operations A and * for forms are “point-wise”.

Exterior product
Let w1 € QP1(U), w2 € QP2(U). The exterior product wi A wy isdefined by therule
VX € U (01 A 2)(X) i= (01(X)) A (@2(X)).
It is easy to verify that w1 A wp isaSMOOTH mapping U — APITP2(X), so
w1 A € QPITP2(U)),
Moreover we put for f € QO(U)
fArw=fo,

where
vX € U(fw)(X) := (f X)) (w(X)).
N —
eR

Example. OnR",
dx1 A ... Adxp = det.

QA A...Awp=det. >
Theorem 8.3.1. Any k-form @ on R" can be written in the form
0= Z fir i OXip Ao A dXig,
i1<...<ik

where fj, _j, are smooth (real-valued) functions.
< It follows at once from Theorem on basis on AK(R"). >

Example. For f € Q°

<1 Apply bothsidestoh = (hy, ..., hp). >
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Pull-back
Let X, Y benormed spaces, let f beasmooth mapping from X into Y, and let w € QX(Y).

‘ We define the pull-back f*w of w by therule

X — Y

£ vx € X1 (f*0)(x) := (f'(x)*o(f(x)),
QK(X) —— QK(Y)
where the star in the right-hand side means pull-back for tensors.
Thus, the value of the pull-back of w by f at x is the tensor pull-back by the
DERIVATIVE f’(x) of thevalueof w at f (x).
More explicitly,

(F*)(x)h1 ... h¢ := o (F ) (F'()hy) ... (F'(x)hn).
Moreover we put for g € QO(Y)
f*g =go f.

Example. For asmooth mapping f : R" — R™, f = (f4,..., fyn), itholds

n

ofi .
f*(dyﬁ:Zidxj i=1....,m
=1

(X=X1,...,%X) e R" y = (y1,...,¥m) € RM).
< f(dy)(x) -h = (dy) - (f'(x)h)

of1/ox1 ... of1/0%n hy

n n

ofi ofi
= — hj = —dx; | h.
>y (zax_ ) .

i 9K
—@xph V=2
Theorem 8.3.2. The pull-back operation over forms has the following properties

a) f*(w1+w2) = o1+ T*w2 (linearity);
b) f*(w1 Aw1) = (F*w1) A (f*w2) (* respects A); in particular, for g € Q°

f*(gw) = (go f)(f*w).

<1 Thisfollows at once from the definitions and the corresponding results for tensors. >

Pull-back of deter minant

Theorem 8.3.3.Let f : R" — R" (thatis f : R" — R") besmooth, and let g € QO(R").
Then

f g
R" = R" = R". [ f*(gdet = (go )(det ) det
< 1° f*(det) = (det ) det.
Th. on det for tensors

<K V¥x € R": (f*det)(x) = (f/(x))* det( f (X)) = (det f/(x)) det >>.
N———

=det

2° f*(gdef) (go ) f*(det) £ (go f)(det ) det. >

NB In the special case where f is a diffeomorphism, this Theorem describes the change
of a“weighted” volume by a change of variables—compare with Theorem on change of
variables (where we write f instead of g and v.v.).

Th8.3.2.b)
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8.4 Exterion differentiation (operator d)

If we differentiate aform o € QK(X) (asamapping X — AK(X) between two normed
spaces) then we obtain o' (x) € L(X, AK(X)) c L(X, L*(X)) ~ L*¥1(X). In genera
o' (X) considered as an element of LX*1(X) isnot antisymmetric, that is, does not belong
to AKt1(X). So we appeal the operator alt.

Operator d
Let X beanormed space, and let w € QK (X) we definethe exterior derivative (or exterior
differential) dew by the rule

Ux e X1 (dw)(x) == (k+Dato'(x) (e AL(X)), (1)

where o/ (x) denotes the element of L*+1(X) generated by o’ (x):

@' (X) - hoht . .. hy := (&' (X)ho) -h1 . . . hic. )
————
eAk(X)

Isis easy to verify that if o € CP then dw € CP~1, so is sufficiently smooth if w is.
Thus
do € QF1(X).

Remark. Thefactor k 4 1 is chosen to obtain the coefficient 1 in some formulas bel ow.

Examples.
1. For f € Q°wehavedf = f'.
2.Forany f € Q°

d?f =0,
where
d’f = ddf).
A (@ F)(x) = @d@dH)H) 2 @) L @+ Dat(F)(x) =24t F/(x) =0.
—— f”(x)eSym

=17(x)
3. InR?, d(xdy) = det. < We have w : (X,y) — Xm2, S0 that o € L(R?, L(R?, R)),
—~—

hencew’ = w. S0

(dw)((X, ) = (1+ D dte/((x, y)) hk = 2 @hk — akh)
[ ——

) =

2 (wh) k — (k) h = hyk, — khy = det(h, k). >
—— —

h k
—~— —~—
=:(h1,h2) =:(k1,kz

2)

him2 kim2

Exercise 8.4.1. Let A e L(R", R") and w(x) = (An, -) (e L(R", R) = AL(R")). Prove
that
da) = UA_AT.

Remark. It can be shown that

k
do(X) - ho...hk = > (=)' (@ )hi) -ho...hi ... h,
i=0
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where hj meansthat thisterm isto be canceled.

Theorem 8.4.2. The operator d has the following properties

a) d(w1 + @w2) = dwy + dwy (linearity);

b) d(wi A wp) = (dw1) A wp + (—1)99¥10 A dwp (“ semi-leibniz’ rule);
0 =0 (dPw=d)dw) (“sef-annihilation”);

d) f*(dw) =d(f*w) (pull-back respects d).

Here deg w denotes the degree of w.

<1a) Obvious.
b) Let w; € Q", wp € Q™. We have (for short we drop the argument x)

(@1 ® @2)'ho. .. Nepir, M (@iho) ® w2 + @1 ® (@hho))hs ... heyiry

= ((wiho)hy ... hr)(w2br 1. . hrgry)
+ (@1hy ... hey) (@5ho)hey11.- . hryery)
= (@}ho. .. he)(@2hr 41+ . ry—r,) + (@101 ... hey) (@5hohey 41+ . hryery)
= (@} ® @2)ho.. . Nrypr, + (@2 ® WDh ... heyhohr 41 Ny,
To replace hg to the first place we have to make ry transpositions, which yields

the factor (—1)2. After alternating (applying of alt) we obtain what we need. We

omitting the details.
c) Theideaisthe same asin Example 2) above. Let v € Q". We have (omitting the

details)

—~—

(Rw)ho. .. hy41 = const(@t (atew'))hg ... hr 11

= const i (4
> D@k ... —(@"kh) ...)
{h,kic{ho...hr 11} - M *"*
* — other r arguments in one and the same order

= const »_((@"hk — "kh)..) =0
— ———
w”EZSYmO

d) We consider the simplest case wherew € QO, that is, w isafunction g:

X -5y -4 R
We have
((d(F*g)(x)h = (F*g)oh = (go f) (yh LM ( 9 (160D - (F'Goh)

=dg
= ((f*(dg)(x)h,
whenced(f*g) = f*(dg). In more general case theideaisthe same. >

Remark. The semi-Leibnitz ruleis NON-symmetric w.r. to w1 and w2. Only deg w1 enters
the rule. The matter is that in our definition of c?(f) we put the derivative to act onto
the FIRST argument. But we could choose anyone. So in essence dw is defined just up TO
THE SIGN! “Physically”, w and —w are same, that is why when integrating over manifolds
(Chapter 6) we need to choose one of two possible ORIENTATIONS of the manifold in
question.

Remark. Itisinstructiveto see how semi-Leibnitz ruleinteractswith semi-commutativity:
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d(w2 A 1) = d(—1)"2w1 A w2) = (=1)""2(dwrw2 + (1) w1dw)
= (=1)""2((=1) D205 A dwg + (1)1 (=) 2 Ddwy A 1)
= dwp A w1 + (—1)"2wpdwy,

r1 “transforms’ intory, asit need to be!
Exercise 8.4.3. Give the proof of d) with all detailsfor the case w € Q1.

dinR"
Theorem 8.4.4. Let w € Q' (R"). If the canonical representation of w is

0= Z figi dXip Ao AdX;,

i1 <...<iy

then dw is given by the formula

do= > dfij AdxyA...Adx,

i1<..<ir

< This follows at once from semi-Leibnitz rule for forms and from the self-annihilation
property (d?); recall that foxi, A...Aadx, = f Adxi; A...AdX,. >

Example. InR?,  d(xdy) = dx A dy = det.

Closed and exact forms
If dw = 0 (in an open set U) one can saysthat w isclosed (inU). If o = dy (inU) for
some form y then one can saysthat o isexact (in U).
Each exact formisclosed. < w = dy = dw = d?y = 0. >
Theinverse assertion is not in general true.

Example. Theform
0= 57 y2dx + 2T y2dy
onR?\ {0} isclosed (verify!), but is not exact. (This form arises naturally if one consider
polar coordinatesr, & (X = r coséd, y = r sind), and by this

Y h=(dx,dy) reason is usually denoted by d@, and though w is not exact!
(But w 1s exact on somewhat less sets,as it follows, e.g., from
do Poicaré lemma:))
\\ 0 . Poincarélemma

Theorem 8.4.5. Let U be an open ball in Banach space. If a fomr w isclosed in U, then
itisexactinU.
We omit the proof.
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Stokes Formula for Chains

9.1 Chains
By [0, 1] we denote the unit cube [0, 1] x ... x [0, 1] (k-times) in R¥. For k = 0 we put
1 [0,11°:={0}, R%:={0}.
[0,11% By a curved k-cube c in R" we mean a continuous mapping
c:[0,1]K - R".

1
For short we omit the word “curved” below. Ifimc ¢ A c R" wesay that cisa
cubein A.

Examples. ./L
1. A O-cubeisjust a point: e
2. A 1-cubeisacurve: 0 1 ’ /

3. The embedingid : [0, 1] — RX is called the standard k-cube and is denoted by | :

|k = ide |[O,l]k'

Chains
A k-chain (in A) isaformal (finite) sum of k-cubes (in A) with integer coefficients, that
is, an expression of the form

2c1 + 3c2 — 5¢3 + 100c4,

where ¢; are k-cubes. We identify a k-cube ¢ with multiplication with thechain 1 - c.
In natural way we define for k-chains multiplication by an integer number and
addition.

Faces

For a standard cube | " we defineits faces 1 X

(i,a) i=1....,k, a=0,1 bytherule

16 oy 10,2170 = RE (xa, o Ximg, X, Xk ).

123
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Thus, weinsert « into i " place and move all the “tail” to the right by one position.
For any k-cube c we defineits face ¢ ) by therule

1 c . k
_ (1,0 T @ C(i,a) ==Co I(i,a)'

Operator 0
We define the boundary 6c¢ of a k-cube ¢ as the following chain:

K
oc:= D" > (=D)'*Ciq

i=1a=0,1

(an aternating sum of the faces). For chains we define the boundary “by linearity”:

0 aiG = > adc (& €7Z).

Examples.
1_ 11 1 1 =
Lol =1 — | ; 2
@y =10 1L Iy oy
2 2
2_ 2 2 2 2 7T oo ) 1(1,1)T+

—
¥

3. 013 three “visible” faces are positive (enter into sum with “+")
Ufe! three “non-visible” faces are negative.

@ 15.14| Theorem 9.1.1.62 = 0 (that is, #(oc) = O for any chain c).
@.0)

We do not need this result, so we omit the proof.
Exercise 9.1.2. Verify Theorem for |3.

Closed and exact chains
A chain ciscaled closed if oc = 0, that is, if its boundary is the null chain; ¢ is called
exact (in A) if c = oc’ for some chain (in A), that is, if ¢ is the boundary of some chain
(in A).
By the Theorem above, each exact chain is closed. But not each closed is exact:
Example.
Consider the 1-cubec : [0,1] — R2, t — (cos2xt,sin2xt)
= e(0)=c(1) (the unit circlein R? \ {0}. We have oc = 0 (verify), so that ¢
isclosed, but ¢ is not exact in R? \ {0}, since ¢ is the boundary
of no chainin R2 \ {0}.

9.2 Integral over achain

For any k-formw in an openset U inRK, suchthat U 5 [0, 1], k = 1, 2, .. ., we put

/|k W= /[0,1]k f (1)




9.3. STOKESFORMULA 125

where f isthefunctionU — R, uniquely defined by therelation w = f det. (Recall that
any k-formin RX can be written (uniquelly) in such form; see Chapter 8.)
In more detailed record,

/ fdxg A ... Adxp ::/ fdxqg...dxn. (2
Ik [0,2]k

NB Thisdefinition DOES DEPEND on the ORDER of the basis vectors, since det does depend!
For k = O we put

/ o = w(0), (herew € QO isaFUNCTION).
io

Now, let G bean open set inR", let w beak-formin G, and let c beak-cubein G. Then

we put
Olk%gw [ 3
[7 ] G /ca).z/lkCa)

C*'w | lw
AKRY) AKRM)

In particular, for a 0-cube ¢ and a O-form w we have

/a) =w(c(0))  (sincec*w = woc,if w € Q).
(o}

Atlast for achainc = > ajc we put

/Zaiqw:zaa/qw (4)

Itisclear that so defined integral iSLINEAR:

/c““:“/c‘“’ /C(w1+w2)=/can+/cw2 (@ eR).

Lemma 9.2.1. (on integral over the boundary). Let ¢ be a k-cube, and let o be a k-form

(bothin G). Then
/ w:/ c*w.
ac 8[0,1]%

< Exercise. >

0.3 Stokesformula

Similarly of properties of the operators d and 6 (d? = 0, 2 = 0), and of the notions
concerning them (closeness, exactness) isnot an accident. Thereisadeep relation between
d and 9, which is expressed by the following

Theorem 9.3.1. Let  beak — 1-formin G(e Op(R")), and let c beak-chainin G. Then

/C do = /a Cw (Stokesformula) (1)
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<11° Atfirst let us prove the folloving fact about pull-back by the standard faces:

dx; if j <i,

(1) o =[ 0 i) =1, @

dxj_p ifj >i.
<« ( o« a)) x)_h_ B (hy,...,hi—1,0,hi, ..., he1) whence
—(hl »hk-1)
(1 ) dx)) = dxj (1§ ) 0Oh = dx; - (h1, ..., hi—1,0,hi, ..., hk-1)
hj ifj <i,
= 0 ifj=i, o>
hj_1 ifj >i.
2° Casec = Ik, w e Q" 1(R¥). Calculate the left-hand side in (1):

k
/dwT“E-l-/ deidxl.../\ax_i/\.../\dxk
|k

Th844/z dfi Adxg... ATXi A ... Adx
1k ~~—

—le dx1+...+Dk fi dxi

k
Th8.24. andits Cor. Z(—l)i_l/ Di fi dxy A .. Adxk@ Z(—l)‘—l/ D fi
ﬁ,—/

i=1 i=1 (0,15

k
TS (—1)i / / ( / Di fi (X1, ..., Xk)dXi )dxl...ax_i...dxk

i=1 — _1<
aut-Leb. Thf(><1 ,,,,, L..x0-fi(xa,....0,..., Xk)=:
1 I

K _ 1 1
Fubini-+trick! Z(_1)|—l/ - / dX]_. dx
=1 0 0
—_—
k

Calculate the right-hand side:

k
def of 0
/ o :ov/k . ijdxl/\.../\an/\...ka
alk S Yamoa (DI T

2 Z > - 1)””"/k fjoxa A ... ATX] A ... dXg

i,j=la=0,1 (la)

® . C O\ |
=ijz:;(—1)l+ /,k_l(l(i’“)) (fjdxa A ... ATX] A ... dX)
wrespects A Z( 1)|+a/ ((I('fa)) fj)
i,j.a N
:fJOI(i?,a)
A (((l('?,a))*dxl) AA ((|(I?,a))*dxj_1) A ((I(I?,a))*dxj+l) A A ((|(l?,a))*dxk))

) 0 ifi #j
Tldxe AL AdXk—1 ifi =]
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— i+ ) k
- %:(—1)' * /|k—1 (f| o I(i,a)) dX1 A ... AdXk—1

> =det
@ _Nita ) k
a Z( Y /o 1t el
def of I(kI )+tr|ck ita 1
= (-1 f| (X1, .. -y : yeos Xk—1) dxk
o2
=1

F“bﬁThZ(—l)”“‘/ /f.(xl,...,_ ooy Xke1)dxy . . dxk
i,o

[Yii=X1, ..., Y1 —X. L Y= X Yikl =X - ko= Xk

:Z(—l)”“/o /0 fi(yl,...,(fc,...,yk_l)dyl...dyk
obv i+a ! 1 .
Z( 1) /.../0(f.(yl,...,l,...,yk_l)

— filys,...,0,..., Yk—1))dy1. .. dyk.

Theresult is the same.
3° Casec € k-Cube(G), w € QK(G).

/dwdzef/ c*(dw) *reszede/ d(C*w)g/ c*w ngz.l./ w. OK.
c 1k Ik olk ac

4° General casec = > aiCi, G € k-Cube(G), o e QX(G).

/dw(é)Zai/dw§Zai/ w@/ w:/w. OK.p>
c Ci 0oCi 280G oc

——
def ofo—=ac







Chapter 10

Stokes Theorem for Manifolds

10.1 Manifoldsin R"

In this chapter by smooth mappings we mean C°°-mappings.
We say that asubset M of R" isak-dimensional manifold (or simply k-manifold), and
we write
M e MfK®R™),

if for each point x € M the following condition is fulfilled:

3U € OpNbx(R™) 3U € Op(R™) 3 e Diffeo(U, U) :
UNM=0UNR"x 0). (1)
eRN-k
(In other words, M is locally, up to a dif-
feomorphism, a k-dimensional vector sub-

spacein R".) We call such amapping @ a
full chart for M at x.

Examples.

1. Each single point set {x} is a O-
dimensiona manifold.

2. Each open set in R" is an n-dimensional manifold.

3. The unit circle in R2 with the center at 0
is a 1-dimensiona manifold. E.g. for the point

/ (1, 0) afull chartisshown on the picture. (Give
R an analytic expression for ®!)
\ Exercise 10.1.1. Let G € Op(R™), and let g :

G — RP (p < n) be asmooth mapping. Put

M = g_l(O).

vx e M: rankg (x) = p

then
M e Mf"P(RM).

129
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Here rank denotes the rank of the corresponding matrix. Note that p is the maximal
possible value for therank of n x p-matrix. [Hint: Let

001/0X1 ... 001/0%n
g(x) =
0gp/0X1 ... 0Qp/0%n
WIlog we can assume that it isthe FIRST mirror that is not O:

001/0X1 ... 001/0Xp
#0

Put
¥ :=(id,g):R" - R"P x RP =R",

that is,
W(X1, ..., %Xn) = (X1, ..., Xn—p, 91(X), ..., Gp(X)).

Verify that ¥/ (x) e I1so, and apply Inverse Function Theorem. The inverse mapping
® := ¥~ Lisafull chartfor M ]

Charts

Lemma 10.1.2. Let M e Mf*(R"), and let @ :
R U — U beafull chart for M at x. Put

U Vi=UnM, V:i=xzUnEx0)), (2
M
9 =0oi, y:=mod L (3)
where 7z andi are the canonical projection and

inclusion, resp. (7 (X1, ..., %n) = (X1, ..., Xk), 1 (X1, .., Xk) = (X1,...,%,0,...,0).
Theng : V — R"isa smooth map and is a bijection of V onto V. Moreover

VX eV: o/ (X) e INfLER* R") (o ranke’(X) = k). (4)

We call ¢ achartfor M at x (generated by the full chart @), or a coordinate system on
M at x. The element ¢ ~1(x) (for any x € V) is called the representative of x in the chart
¢, and will be usually denoted by X.
<1 All but the assertion on the rank is obvious. Asto this assertion, we have

l//Og[)(—i)ﬂ'O(D_lo(I)Oi:ﬂ'Oi:ide,

hence, by Chain Rule,

y'(X) 0 ¢'(X) = idgk .
This meansthat ¢’ (X) isinjective, that is, has the maximal possible rank, k. >
Example. If M = R", then idgn isachart at all points at once.

Transition functions
Let we have two chartsfor M at X, ¢1 and g2 (seethe diagram):
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L |
<~ ~ 1
) Vi @,
T =)
h| | - = Ll T
b [ I 0, i R
R* — L2 ——
Vi v,
(/)12\71—>V1, (/)22\72—>V2.
PutV :=V; NV and
o1 .1 “1
912 =y 0p1i9; (V) = 9;7(V), ®)
-1 .o =1 -1
p21 =91 092190, (V) = o7 (V). (6)

So defined ¢12 and ¢ 21 are called the transition functions for these charts.
In other words, a transition function sends the representative of x € M in one chart
into the representative of x in the other one.

Lemma 10.1.3. The transition function ¢12 and g1 (see (5), (6)) are mutually inverse
diffeomorphism.

< Itisclear from the diagram, that p12 = 72 o (Dz_l o®joi1, 021 =710 CDIl o®yois.
Hence both 12 and ¢21 are smooth as compositions of smooth mappings. Now, it is clear
from (5), (6), that p12 and @21 are mutually inverse. Hence they are mutualy inverse
diffeomorphism. >

10.2 Tangent space

Now we consider tangent vectors to amanifold in R".

Theorem 10.2.1. Let M e MfK(RM).

R"* _ 1.a7 | Then for each point x € M the tan-
U * gent cone TxM to M at x is a k-
- d X
T2 m — M | dimensional vector subspace in R";
u ‘? viz., for any char ¢ for M at x
U
Tx M =ime’(X),

iﬂ:l N /(pr where X is the representative of x in
X thechart ¢ (X = ¢ ~1(x)).

< Putg:= 70 @1, Then obviously
MNU =g 10).
By theorem on tangent coneto g—1(0),
TxM = Ty(M NU) = kerg'(x).

Thus we need to verify that
ker g'(x) = img/(X). D)
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But, indeed, we have (since ®~X(U U M) c R¥ x 0)

Chai=n>Rule g/(x) ° (0/('5(—) — 0 N Imgp/(i’) C ker g/(X)

gog =71'20(I)_1o¢) =0
It remainsto notethat bothim ¢’ (X) and ker g’(x) havethe samedimension k (sinceker 2
has dimension k, and since both ¢’(X) and (®~1) (x) areinjective). >
Remark. It is convenient to imagine a tangent vector h from Ty M as an arrow with the

beginning at x and end at x + h (x_— X+h). Formally, starting from this point, we
mean by atangent vector to M at x aPAIR (X, h), whereh € Tx M, and we consider the
set Ty M and Ty M asDISIOINT (and if they may coincide as vector subspacesin R".

Representatives of a tangent vectors
Let ¢ beachart for M at x, and let X be the representative of x in ¢. The pre-image by
¢’ (x) of atangent vector h € Ty M (this pre-image is UNIQUE: by
Lemmaon charts, ¢'(X) e Inj) be called the representative of hin ¢

/(‘iM
R and will be denoted by h).
A\
0 \ Example. For R" asamanifold in R" we have

T o' vxi TyR" = R",

and in the chart id

4,’*9;
O h . o~
vh: h=h.

Lemma 10.2.2. Let h € Tx M, let p102
be two chats for M at x let X1, X2 be the
h representatives of X in g1, 2, resp.; and
let hy, ho betherepresentativesof h. Then
M 9, (1 = h 2
0, 0, In other words, the derivative of tran-
_ 0 % sition function sendsthe representative of

X 2 . .
— ————— atangent vector in one chart into the re-

hy 05, h, presentative in the other one.

<Lp1 =920 912 = 91(X1) = 95(%2) © 912(X1)
= p1(X)h1 = 95(X2) - p1(X)h1 = (2). >
—_—
—h

10.3 Mappingbetween manifolds. Vector fieldsand forms

A vector field v on amanifold M is a mapping from M into (J,.y Tx M (@8l Tx M are
mutually digoint!), that sends apoint x € M into atangent vector to M at x:

X v(X) e Ty M.
A k-form w on M is a mapping that sends x € M into an antisymmetric tensor on

Tx M:
X ox) e ATy M).
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SMOOTHNESS of mappings between manifoldsand of vector fields and forms on mani-
fold we define as smoothness of their REPRESENTATIVES.
The representative f oF A MAPPING f : M — N (M e Mf*®R"), N e Mf'(R™))
in charts ¢ for M at x and y for

R x RY Nay:= f(x is defined by the
V/ f \/N formula
y f&) = £,
or, equivalently,
(PT \VT 5 fi=ylofop RS R

=1

Rk

(for continuous f this last map-
ping is defined in an appropriate
neighbourhood of x).

In particular, the representative of a mapping

f:M—R™
inachart ¢ for M and the identity chart for R™ is
f=fop=0*t.

The representative o of a vector fieldv on M inachart ¢ : U — U wedefineasthe

mapping _ .
7:0 5 RK X 0(X);

in other words,
9" (X0 (X) = v(X).

The representative @ of ak-formm on M inachart ¢ : U — U isdefined by therule

@(x)h1...hk = o(X)hy...hg,

or, equivalently,
a()h1...he = 0 (X)) (@’ ®h1) ... (o' hy),
that is,
o =¢*o.
Smoothness

We say that amapping f : M — N (M, N € Mf) is differentiable at a point x € M
(resp., is smooth), if for any charts ¢ at x and y at y := f (x) the representative f of f
in these charts is differentiable at X (resp., is smooth). We define the derivative f,(x) of
f at x asthe linear mapping from Ty M into Ty N:

fo(x) e L(Tx M, Ty N),

that acts by therule
f.(x)h = f/(%)h.

In other words, f.(x) isthelinear mapping, represented by the derivative of the represen-
tative of f at the representative of x.
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(It is easy to verify (using Lemma 10.2.2., p.132), that if f has a differentiable
representation in some two charts at x and y, then its representative in any other two
chartsat x and y will be aso differentiable, and that our definition of the derivative does
not depend on the choice of charts.)

Example. For any smooth mapping R" — R™ itsrestriction to any manifold M in R" is
asmooth mapping M — R™M. (Verify!)

A vector field » on M is called smooth if the representative o of v in each chart for
M issmooth. (It is easy to verify, that if » has smooth representativesin each chart from
afamily {¢4}), 9o : Uy — U, such that JU, = M, then the representative of » in any
chart for M will be smooth, that is, » will be smooth.)

A p-formw on M is smooth (the record: w € QP(M)), if the representative @ of
o in each chart for M is smooth. (Once again, it is easy to verify, that if @ has smooth
representatives for some family of chart “ covering” M, then w is smooth.)

Example. For any smooth form on R" its restriction to M
olm(X) 1= o(X)|ITyMx..xTx M

is asmooth form on M.

Exterior derivative
We define the exterior derivative dw of aform w on M asthe form, the representative of
which in any chart for M isthe exterior derivative of the representative of w:

do = do.

(it can be verified that this ” chart-wise" definition is correct, that is, there exists just one
smooth form on M with this property.)

Exterior product
Let w1, w2 betwo formson M. We define their exterior product point-wise:

VX e M (w1 A w2)(X) := w1(X) A wa(X).

Itiseasy to verify that w1 A w2 isaso smooth, and in any chart for M

601/\60225)1/\67)2.

Pull-back
Let M, N be manifolds, let f : M — N be a smooth mapping, and let » be ak-form on
N. We define the pull-back f*w point-wise:
vx e M: (f*)(x) = (f.(0)* (@ (f (X))

(compare with the definition for forms on vector spaces), that is,

Vhe,....,hk e Ty M: (f*0)(X)hy, ..., hx = o(F (X)) (f.()h1) ... (f.()hy).
Again, it can be verified that f *w is smooth, and that in any chartsfor M and N
fro = (f)a.
Remarks. 1. The representative @ of aform w on M in achart ¢ for M isthe pull-back:
o =¢*o.
2. Just asin the case of vector spaces, for manifoldsalso the operations «, d and A RESPECT
each other.
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10.4 Manifoldswith a boundary

A subset M of R" is a k-dimensional manifold with a boundary, or simply a k-manifold
with aboundary (the notation: M e Mf'g(R”)) if for each x € M one of two condition (1)
and (2), is fulfilled, where (1) is the condition from 10.1, p.129, and (2) is the following
condition:

JU e OpNbyx(R") 3U € Op(R") 3@ e Diffeo(U, U) :
g Hn—1 k-1
Xi=07 ') R x 0, 1)
eRn—(k—1)

and
2 k—1
UnM=oUnN® XRJFX\Q%). (2
eR"—
(Here R4 := [0, 400).) In other words, M is up to a diffeomorphism, a k-dimensional
half-spacein R", the point in ques-
tion lying on the boundary of this
half-space.

Note that (1) and (2) cannot be
fulfilled simultaneously, since @ is
homeomorphism, and a half-space
(closed!) and the whole space are
not homeomorphic.

. The set of al pointsx € M, for
U U/ which (2) is fulfilled, is called the
XieryeenrX,, boundary of M and is denoted by

oM.

=

Example. If M e MfK(R") then M = @ (though fr M # @ in general, e.g. for an open
ball).

Exercise 10.4.1. Show that if M e MfK(R"), then oM e Mf*"L(R") and M \ oM e
MEK(RM).

All the notionsintroduced for manifold “without boundary” (full charts, charts, forms
vector fields, representatives etc.) can be naturally extended to the case of manifoldswith
aboundary. Little complicationsarises with differentiation (" usual* and exterior) at points
of the boundary oM, but 6M has zero volume (by Corollary from Theorem Change
Variables), so when dealing with INTEGRALS over manifolds (to be defined below), the
values at boundary points are not essential, and we can just ignore these points. [More
accurately: we define a smooth form on a manifold with boundary as a form with smooth
representatives, and we DEFINE a smooth (representing) form on a closed half-space as
a RESTRICTION to this half space of a smooth form on an OPEN set that contains the
half-space. This solves all mentioned problems.]

10.5 Orientation

Let X be an n-dimensional vector space, and let

A:={ai1,...,an} and B :={by,...,bn}
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be two basesfor X. We define the sign of A with respect to B by the formula
sgng A= sgndetga; .. . an,

where detg denotes the determinant with respect to basis B:

n ajl ... dn
a,-:Zaijbi = detga...an:= )
i=1 anl ... ann
(Notethat thelast determinant cannot beequal to 0, sinceay, . . ., a, arelinearly indepen-
dent.)
Therelation

A~B:iesgng A=+1

isan equivalencerelation (Verify!) An orientation of X isan equivalent class with respect
to ~. Obviously on X there are just 2 orientations. For a given basis, the orientation,
containing B, we denote by

(B]
the other one by
—[B].

We say that X isorientedif thereis chosen one of 2 possible orientation on X. We denoted
this chosen class

or X
For oriented X we say that a basis A is positive if [A] = or X, and is negative
[A] = —or X.
For R", the canonical orientationis|[ey, ..., €n].
Examples.

1.Vo € Gn: [&1),--->€m] = (Sna)[ey, . . ., en] (Prove!)
2' [_ela 629 R ) a’]] = _[el, ey a’]] (PI’OVG‘)

Positivelinear bijections
Let X and Y betwo n-dimensional ORIENTED vector spaces, or X = [A], orY = [B], and
let] € L(X,Y) beabijection. We put

sgnl := sgndet|
where det| denotes the determinant of the matrix of | with respect to the bases A and B:
detl :=detg(lag) ... (ap) (fag,...,an} = A).

(Itis easy to verify, that this definition of sgnl does not depend on the choice of positive
bases A and B.) We say that | is positiveif sgnl = +1 (resp., negative, if not).

Lemma 10.5.1. A positive linear bijection | between oriented finite-dimensional vector
spaces RESPECTS orientations, that is, sends each positive basisinto a positive one.
<LetorX =[A],orY.Let{cs,...,Cy} beapositivebasisin X, that is,

detacy...ch > 0. (D)
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Then

TN (Getl)  detaci...ch > O,
—_—

——

which meansthat the basis {lcy, ..., |c,} ispositive. >

detg(lcy)...(Icy) = (t* detg)cy...c

Oriented manifolds
We say that a k-manifold M is oriented, and we write

M e Or MfK,

if for each x € M the tangent space Tx M is oriented and if these orientations are
compatible in the sense that for any chart ¢ : V — V for M all all the mappings ¢’(x),
X € V (which are linear bijections of R¥ onto Ty M) have one and the same sign (all
are positive or all are negative), with respect to the canonical orientation of RK.

It isobviousthat if M is orientable (can be oriented), there are just 2 orientation on
M. To fix an orientation on an orientable M, it is sufficient to claim any one chart ¢ as
positive, in the sense that for each point X from the domain of this chart ¢’ (X) is positive.

Examples.
1. For n > 2 al the (n — 1) dimensional spheresin R" are orientable.

2. Thefamous M obius band is not oriented. (Exercise: define the M ¢bius band using Two
full charts.)

Positive injections
Let N,M e OrMfK and let f be a (smooth) injection of M into N. We say that f is
positive (resp., negative), if for any x € M the derivative f.(X) : TxM — T N is
positive (resp., negative). Thus, a positive mapping RESPECTS orientations.

Example. The mapping f : Sk — Sk, X — —Xx, where Sk denotes
x theunit spherein R¥+1, ispositiveif k isodd, and is negativeif k iseven.

Induced orientation
Let M bean oriented k-manifold with aboundary. Theinduced orientation
on oM isgiven by therule: for each x € oM
[h1,...,hk—1] € or Tx(OM) : = [v, hy, ..., hk—1] = or Tx M,

where v isthe (uniquely defined) unit normal vector to M at x, such that —v is atangent
vector to M at x (notethat TxM is here a (k-dimensional) HALF-space).

-X

Examples.

@ @Oy

[v,] =o0orM [1] = oroM [v,1L,2]=0orM [1,2] =0roM

Lemma 10.5.2. Let in the cube [0, 1] its faces im I('ﬁ,a) are equipped with with the
orientation induced by the canonical orientationin [0, 1]¥. Then I('} o) ispositiveiffi + a
is even: ’

sgn i,y = (=Dt
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<1 EXERCISE. [Hint: see Example 2 (p. 136).] >

Corollary 10.5.3. Let ¢c be ak-cubein R", and let im ¢ be oriented by the condition that
c is positive. Let the facesimc ) be equipped by the induced orientation. Then ¢ ) is
positiveiff i + a iseven:

SONCi.g) = (—1)' %

10.6 Integral of aform on an oriented manifold

Throughout this section M denotes an ORIENTED k-manifold with a boundary.

Integral over a chain on a manifold
Let c beak-cubein M (that is, ak-cubein R", such thatimc c M), and let w € QK(M).
We put just asfor cubesin R"
/w :=/ C'w.
c |k

Integrals over chainson M are defined once again "by linearity*:

/ w::Za;/w (the sums are FINITE).
> &G Gi

Chart cubes

We say that ak-cubec in M isachart cubeif thereexistsachart 9 : V — V for M such
that

Volo,1* and  c=plgqx (1)

Thuseach chart cubeisaninjection, soitsSIGN isdetermined (with respect to the canonical
orientation on [0, 1]).
Let w be ak-formon M. If there exists a chart k-cubec in M such that

suppw C imc 2

/Ma):zsgnc/cw (3)

Theorem 10.6.1. This definition is correct,
that is, does not depend on the choice of c: if
C1, G2 aretwo chart k-cubesin M such that

then we put

suppw C imcg Nimcy,

then

Selaly]

t f Y ._.:,k/a):SgnCZ/a).
cl(0) [0,1]" ¢G(C) R Ja C2
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<1sgncl/ co:sgncl/ cia):sgncl/ (2o (o)) w
c1 1k 1k ———

defined only on cl_l(C),
but suppw c C

= sgncl/lk(cz‘locl)@

asak-form

onRRK
= gdet

Thandet oon cl/ (gocylter) det(cytocy) det
|k ——

—sgn(c; o 1)’ | det(czocy)]
—_—

Chain Rule and
def. of sgn
= (sgncp)(sgncy)
—sne; | (@ (Gt ocoldecs o = snea [ g
[0,1]% Thon change [0,1]%
of var's

C; =g det

= sgncz/ cZw:sgncz/ w. >
1k C2

Partitions of manifolds

y Lemmal0.6.2. Let M be compact. There exists a
finite covering O of M by RELATIVELY open (that

M)\ is, openin M equipped with the topology induced
fromR") sets U, each of which is contained in the
U c |e imageof somechart cube.

e < It follows obviously from the fact that for each

@ point of M it is fulfilled either (1) or (2) (see the

U picture). >

Lemma 10.6.3. For any compact M there exists a finite partition of unity ¥ on M,
submitted to the covering O from Lemma 10.6.2.

(The definition of a partition of unity for manifolds is the same as early, merely
now functions ¢ € ® are functions on M; but we know what is a smooth function on a
manifold.)
<1 Thisfollows from the following lemma >

Lemma 10.6.4. For any M and any covering O of M by relatively open sets there exists
a partition of unity on M, submitted to O.

< EachU e O can berepresented asU’ N M, where U’ isan open set in R". The family
O’ of al such U’ is an open covering of M in R". Let @’ be a partition of unity for M
submitted to @’ Then @ := {p|m : ¢ € @'} iswhat we need. (Note that ¢|v isasmooth
functionon M (see 10.3).) >

%

Integral over a manifold
For acompact M and ak-form w on M we put

L3

ped
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whereg isaFINITE partition of unity for M submitted to acovering O of M by RELATIVELY
OPEN sets, each of which is contained in the image of some CHART cube, and the integrals
in the sum are defined by the formula (3) on p. 138.

Such a covering O and such a partition @ do exists by Lemmas 10.6.2. and 10.6.3.,
and it can be shown that the so defined integral [, » does not depend on the choice of O
and .

10.7 Stokes Theorem

Theorem 10.7.1. (Stokes) Let M be a compact oriented k-manifold with a boundary in
R", and let @ € Q*~1(M). Then

/dw:/ w
M oM

where &M is equipped by the induced orientation.

< Case 1. Thereexistsachart k-cube c in M such that suppw c int(imc).
(Of course suppw := cl {x € M : w(x) # 0}, the closure IN M, but since M is compact,
it isthe same as the closurein R".)

assume that c is positive (if there exists a negative chart cube with the

mentioned property, then obviously there exists also a positive
chart cube with the same property). We have

/de=/cdw=/lkc*da)=/lkd(c*w)

Stokes Th

for chains
= / C'o = / =0,
olk oc

Wlog we ca

sincew = 0on

im(ac) = U iM Ci.a)-

i,o

(Notethat Stokes Theorem for chainsis applicable here, since c*w is, by the definition of
asmooth form on manifold, smooth in some open neighbourhood of [0, 1]K.)

Butalso [,,, w =0,sincew =00noM OK.



10.8. CLASSICAL SPECIAL CASES 141

Case 2: There exists achart k-cubecin M, such that

n oM Nim(éc) = imc o), (1)
Supp suppw C relint(imc). 2)
Again wlog c is positive, so that

= 0onal the

i faces b
/ dwasmgasel/ w=2(—1)1+“/ o UL G 0) (1) ©
M oc ia Ci,a)

c(k,0)
9 1% sonce /Mw=/Mw. OK.
N e’ 0 ]
Lm @-5-2-(_1)k

General case: We have

finite!

def trick! Cases 1,2
dow = / do = /(d Ao+ pdw) T=" / w
[ [ > [ @onate > [ o

ped > dp=0, ped ped

since > p=1
def/
= w. >
oM

10.8 Classical special cases

In this section we discuss classical notions of divergence and rotor. For this end we need
some specia 1- and 2-forms, named length element and area element, resp.

Length element
Let M be an oriented 1-manifold (maybe with a boundary) in R3, let 7 denote the unit
M positive (that is, respecting the orientation) tangent vector to M.
i T The length element ds on M is the 1-form oN M, defined by the
rule

‘ds(x)h = (z,h) \ (he Ty M) N

Theorem 10.8.1. Let M € Or Mf1(R3), let ¢ = (11, 72, 73) be the unit positive positive
vector field on M, and let ds be the length element on M. Then

a) ds = r1dx + 72dy + 73dz,

b) 71ds = dx, 72ds = dy, 73ds = dz.
Of course, here dx, dy, dz denote the RESTRICTIONS on M of the 1-forms dx, dy, dz on
RS,

ga) ds-h 2 (r,h) = tths + ohp + 13hs = 70X - h + dy - h + 3dz - h =
(t1dX + 72dy + 73dZ)h.
b) Leth € Tx M. Thenh = a7 for somea € R. Hence
_ m @ — dx - —dx-
(r1ds)h = r1(ds- h) = i}/(r,ar) = dx \a% =dx-h,
dx-t =q =|

and analogously for dy, dz. >
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Definition. The length of a 1-dimensional compact oriented manifold M in R3 is Ju Gs.

Area element
Let M be an oriented 2-manifold in R3 (maybe with a boundary), and let v be the unit
normal vector to M, positive in the sense that

[h1, ho] € or M = [v, hy, hy] = or RS,

Thearea element dA on M isthe 2-form on M, defined by
therule

|dAGONK = det(h, k,v)|  (h,k e Tx M).

\Y

Theorem 10.8.2. Let M e Oerg(R:“), let v = (v1, v2, v3) be the positive unit normal
vector field on M, and let dA be the areal element on M. Then

a) dA =v1dy A dz+ v2dz A dx + v3zdx A dy;
b) vidA=dy Adz, vodA=dzAdx, vzdA=dxAdy.

<11° For h, k e R3 define the vector product h x k by the rule

vt e R3: (h x k, t) ;= det(h, k, t). 2

Applying (2) tot = &, we conclude that

(|2 h3 hsz hp hy hy
hXK_(kz ka |’ | k3 ki |” |k kz)' (3)
It follows at once from (2) that
h x kZlin{h, k}. 4

(Indeed if t isalinear combination of h and k, then det(h, k, t) = 0.) Hence

vh,ke TxM: hx k=av for somea € R. (5)
. ho h3
2° Proof of @). <kivh.k € Tx M: dA(X)hk = det(h,k,v) = 11 Ky Ka =
——
=(dyAdz)hk

(v1dy A dz+ .. )hk. B>

3 Proof of b). << (1idA)hk = vi(dAhk) = vy det(h, k, v) 2 vith x k,v) 2 avg =

hy h
ater,v) = (enav) 2 (e hxk) 2 | 2 8

Definition. The area of 2-dimenstional compact oriented manifold M inR3 is [, dA.

= (dy A dz)hk. > >

Theorem on rotor
Let M € OrMf2(R®), and let F = (F1, F2, F3) beavector field in R3. Put

o = F1dx + Fody + F3dz.
Then

dw = (D2F3 — D3F2)dy A dz + (D3F1 — D1F3)dz A dx + (D1F2 — DaF1)dx A dy.
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Wedefinetherotor rot F of thevector field F asthevector vector formed by the coefficients

of thisform:
rotF .= (‘ D2 Ds )

F2 F3
/((D2F3—D3F2)dy/\dz+...):/ (F1 dx +..)),
M —— oM ‘_‘/E‘
(rotF)q v1dA =708

D3 D
Fs F1

D1 D2
Fi k2

> >

Stokes theorem yields

whence it follows that

rotF (6)
/ (rot F,v)dA:/ (F, 7)ds.
M

oM

V

Physical meaning of (6) is: the FLow of the rotor of a
M yector field through a surface is equal to the CIRCULATION of
T this vector field over the contour.

Remark. 1. Physically, rot F isnot avector, sincethedirection of so defined rot F depends
on definition of d.

2. InEnglishlanguageliterature one use more oft thetermini “ curl” instead of “rotor”.

3. The so-called Green formula [, adx + pdy = [},(68/0x — da/dy)dxdy isa

special case of (6), corresponding to F3 = 0 and to aFLAT surface, parallel to x, y plane.

Theorem on divergence

Let now M e OrMf2(R3) (equipped with the orientation of R®), and let again F be a
vector field in R3. Put

w = F1dy A dz+ F2dz A dx + F3dx A dy.

Then
dw = (D1F1 + D2F2 + D3F3) det.

The quantity inthe bracketsis called the divergence of thefield F and isdenoted by div F:
divF := D1F1 + D2F, + D3Fs.
Stokes formulayields
/ (D1F1—|—...)det:/(Fldy/\dz+...),
N S
=V

whence it follows that

/divF:/ (F, v)dA. )
M oM

The physical sense of (7) is: the flow of the vector

v field through a closed surface OUTSIDE is equal to the
F integral of the divergence of the field over the region
inside this surface.







Chapter 11

Functions of complex variable

11.1  Analytic functions

We can identify the set C of complex numbers with the real plain R?. More precisely, if
we put

a:Co>R% z> (Rez,Zmz) =:Z (wecal Z the representative of z),

BiR? 5 C, (X,y) — X+1iy,

then
aof =id, pfoa=id.

By thisidentification, the normin C, defined by the formula
Izl = |zl

coincides with Euclidean norm in R2. So we can identify C and R? also as topological
spaces.
If
X = p C0SO, y =SSN0,

we say that p, 8 are polar coordinates of (x, y) and of z = x + iy and we write

y (X, y) ~{e,0}, and z~ {0}

p _~xy)
Eg,0 ~ (0,0, O ~ {0,227}, i ~ {Lz/2}, i ~
0 {1, —37/2).
X

Lemma11l.1.1.1f z; ~ {p1, 01} , Z2 ~ {02, 02}, then 212, ~ {p102, 01 + 02}.
<1 (p1c€0S61 + ip15N61)(p2C0SH2 + ip2Sinh2) = p102(C0SH1 COSH2 — SinB1 SiNGo) +

=Cos(01+02)

ip102(Sin@1 cosf — cosfy Sinbr). >

=sin(01+62)

Lemmall.l2. Letc=a+ip ~ {o, 8}. Consider the operator of multiplication by ¢

A:C—- C, Z— Cz,

145
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and denote by A the corresponding operator in R2:

Ai=aoAop.

Then A e L(R?, R?), and the matrix of A is equal to

C A C (a —b)_Q(cose —sine)
b a) snfd cosf |-
I N
R2 A, R2
In other words, A isthe composition of the TURN by the angled and blowing up with
the coefficient o (> 0).

<1(a+ib)(x+iy)=(aX—bY)+i(ay+bx),and(E _2) ();) = (Z;;Ei) >

C-differentiability
We say that afunction f : C — CisC-differentiableat apoint 2 € C, and we write

f e Difc(2),
if there exists the limit (in the norm)
im [@ =@
z

77 Z—

(z#2)

= f'(2) e C,

caled the (C-) derivative of f at 2. If G isan open subset of C, and f isdifferentiable at
each point of G, then we say that f is C-differentiablein G, and we write

f e Difc(G).

Examples.

1.z Z"isC-differentiableeverywhereif n =0, 1, 2. . ., andis C-differentiablein C\ 0
ifn=-1,-2,... (") =nz""L.

2.z — Zisnowhere C-differentiable. (Verify!)

C _f, C Notation: Forany f : C — Cwedenoteby f thecorresponding
B Lo  “red” mapping:
R2 _f, R2 fi=aofof,
that is _
f(x,y) == (Re(f(x+1iy)), Im(f (x +iy)))

=:u(x,y) =(X,Y)

For short wewrite f = u 4 iv. Thus

f=u+iv:e f=(un0).

Theorem 11.1.3. Let f = u + i». Thefollowing conditions are equivalent:

a) f e Difc(2), f'(2 =a+ib~ {p,6};
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_(a—-b) (cosd —sing
“\b a) 7%\ sno coso )
In other words, C-differentiability is a SPECIAL case of differentiability where the

derivativeisthe composition of turn an ablowing up with non-negative coefficient. < Just
asintheclassicreal case, f isC-differentiableat z iff it holds the decomposition

o reon, r - (20 )

Z

fe+o = 1@+ Fac+r@o. &,
] 1c1-0
In“R2-language’ this means that
fE+D) =@+ @ +70), &
Il 1z1—o

here f/’\(E) denotes the linear operator R2 — R?, corresponding to the operator of mul-
tiplication by f’(z) (Lemma11.1.2.). So our assertion follows from Lemma11.1.2. >

Cauchy-Riemann conditions
LetG € Op(C). Wesay that afunction f : G — C, f = u+iv, satisfies Cauchy-Riemann
(or d’ Alambert-Euler) conditions, and we write

f € CR(G),
if u,o € C1(G) and
u_w
ox oy’ oy  ox’

Analytic functions
Let G € Op(C). We say that afunction f : G — C, isanalytic, and we write

f e An(G),

if f € Difc(G)and f’: G — C iscontinuous.
NB It is possible to show that if f is C-differentiablein G then f’ IS AUTOMATICALLY
continuous. But it is a hard theorem.

Example. z — z" isandyticinthewholeC if n € N, andisanalyticinC\0ifn € Z\N.

Theorem 11.1.4. A function f : G — C is analytic iff it satisfies Cauchy-Riemann
conditions:
An(G) = CR(G).

< Thisfollows at once from Theorem 11.1.3. >

11.2 Complex forms
Forany M e MfK(R™ andany p € {0,1, ..., k} we define
Qa(M)
asthe set of pairs (w1, wp) € QP(M) x QP(M) written as wy + iwy; for short we put

o+i0 = w.
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We equipe this set by the following structure of vector space over C (below a + ib € C):

(@a+ib)(w1 + iwp) = (aw1 + bwy) + i(bw1 + awy), D
(w1 + iw2) + (w3 + iwg) = (w1 + iw3) + i(w2 + iwy). 2

Define the conjugate form by the rule
w1 +lw2 = w1 — iwy, 3

and define the operations A, d, *, [, component-wise:

(w1 +iw2) A (03 + iws) = (01 A 03 — W2 A w4) + (w2 A 03+ w108),  (4)
d(a)l + ia)z) = dw1 + idwy, (5)
g% (01 +iwp) == g'm1 +ig*w2 (g1 M = N), (6)

/M(wl-l-iwz) ZZ/Mwl-l-i/sz- (7)

1. Let x and y denote, in accord with a classical tradition, the projections (x, y) — x and
(X,y) ~ yinR2 Then

Examples.

z:=x+iy € QA(R?), Z=x —iy € QQ(R?),
dz = dx + idy € QL(R?), dz=0z = dx — idy € QL(R?).

2. Eachfunction f : G —» C, f : u+ivo, G € Op(C), with sufficiently smooth u, » may
be considered as a complex O-form:

f e QA(G).

(In the last relation we consider G as an open set in R2.) What means “sufficiently”,
depends on the context. Sometimesjust continuity is sufficient.

NB All theresult for “real” formsretain (asit is easy to verify) for complex ones, e.g. for
C-formsasfor real ones, it holds

d(w1 A @2) = dot A wp + (—1)%9%1 0y A daws, (8)
=0 €)
/ do = / 1) (for compact oriented M). (10)

M oM

Theorem 11.2.1. Let G € Op(R?), and let f, g € Q%(G) (thatis, f and g are functions
G — C). Then the following assertions are true:

a) f e An(G) & d(fdz) =0;

b) f € An(G) = df = f’dz

c) df =gdz= f € An(G),g= f’.
This can be summarized so:

d(fdz) =0 f e Ane df =gdz= g= f'. (12)
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NB Theequationd( f dz) = Oisequivalenttodf Adz = 0 (sinced? = 0), and the equation
df = gdz may be formally written as
df _
az 9
Both equations say that d f and dz are proportional (“parallel”).
QlLet f =u+iv,g=p+iq.

a) d(fdz) d2=:0 df Adz= (du+idv) A (dx — idy)

@ (du A dx — do A dy) +i(do A dx + du A dy)

‘du = (0u/ox)dx + (6u/oy)dy, dv = (Gv/ox)dx + (au/ay)dy‘
ou Ov .f{ou Ov
-(-(5+5) 1 (G-5))ere

Hence

ou  Ov ou Ov def. Th.11.1.4.
d(fdz) =0 —+—=0, —+—=0 f e CR(G f e An(G).
(fdz2) @(ay+8 ’ax+ay )@ € (S =" € An(G)

b) f € An(G) &M f ¢ CR(G) =
ou ou ov ov
f = i = —_ R i _ R
d du + ido (axdx + aydy) +i (axdx + aydy)
|ou/ox = ov/oy =:a, dv/ox = —ou/dy =:b]

= (adx — bdy) + i(bdx + ady)
D (@ +ib)(dx + idy) " £/(2)dz.
c)df =gdz=

((u/ex)dx + (dv/oy)dy) + i ((6v/0x)dx + (dv/oy)dy) = (p + iq)(dx + idy)

Compare Reand Zm

[ (6u/ox)dx + (du/oy)dy = pdx — qdy
(6v/0x)dx + (6v/oy)dy = qdy + pdy
Compare coeficients by dx and dy

du/oX =0v/0y = p ThiL13 f € CR(G)
—0u/oy = ov/oX =( f’=p+ig=g.

11.3 Integralsof complex 1-forms
Theorem 11.3.1. Let G € Op(C), letc : [0,1] — G be a closed

«(0)= curve (that is, a 1-cubewith c(0) = ¢(1)), andlet f € Q2(G) (that
=c(1) is, f : G — C). Then
3
/df =0.
C

Qfydf = fucrdf = [1d (€ 1) = [10 = f[o9 = Jy 9Dt = g(1) — g(0) =
=foc=:g

f(c(1)) — f(c(0)) =0. >
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Example. For any n € Z \ {—1}, and for any closed curvein C \ {0}

/z”dz =0.
C

1
< Forn # —1wehavezdz =d (—z””) >
n+1

—_———
€An(C\0)

Theorem 11.3.2. Let C e CompOr Mf%(R?), and let f € Q2(C). Then

[at=o
c

</df Sc’kism/ foMA g
c oC

Let M beacompact 2-manifoldin R2. Then M isorientable (verify!), and we always
suppose that M is equipped with the orientation from R2. Further

M = intzz M = M \ oM
(verify!). We say that afunction f : M — C isanalytic on M, and we write

f € An(M),
if itisanalyticin M (we identify R? and C!) and is continuous on M. Thus,
An(M) := An(M) N C(M).

Theorem 11.3.3. (Cauchy) Let M € CompMf2(R?), and let f €

An(M). Then
fdz=0
- N
<1/ fdzs“’ki”"'/ d(fdz) =0
oM M

If f ¢ An(M), theintegral can be non-zero, as the following example shows.

Example. Let M = B, (0) (the disc of radius ¢ with the center at
0). Then

/ dz .
— = 2ri.
0B,(0) 9B,(0) Z

(Notethat (z— 1/z) € An(C\ 0).)

/ dz . dz
8B,(0) Z ¢z’

wherec: [0,1] — R2,t — (p cos2zt, p Sin2zt). But
—— —

< Itisclear that

=.C1 =.C2
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dz  [fdx+idy [ (x—iy)dx+idy) . (X —1y)(dx 4 idy)
/c7_/c x+iy Jo  x24y? _/cc( X2+ y2 )
B /1 (ca(t) —ica(t))(Ch(t)dt + ich(t)dt
~Jo c2(t) + c3(1)

1
= 27'L'i/ (cos2zt —isin2zxt)(cos2zt +isin2zxt) = 2xi. >
0
=1

Lemma11.3.4.Let B :=B,(a), f € C(6B). Then

/ fdz
oB

< lLeta=:a;+iap. Putc(t) := (a1 + p cos2zt,ax + p Sinzt). Then

/ fdz /fdz
oB c

Examgl.l.3.5. max |f(C(t))(C/ +i ’| <2 max | f|. >
T .
Jmax, _/1_02/ = ey

< 2mrpmax|f].
_waBII

= =C

1
= /|1(foc) Sigg =‘/0 f(c(t))(c) + icy)dt

=(c}+ic))dt

= [f(ct))|Icy +ics]
———
=20

Exercise 11.3.5. Prove, using Mean Value Theorem, that for any continuous function
f:[0,1] - C

1
f(t)at f ().
[ 1od] < ma it

Exercise 11.3.6. More general, provethat if C € CompOr Mf(R?), f € Q2(C), then

/fdz §/|f|ds.
c C

11.4 Cauchy formula

Example 11.3.6. isa special typical case of the following
Theorem 11.4.1. Let M € Comprg(Rz), and let f € An(M). Then for each point
M(= M\ aM)

/ f(2)dz =2rif(a) (Cauchy Formula).
oM Z—a

In other words, the values of an analytic function inside a region are uniquely defined
by the values on the boundary.

< Let ¢ > 0 be such that the disc B := B.(a) liesin M. Obvioudy f(z)/(z—a) €
An(M \ I\(}I). Hence by Cauchy Theorem
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0= f(2)dz _/ f(2)dz / f(2)dz
“Jom) z—a  Jom z—a oB Z—a
So it sufficesto show that
f(2)dz .
/BB — g—w)sz(a)' (D
Since f € Difc¢(a), we have
_ / rQ)
f(z)=f(@+ f'(@)(z—a)+r(z—a), — 50 (2
Il Icl—=0
Therefore,
f —
/ 9z _ f(a)/ £+/ (f’(a)+ re a))dz. @A)
B Z—a oBZ—a JsB z—a
N e’
(1] =19(2)

[2

Just asin Example 11.3.6., [1] = 2zi. Asto[2], the function g is by (2) bounded (in the
norm) in some neighbourhood of a, hence, by Theorem 11.3.1.,[2] — Oase | 0, and (1)
isproved. >

Theorem 11.4.2.Let M € Comprg(Rz), f e An(M). Then f e Cg’(l\(}l), and

. n! f(z)dz

Thusif f isjust one time continuously C-differentiable, it is infinitely C-differen-
tiable! < For n = 1 thisthisisTheorem 11.4.1.. Let it betruefor n — 1, that is,

. -1 f(2)d

Differentiation of (5) in a (whichis possible asit can be shown) yields (4). >
NB For ANY continuousfunction¢ : 6M — C, Cauchy formula

f(2): 1/(3 pd ©6)

- 2_77.'| mMm_$—12
defines an analytic function f : M — C, but in genera this f, extended to 6M as g, is

NOT continuous! IFg = f|sm for some f € An(M), then Cauchy formuladoesreproduce
the original function f.

11.5 Representation by series

We say that aseries > o7 cn, € € C, converges, and we write

o0
Z Cn ~,
n=0
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if the sequence of partial sumssy = Z,’LO Cn converges (in the norm || z|| = z) to some
ceC,thatis, if [sy — C| o 0, and in such case we write >"7° ych = C.
—00

Uniform conver gence
Consider a FUNCTION SERIES > o2 fn, fn : C = C.If 372 fn ~ uniformlyinz e A

we write

> R3A.
We say that a function series is majorized on A c C by area series > ty, ty > 0, if
Vze AVn e N:|fa(2)| < tn.

Lemma 11.5.1. Let > 5 tn, be @ CONVERGING real sequence, and let function series
>oio fn, fn 1 C > C,ismajorizedon A c C by > tn. Then Y fi=2 A

avze A:
N M e N M N N N
ifeg. N>
Zf(z)—z = Z f(2) Sz |f(Z)|§Z tan-D
n=0 n=0 n=M+1 n=M+1 n=M+1

Member-wise integration and differentiation

Theorem 11.5.2. Let C € CompOr Mf}(R?), andlet f, € Q2(C) (thatis, fn = Un+ivn,
where up, v, are (at least) continuous functionsC — R). If f, —= f UNIFORMLY on

C then
/fndz—>/ fdz.
c c

<1 Taking into account the definition of [}, w, thisfollowsfrom the corresponding theorem
for real-valued functionson [0, 1]. >

Corollary 11.5.3. Let C e CompOr Mf3(R?), f € QX(C) and 3_n2 fi_2C. Then

/ (i fn)dz _ i [ e

Theorem 11.5.4. Let M € Comp Mfg(Rz), andlet f, € An(M). If f, — f UNIFOR-
MLY on M, then also f, € An(M), and

Vae MVvkeN: 0@ — f®().
n—oo

<11° f € C(M) asan uniform limit of continuous function.

2° Foreacha € M we haveobvioudy f,(2)/(z— a) —2 f(2)/(z — @) UNIFORMLY ON
oo

oM, hence

1 f 1 f
f (@) = lim fo(@) L™ jim = / n(202 husz 1 (2)dz
2ri oM Z—a 2l oM Z—2a

Soby NB from11.4, f € An(l\o/l).Thus inviewof 1°, f € An(M). 3°Va e M vk e N:

Th.11.4.2. k! fn (Z)dZ Th11.5.2. i/ f(Z)dZ Th.11.4.2.

— ——T f®(@). >
2zi Jom (z - a)ft? 2zi Jom (z - a)f+? @

£ (@)
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Corollary 11.55. Let M e CompMf2(R?), f, € An(M), X2, frx¥Mf. Then also
f € An(M), and

o0
vke Nif®0 ="tk in M.
n=0

Convergencedisc

Bp(a) Theorem 11.5.6. (Abel) Let4, z € C,a # z. Ifaseries> o2 Ca(z—a)"
convergesfor z = 2 thenfor eachp > Osuchthatp < |2—a| thisseries
z converges UNIFORMLY on B, (a).

< 1° Since >’ cn(z — a)" ~, the sequence |cn(Z — @)"| converges to
zero and henceit isbounded, e.g. by a > 0.
2° Now, letz € B,(a). Then|z—a|/|z—a|] < o/|z—a] =: k < 1, hence

len(z—a)"| < Ica(z—a)"|(Jz—al/|12—a])" < ak".

1° <k
<a
Thus, our series is majorized on B, (r) by the converging real series > ak", and our
assertion followsfrom Lemma11.5.1. >
It followsfromthistheoremthat the set of all pointsz, whereapower series > ¢y (z—

a)" converges, is either merely {a}, or it the whole C, or lies between I%Q (a) and B, (a)
for some g > 0. In other words, the CONVERGENCE REGION is, up to the boundary, a DISC
with the center at a. We call it the convergence disc.

Taylor formula
Lemma11l5.7.Let M € Comprg(Rz), letz,a e l\?l(: M\ oM),

h:=z-a,andlet f € An(M). Thenfor eachn e N
n
hn+t f(Q)ds
f(z Lo @nk 4 / :
o @=2 @M o | T o et
=irn(h)
Cauchyformula 1 f(C )dC trick 1 f(C )d(
<@ 2ni Jom ¢ —2 :Z_ni@M( _a)(l_z—a):
¢ f-a

—@z-a/C-a=h¢-a, A-q")/A-q=1+q+...+q"]

_i f(() n ( h )n 1 ( h )ﬂ—l—l g
_Zni/aMg—a(ké; c—a +1_ h \¢-a .

f—a

f(0)de h”*1 f(0)dz
27f' /M ¢ - )"+1 2w /aM ¢ -2 —-a™tt g

[Thite2 =f©G@/n
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Definition. Let G € Op(R?), f € An(G),a € G. Theseries> o2, 1/n!- fW(a)(z—a)"
iscalled Taylor seriesfor f at a and isdenoted by ts, f:

oo

1
tsa f 1= ZH f™(a)z—a
n=0 "

Theorem 11.5.8. Let B be a discin R? of a positive radius with center at a.

a) Let f € An(B). Thentsy f ~ f in B.
b) Let > 2 gcn(z—a)"~ fin B.Then f € An(B), andts, f = S otn(z—a)".

Thus an analytic function can be uniquely represented in each “disc of analyticity”
by a power seriesw.r. to the centoer of the disc. . i
<a)lLetze B,h =z—a.Choosep > Osuchthatz € B,(a) C B.
Then f € An(B,(a)) andk := h/p < 1. Hence we have for the rest
termry in Taylor formula

h"+1 f()d
Irn(h)| = : / (—)Cn
2ri Jogya (C—2)( —@a)
Lm1134. _ _ |h|"t1 f() n+1
< 2rip 2 I || = const -k —— 0,

thatis tsg f ~ f at z
b)If > cn(z—a)" ~in I%, then, by Abel Theorem, this series converges uniformly
on each closed disc which is contained in IOB; hence, by Corollary 11.5.5., itssum f is

andyticin B, and V1 e N f®(@) = 332 | (ca@—a)") = nlcn. It follows

Z=a

thatts, f => cn(z—a)". 1>

NB This theorem allows to EXTEND analytic functions, if the convergence disc of the
Taylor seriesis greater than the original disc of analyticity. These extensions can lead to
DIFFERENT values at one and the same “ outer” point!

11.6 Elementary functions

\We DEFINE exp, sin, etc by the SAME series representation asin real analysis:

2 3 4 5

é:=1+z+%+%+%+%+..., D
snz:= z- ;—?+ ;—T— 2
cosz:=1-— ;—j+ Z—T— ©)
shz:= z+ :Zg—? +;—T+..., 4
chz:=1+ ;—T—F Z—T—F (5)



156 CHAPTER 11. FUNCTIONS OF COMPLEX VARIABLE

Sinceall these seriesare majorized in each disc B, by thereal series > 7 5 0"/n! al they
converge in the whole C uniformly on each closed disc. So by Corollary 11.5.5., their
sums are analytic functionsin the whole C.

It follows from (1)—(5) that

iz _ iz Az
sinz:e'Tez—ish(iz), e ze — _isin(iz), ©6)
eIZ —IZ eZ —Z
cosz = —;7' =ch(iz), chz= +e = CoSsiz, @)
and
€ =chz+shz=cos(iz) —isin(iz). (8)
Putting z:=i0, 6 € R, weobtain
d? = cosf +ising ‘ (Euler formula). )
In particular
é7 = —1. (10)

Thisformulaconnect three the most fundamental numbersin mathematics, e, # andi, and
is one of most beautiful mathematical formulas.
Relation (9) impliesthat p€? = p cos@ + ip sind, which means that

¢ ~{0,0) (@=00¢€R) (11)
Further the following basic property of the exponent function remains true:
eAt2 = gle”2, (12)

<1 Multiplying the absolutely converging series for e and %2, we obtain

00 Zk 00
éiézzgk—}gf "_szl(n o &k

n=0k=0—_ 7~
1/n
n! \k

o
_ Z (z1+ 22" _gatn

n!
n=0

Logarithm
At last we define In z as a complex number ¢ such that € = z. Such anumber is defined
non-uniquely. Indeed,

vn e 7, ect2rin 1 e ri o — 5 (13)
\/-/ ’
=1
Since
gne+io 12 dnegd?
weseethatif z ~ {p, 6} thenoneof thevaluesof Inzislnp +i6. By (13),Inp+i6 +2xin,
n € Z ,are adso values of Inz. It can be verified that there is no other ones. Thus
z~{p,0} =>Inz=Inpg +i(2zn+6). 149

The fact that In is a MULTI-VALUED function is just another form of the fact that the
representation z ~ {p, 8} isnon-unique.



11.7. RESDUES 157

11.7 Residues
Letae C,U € OpNby(C),and f € An(U \ {a}). Theresidueof f at aisdefined by the
formula

v resg f = i/ f(2)dz, (1)
27i JoB
where B is any disc with the center at a such that B ¢ U and
aeB.
This definition does not depend in the choice of B. Indeed if B; and By are two different
such discs, e.g. By C éz, then

o Ly Th / f(2)dz = / f(2)dz — / f (2)dz.
B\B, a(B2\By) 0Bz 2By

Examples.
1. If f isanalytic in aneighbourbood of a, then

f
resa % = f(a). 2

< Thisfollows at once from Cauchy formula. >
2. Asaspecial case of previousexample (f = 1) we obtain

1
z—a

resa =1 ©)

3. Fork=223, ...
1

Z-ax ~©

resa (4)
(See Example on page 150.)

Theorem 11.7.1. (on residues) Let M e CompMf2(R?), let

0 %enan e M(= M\oM),andlet f e An(M\(ag, ..., an}).

— n
fdz = r f.
[ tde=> e,

k=1

oM}

<1 Let Bk be mutually digoint discs with the centers at ax such that By c I\C}I Then

OcauczhyTh/ . fdz:/ fdz—Z/ fdz
a(M\U By) oM By
e e’

2ri-resq, f
(notethat 6By asapartof (M \ | I%k) has the orientation opposite to orientation of o B
itself). >
This theorem reduces calculation of integralsto cal culation of residues.
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Calculation of residues
A point a € C isapole of degree n (or n-pole), n € N, of afunction f : U \a —» C,
(U € OpNby(Q)) if the function (z — a)" f admits an analytic extension to U, but the
function (z — a)"~1 f does not.

Examples.
1. 0isal-polefor 1/z, isa2-polefor 1/72, etc.
2.1/sinzhas1-polesatz =0, +x, +2x, .. ..

Theorem 11.7.2.
a) Let a beann-polefor f. Thethere exist a closed disc B with the center at a such
that B # @ and f can be (uniquely) represented in IOB\ a by some series

o0

> wz-a)f  (xeO),

k=—n

called the Laurent seriesfor f at a; that is,

b) Theresidueof f at aisequal to the coefficient by (z — a)~*:

¢) Thisresidue can be calculated by differentiation:

re&if—;ﬁ ((Z_a)nf)
(n—1)! dz"-1|,

1 n—1

= oD Mgt

(z—a)"f(2).

<1 EXERcISE for you. [Hint: Apply Theorem 11.5.8. on Taylor seriesto (z—a)" f and then
use Examples 2 and 3 on page 157.] >



Chapter 12

Ordinary differential equations

12.1 Analytic setting

A differential equation is an equation of the form

F (% u00, 000,070, ..., uP () = 0, M
where
u: X-Y,
u: X —= ZXY)
uP X > L2(X, ..., X:Y),
———
p
and

F:XxYxZX,Y)x...x Z(X,....,X%Y)> Z

Here X, Y, Z are(say) normed spaces; U isthe unknown function, and (1) isto befulfilled
at each point x of someopenset U c X.
The order p of the highest derivativein (1) is called order of the equation.

Classification
If X =R wehavean ordinary differential equation (ODE);
If X =R" wehaveapartial differential equation (PDE);
IfY =R wehaveascalar differential equation;
If Y =R" we have avector differential equation;
If Z=R wehaveoNE differential equation;
If Z=R" wehave asystem of differential equations.

ODE’s
In ODE's the unknown function is a function of ONE independent variable, which physi-
cally can be interpreted as TIME (and is denoted usually by t), and (1) can be interpreted
asaLAw of some process, of some evolution.

159
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The derivativesint are often denoted (after Newton) by dots above, e.g.,

dx . d?x
dt’ Todi2”

Examples.

1. Inertial motion equation: X = 0, x : R — R3; this eqaution describes a free motion of
apoint in the space (no external forces).
2. Pendulum equation: X + x = 0, x : R — R; this equation
describes the motion of a point, on which the force act, that is
proportional to the displacement of the point, froman equilibrium
position and tends to return the point back.

3. Exponent equation: X = kx, x : R — R; it describes a process where the speed of
grown of something is proportional to the present quantity of this something; e.g., for
k > 0it may beachainreaction, for k < 0 it may be anuclear decay.

Thus, ageneral ODE looks as follows (now we write t instead of x, and x instead of
u, respectively X instead of Y):

F (t,x,X, %, . ..,x<“)) -0 @)
Since all the derivativesof x : R — X areagain functionsR — X, now we have
F:Rx X" 7.

A solution of (2) is an n times differentiable function ¢ : (a, b) — X (where (a, b) isan
non-empty interval in R, such that

Vte(ab) F (t, o), G0, ..., (p(n)(t)) —0.

NB Not every equation, containig derivativesint, isan ODE. E.g., the equation X(x = 0)
iSNOT.

Reduction to afirst order equation
We shall consider oNLY ODE’s SOLVED w.r. to the highest derivative:
d"x

= =F (txxx .. .,x<”—1)) — 0. ©)

Theorem 12.1.1. Equation (3) is equivalent to the following system of n ODE's of thefirst
order:

X1 = X2
X2 = X3
: 4
Xn—1 = Xn
Xn = F(t1 X17 X25 ) Xn)

<If g : (a,b) > Xisasolution of (3), then

(0,0, 6., 0" D)
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isasolution of (4); v.v., if

(91,02, ..., 0n) : (@, b) > X"

isasolution of (4), then ¢1 isasolution of (3). >
By this theorem we can restrict ourselves by ODE’s of thefirst order

, X R X, f:XxR— X

12.2 Geometric setting

Geometrically, the unknown function x : R — X inan ODE x = f(x,t) isa CURVE

in X. The space X is called the phase space of the equation. The
X graph of a solution ¢ is called an integral curve of the equation.
Thespace X x R, wherethisgraph lies, is called the extend phase
space.

X

\ t
Examples.
1. Inertial motion equation X = 0 (x : R — R3) is equivalent to the system

X1 = X2

X1, X2 1 R — RS
)'(2:0] (X1, X2 : R = R?),

which can bewritten asx = Ax, wherex : R — R, and A € 2 (RS, R5), viz.

000000
000000
000000
100000
010000
001000

Here the phase spaceis R (position-velocity).

2. Pendulum equation X + X = 0 is equivalent to the system

X1= Xp
Xo = —X1

which can be written as x = Ax, wherex : R — RZ2,

_ 0+1 2 2
A_(—l O)Eg(R,R)

(the operator of rotation by 90° ) The phase spaceis R?.

3. For the exponent equation X = kx the phase spaceisR.
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Fields correspondingto ODE’s

A geometric interpretation of the equation X = f(x,t) is such. At each point of the
extended phase space a DIRECTION is given (the derivative of a
curve a a point “is’ the tangent line to the graph). To find a
solution of the equation means to find an integral curve of this
field of directions, that is, to find a curve, such that at each point
the tangent line coincides with the directions of the field at this
point.
In the special case where f does NOT depend on the t (autonomic ODE’s) another inter-
X pretation is possible, in the phase space itself. Viz., at each point

— x of the phase space aVECTOR f (X) is given (the derivative can
S / — - be considered as a vector in X (the velocity)). That is, we have a
/ VECTOR FIELD. To find asolution of theequation X = f (X) means
/ v to find amotion of a point in the phase space such that the velocity
S at each moment of time coincideswith thevalue of the vector field
at the point where we come at this moment.

Examples.

1. Thesimplest equationx = f(x),x: R - R, f : R — R; thefield of directions does
not depend on x. The solution is unique up to vertical trandation
of the graph. We know this already, of course:

AS\ NS S S NSNNEN

=
-~
-
-
-
-
P
-
pa

AV VN

AN VAR LV VN

t
X(t) = / f (z)dr + const (forany tg € I).
X0

1714111714777
\

Frrfiprrrnfirrip

ANN

\ AN

\
\\\ NSSS\ NN N
N\
AN
~

(we supposethat f issufficiently “nice’.)

2. X+ x = 0; (X1, X2) = (X2, —X1). The velocity field is drown /, _: N
on the picture. Obviously the solutions are motions along circles by et
with center at O, e.g., (cost, —sint). Hence, the corresponding ot 1, T
solutions of the original equation X + x = 0 are cost and sint. Nooy,

3. X = kx. The field of directionsfor k > 0 looks as on the picture. Up to a horizontal

= A trangdation of the graph there are just 3 solutions. Of course, we
oS oA =
= — ! x = xoek.

N \‘\ \\\ >~
\ For xo > 0, = 0 or < 0 we obtain the 3 types of solutions.
\

AVRS \YER Y A TR RN \N

Initial conditions
In general the function f in the right-hand side of our equation

x = f(x,1t) (1)

is defined only on an open subset ¥ of X x R. Wesay that ¢ : R — X isasolution of (1)
inaninterva (a, b) (—oo < a < b < +00), and wewrite

¢ € Sol(a n) (1),

if p € Dif((a, b)), {(¢(t),D|tt € (a,b)} c ¥ and vt € (a,b): ¢(t) = f(p,1).
We say that ¢ isasolution of (1), and we write

9 € Sol(D),
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if 9 € Sol(a,p)(1) for somea, b.
Let (xp, to) € ¥. We say that ¢ isasolution of (1) (in (a, b)) with theinitial condition
(Xo, to), and we write

@ € Sol (D), x (resp., ¢ € Sol(a,b)(Dtg,xo)
if ¢ € Sol(1) (resp., ¢ € Sol(a)(1)) and
¢ (to) = Xo.

This condition means physically that at given initial moment to our process has value Xg,
and means geometrically that the graph of ¢, the integral curve, passes through the point

(Xo, to)-

12.3 Basic Theorem
Here we discuss the questions of existence and uniqueness of a solution of an equation
x = f(x,1), X:R— X, (@D}

with agiveninitia condition, and dependence of the solution on the initial condition.

Theorem 12.3.1. (Peano) Let X = R", ¥ € Op(R" x R). If f € C(¥, X), then
V(Xo,t0) € ¥ dp € SOI(l)to,xo~

In other words, if f is continuous then a solution of (1) aways exists. (We omit
the proof of this theorem). But in general a solution with a given initial condition is NOT
unique, as the following example shows.

Example. The equation X = 3x%3, x : R — R, has 2 solution
/71747777 1)11  withtheinitial condition (0, 0): p1(t) = 0 and po(t) = t3. The
reason is that the right-hand side x%/2 decrease too quickly as
X— 0

L1770 777477
S S X

/// s o 32/3
X
wr//17/77777

X

!
If fisof cLassCtinx, such apatology cannot occur, as we shall see.

Picard method
Consider the equation (1) for X = R, f € C(R x R, R). The main idea of the method is:
to find a solution of (1) meansjust to find afixed point of some operator. More precisaly:

@ € Sol(L)ty,xo & @ € FiIXA,

where A is defined by the formula

t
(Ap) = X0+ /t f(p(0), 1)dl. )
0
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2 . e

(A 2 T(p),1); if ¢ € Sol (L), that is, if ¢ = f(p(t), 1) and p(to) = Xo,

then (Ap) = ¢ and (Ap)(to) 2 xo = ¢ (to); hence Ap = o, that is, ¢  Fix A. Vv, if

o € Fix A thatis, Ap = ¢, theng = (Ap) e f(p(t),t) and p(to) = (Ap)(to) @ Xg. >
Picard method is to construct a solution of (1) asafixed point of A, that is, asalimit

of sequence po, p1 := Apo, p2 := Ap1, ..., Where gg is an initial approximation to the
solution.

Examples.
1. x = f(t), x(tg) = Xo. Field of directions does not depend on x. Put
Z = 3= 2///?¢ Then already the FIRST approximation
AEEETE TN t
REEE AL p1() = (Ap)(D) = xO+/t f(r)de
- z|= . 0
yieldsthe solution ¢ = f, p1(tg) = Xo.
2. X = X, X(0) = xp. Again put ¢g : =Xo. Then ¢1(t) = X0 + ftg Xodr = Xo(1 + 1),

X pxoe'Q, p2(t) = Xo+ [y Xo(1+1)dr = X0+ (L+t+12/2), ..., pn(t) =

® Xo(1+t +1t2/24 ... 4+t"/nl), so that pn(t) — Xo€e'. And xo€'
. X 0, isindeed the solution.
To justify Picard method we shall show that in an appropriate
space the Picard operator A is a contraction. We need for thisend
/ ! todefineintegral of avECTOR function of real variable.

Integrals of vector functions
Let X beaBanach space (e.g., R"), and let f € C(R, X). Theintegral

b
/ fydt (e X)
a

is defined just as usually (by means of partial sums).

Lemma 12.3.2. b b
/ f(t)at / [ f(t)||dt‘ .
a a
(Hereit may bea > b!)

< It follows from the corresponding inequality for partial sums:

I3 fwoai] < Sufwain =X itainail.

Lemma 12.3.3.

<

v

d b
&‘tzf/a f(r)dr = f(f).
< Just asusualy. >
Lemma 12.3.4. (Newton-L eibniz Theorem). Let ¢ € CL(R, X). Then

b
/ )t = p(b) — p(a).
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< Asusudly. >

Basic Theorem

Theorem 12.3.5. (on existence, uniqueness and continuous dependence on initial condi-
tion). Let X € BS, W € Op(x x R), f € CH(W, X), (X0, to) € W, and we consider the
equation

x = f(x,1). (3)

Then there exist an open interval | with the center at to and an open ball B in X with the
center at Xg, such that

vx € B gy € Soli (3)i.x0

and for any CLOSED interval J c | the mapping

X = (PX|J, B— C(‘]> X)

iS continuous.

<11° At first we construct a subspace M of of a Banach
space, where a modification of Picard operator is a con-
traction Takea > 0, b > 0 such that the cylinder

I := Bp(%0) x la(to)

liesin W. (We denote by I4(t) the closed ball B, (t) inR.)
Put

Si= sup [fx, DI, 4
(x,t)ell

L:= sup [D1f(x,1)] ©)
(x,t)ell

(whereD1 f = of/ox : ¥ — Z (X, X)). These supremums are finite and attained since
I is compact.

Now choosea’ > Oand b’ > O sothat thecone K’ := {(x,t) : |t —to] < &, ||X — Xo|| <
St — tp]} and al its trandations by the vectors
(b, 0), b € By (X0), liesin the cylinder 11:

K:=K + By(xo) x () c Il (g)
Consider the“small” cylinder

I := By (X0) x la(tg) C II.

M := {v € C(IL, X)|V(x,t) € I} [lo(x, )|l < S|t — tol}.

In particular

Yo e M: v(-,t9) = 0. (7)

An element of M is shown on the following two pictures (note that on the left picture the
phase space X is represented by aLINE, and on the right one by a PLAIN):
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The graph of ». The graph of »(x, -) for fixed x.
Emphasizethat M dependsona’, b’, S.
2° Now define a modified Picard operator A on M by the formula

t
(Av)(x,1) ::/t f(X+o(x,7),7)dr ((x,t) e IT). (8)
0

This definition is correct since, by (6), the argument of f liesin V.

3° Amaps M intoitself. < V(x,t) e IT':

t
/ f(x+o(x, 1), 7)dr
to

Lm12.3.2.
<

lAv(x, DIl =

< St —tg|. >>

t
/ 1+ o(x, 1), 1)l de
to

<S

4° Ais a contraction for sufficiently small &’. Indeed A € Lip, 5, where L is from (5).

<K Vo1,02€ M:

t
Aoy Avgll = sp [ (A=Al < s | [ )]
(x,(ggeﬂ’ x,t)ell’ | Jto N
Py t —
_fto(f(x—i-vl(x,r),r) f (X40v2(x,7)))dr M;/TL ”l)]_(X, ‘L') _ DZ(X, ‘L')”
Ots’v'nvl—vzn
Lm123.2. ,
< sup Lt —tol[log — v2|l < La'|lvy — v2l|. D>
(xhelll ~——
<a

5° By Fixed point Theorem (= Contraction Lemma) thereexistsv € M suchthat Av = v.
Put
u(x,t) == x+o(x,1) ((x,t) e IT').

For any given X € By (Xp) (aninitial value) we have

u(x, -) € Sol(3)tg,xo-

d
< gfu(x,t) = a(x—|r v(x,t))

=Ao(X,t)
d t
@ dt (X + [ fx+ox 1), r)dr) MER fx+ox, 1), 1)
t
= FU(x, 1), 0),

and u(x, to) = x + (X, to) = x. o>
e e’
(7)=0
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6° Our solution depends continuously on the initial value x since » is a continuous
mapping.

7° Uniqueness. Take b’ := 0, and consider the corresponding set M and operator A. (Now
M consists from functions defined just on 1 (tg).) Obviously,

9 € S0IB)tyx, < ¢ — X0 € FiX A,

but the fixed point of A isunique (by Contraction Lemma). Hence (on theinterval (fa/ (to))
the solution is unique. >

12.4 Methods of solutions

AsLiouvilleshowed, in general it isimpossibleto solveagiven ODE in expliciteform (in
“quadratures’”), that is, in form of finite combination of elementary and algebraic functions
and of integralsof them. E.g., suchasimple equationsasdy/dx = y2— x cannot be solved
in quadratures.

There are general methods of APPROXIMATIVE solution of ODE’s, in particular methods
based on Picard approximations.

Rather full theory of explicite solution is only for LINEAR ODE'’s, which we consider
in the next two sections.

Here we discuss specia but important case where solutions can be calculated rather
explicitly.

No dependence on x
x = f(t).
This equation describes a process, the speed of which does not depend on its state, but is

fully determined “from outside” . The solution satisfying an initial condition x(tg) = Xg is
given by the “classic” formulaof analysis

t
X(t) = Xo—l—/t f(r)dz.

No dependenceon t
x=f(x) (X=R). (1)

This equation describes an “automatic” process where the behavior of the process is
defined entirely by its present state.

Theorem 12.4.1. Let f € Cl((a, b)), X0 € (a,b), f(xg) # 0 (-0 < a < b < +o0).
Then for any tp € R the solution ¢ of equation (1) with initial condition (xg, to) (which
does exist by Basic Theorem) satisfies the relation

OB
oty — —_— 2
t-h /xo f&) @)
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In other words, our solution x = ¢ (t) can be found by solving of the equation

X X de
t—1ty= —_—
b 0 / f(©)

w.r. to X.

< Let ¢ € Sol(D)ty,x- Then ¢(to) = f(Xo) # 0. By inverse
Function Theorem, the inverse function ¢ =1 =: y is defined
locally (in a neighbourhoodof xp).

Xo
a
\

NN
SN
15 \NRNERN
SN\
AN N
[IANRNERN

~Y

We have v (xg) = to, and
1

Q)
<
Since f (xg) # 0, thefunction1/f (¢) iscontinuousin aneighbourhood of xg. By Newton-
Leibniz Theorem,
X (do)

Xo f(g) -

dy
dx

w(X) — w(xo) =
Putting here x = ¢(t), weobtain (2). >

Separablevariables
. 9(x) _
X = 0 (X =R).
Here x and t enter “separately”. For better symmetry let us write y instead of x and x

instead of t:

dy g(y)
dx TX) ©)

Theorem 12.4.2. Let f and g are of class C! in some neighbourhoods of points xg and
Yo, resp.; let f(xo) # 0, g(yo) # O, and let y = F(x) be a solution of (3) with the
initial condition F (xg) = Yo (such solution does exist by Basic Theorem). Then F isgiven

implicitly by the equation
de / Y dy
Xo f(f) Yo 9(77)

Thus the solution method is: to rewrite (3) formally as dx/ f (x) = dy/g(y) and to
integrate in the corresponding limits.
<1 Consider two new ODE's
x = f(x), 4
y=9(y). (5)

By Basic Theorem, there exist ¢ € Sol(4)0,x,, ¥ € S0l(5)0,y,, defined on a (w.l.o.g.)
COMMON open interval |:

o) = flp®),  ¢(0) =xo, (6)

p() = fy ), v (0) = Xo. ()

We have ¢(0) = f(xo) # 0, w(0) = g(yo) # O. By Inverse Function Theorem, there
exist (locally) theinverse functions, ¢ ~1. We claim that

‘i// W{ U=y op~L e Sol(3)xgy0-

t
(p—l
XY Indeed
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. B _1 y) ©.0  9(y)
109 10 YOO =T s v T00)°

uxo) = v (o 1x0) 2 y(0) 2 yo.

But by Theorem 12.4.1.,
O v dy
/ e S / .
Xo f(é) Yo 9(77)

Putting o (t) = X, y(t) = y,weseethat U=wop l:xm y and
X0 f(f Yo 9(77)’

which iswhat we need. >

12.5 Linear equations
By alinear (homogenious) ODE we mean an equation
x=At)Xx (x:1 > X, XeNS), (1)
where A(t) for eacht € | isacontinuousLINEAR operator in X, and the mapping
Al > ZL(X, X)

is sufficiently smooth. Thus the right-hand side of (1) is linear (and continuous) in x. In
the case X = R" the equation (1) takes theform

X1 = a11(t)xg + ... + amn(t)xn
: 2

Xn = an1 (X1 + ... + ann(t)Xn
so usually one calls (1) alinear ODE with variable coefficients.

Example. Pendulum of variable length: % = —w?(t)x, (X : R —
R). This egquation when written in theform (2) is

X1 = X2
* Xo = —a)z(t)Xl ] (3)

/ Inthe form (1) it looks as

01

X = A()X, where A(t) = (—a)z(t) 0

) , X:R— R2.
A very pleasant feature of linear equationsis that they have solutions defined in the
wholeinterval |:

Theorem 12.5.1. Any solution of (1) can be extended to | .

< Theidea of the proof is such. Since on any COMPACT subinterval J of | the norm || A||

is bounded (as a continuous function), we have ||X|| = ||A{M)x] ||| < CJx]||. on J. It
——

<C
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follows that any solution grows not faster than e“t (in the norm) on J, and hence cannot
go away toinfinity on J. An accurate proof seee.g., in[9, p. 196]. >

NB For non-linear equationsit can be that a solution does not admit
an extension to whole | . E.g., for the equation X = x2 one such
solution x(t) = —1/(t — 1) is shown on the picture.

Vector space of solutions

Theorem 12.5.2. The set S of all the solutions of (1) (defined in the whole I) is a vector
space. This space is isomorphic to the phase space X.

. . e
< 1°If 1, 92 € SOI(D) thenVay, a2 € R: (o191 + a191) = a191 + 0192 = a1Ap1 +

azAp2 = = Ala1p1 + a292), that is, a1p1 + a2¢2 € Sol(1). Thus, Sisa
vector space.
~ In particular

0 € Sol(1),

and

)
Ny
~

¢ € Sol(1) = —¢p € Sol(D);
the picture of integral curvesis SYMMETRIC (see the picture).

2° Fix any t € | and consider the mapping
S —> X o > (),

which sends each solution ¢ into its value at the moment t. Obvioudly, ¢ is linear. The
imageof J; isthewhole X, sinceby Basic Theoremfor any x € X thereexistsasolution ¢
with ¢ (t) = x. Thekernel of ¢; is {0}, since again by Basic Theorem, there exists just one
solution ¢ with ¢ (t) = 0, and this solution is evidently ¢ = 0. Thus ; is both surjective
and injective. >

Fundamental system of solutions
Let X = R". Then, by Theorem 12.5.2,, S~ R". Any basis g1, ..., ¢n of Siscalled
afundamental system of solutionsfor (1). Thus:

a) Each Equation (1) (in R") has a fundamental system of solutions.
b) If p1,..., ¢nisafundamenta system of solutions then any solution ¢ is alinear
combination of ¢1, ..., ¢n.
¢) Any n + 1 solutionsare linearly depend.
d) Foranyts, ty € | the mapping
X X

92 =y 0 (F)7H: X = X

(thetransformation of the phase spacein thetime

3
8 fromty up tot isalinear isomorphism.

t t t
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01

Example. For the pendulum equation X = ( 10

) X (X : R — R?) the system

{(cost, —sint), (sint, cost)}

cost —sint

is afundamental system of solutions. (Verify! [Hint: | S°

—1])

Scalar linear equation of the n-th order
Consider alinear (in x) homogeneous equation of the n-th order with variable coefficients

XMW =a;t)x™V + . 4at)x, (x:1 > R, a eC(,R)). (%)

We know from Theorem 12.1.1. that (4) is equivalent to an equation
X = A()X, X:1 > R" AeC(, ZR",R").
In view of this equivalence, it follows from Theorem 12.5.2. that the following result is
true:
Theorem 12.5.3. The set S of all solutions of (4) (defined on the whole 1) is a vector
space, which isisomorphic to R". Thisisomorphismis realized by the mapping
SR ¢ (), 61),..., 0" PV,

wheret isan arbitrary fixed pointin I .
Any basisof thisn-dimensional vector spaceiscalled fundamental systemof solutions
for (4).

Example. For the pendulum equation X + x = 0 the functions cost, sint form afunda-
mental system of solutions (see example on 171).

Finding solutionswith given initial conditions
Let ¢ beasolution of (4). We say that ¢ satisfiesan initial condition

(Xo, to) € R" x |

(p(t0), ¢ (t0), - .., " P(to) = Xo,
that is,
p(to) = X1

¢(to) = Xo2
. 5)

9" D(to) = Xon

Let we know afundamental system of solutionses, . . ., ¢n for (4). If we need to find
the solution with initial conditions (5), we look for the solution in the form

@ =Cip1+ ... 4 Chon (ci € R).

Then (5) yields
C191(to) + ... + Caon(to) = Xo1

(6)
(=1

cio) (n—-1)

(to) + ... +Chen ' (to) = Xo1
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Solving this linear algebraic system, we obtain the desired valuescy, . . ., C.
Remark. The determinant of the system (6)

p1(to) ... on(to)
p1(to) ... ¢n(to)

" Vito) ... "V (to)

is called Wronskian of the system {1, ..., ¢n}. Since the solution of (6) MUST exist for
any Xo we conclude that Wronskian of any fundamental system of solutions of (4) is
NO-zERO for eacht e T.

Variation of constants
For solving of NON-homogenious linear equations the following METHOD OF VARIATION
OF CONSTANTS is available:
In order to solve an equation

X =AMbX+ht), x:1—>R"AeCl,Z®R",R", heCI,R",

supposing we know a fundamental system ¢1, ..., ¢n Of solutions of the corresponding
homogenious equation x = A(t)x, we look for the solutionsin the form

o) =c1)p1(®) +... +a®e®) (9,911 > R"
(with VARIABLE “constants’ ¢;!). Then we obtain these unknown functions
(c1,....,cn):=c: 1 = R"
a“smplest” linear equation of the form
¢=f@t) (f:1 > R",

which we know to solve.

Example. Consider the equation
X4+x=ft) x:l->R,feCl,R),0€l, 7)
with initial condition (0, @), a = (a1, a2) € R?, that is
x(0) = a1, x(0) = ap. (8)
Reduction to a 1. order system yields

X1 = X2 X1(0) = a1
X2=—X1+f}’X2(0)=az}' ©)

The corresponding homogenious system

X1 = Xo
X2 = —Xq

has awell known (Example on page 171) afundamental system of solutions

{(cost, —sint), (sint, cost)}.
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So look for the solution in the form
(X1, X2) = c1(t)(cost, — sint) + co(t)(sint, cost).
The substitution into (9) gives after ssimplifications
¢icost + G sint = O] c1(0) = ag ]
—¢1sint +¢cost=f [” c2(0)=az |’
whence we obtain

Gi=—fsnt, ci(0)=a; = ¢y =a; — ft f(r)dnzdr,
¢ = fcost, c0)=ay= cz=ax+ [, f(r)cosrdr.

If followsthat the answer is (X (t) = x1(t)!):

t t
X(t)(zs) (X(O)_/o f(r)sinrdr) cost + ()'((0)+/0 f(z) COSTdT)Sint.

12.6 Linear equationswith constant coefficients
Here we study an equation
X = AX, X:R— X, X eNS Aec Z(X,X). (1)

We suppose that the space .Z (X, X) (with the operator norm) is COMPLETE; for example,
itisever truefor X = R".
In the simplest case X = R we have an equation

X = ax, X:R—> R,aelR.
The solution is well-known
X = xoe™, xo = X(0).

In the general case theresult is just the same:

Theorem 12.6.1. Any solution x of (1) can be extended to the whole R and is given by the
formula
x = e™xo, Xo = x(0).

Here for any operator A € Z (X, X) we put

et = id+A+ IAZ+ LA+ e Z2(X, X), A= Aoc...0A
" .
k-times

This series convergesin Z (X, X), since it is majorized by the converging non-negative
real series > 2 IIAIK/K! (indeed, || AX|| = || Ao 0 All < 1AI9).
k-times
<1 Thetheorem can be proved essentially in the sameway asin classic 1-dimensional case
(using member wise differentiation of series). >
Thus principally we know the solution of (1), but the problem is how to CALCULATE
e for concrete A. Even for X = R it isnon-trivial problem.
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Case of diagonal operators
Let X = R". We shall identify an operator A € Z(R", R") with its matrix. If A is

diagonal, that is,
Ve 0
A= ,
0 n

ght 0
et =<

0 e/t
Koo
<1Ak=< ),hence
0 Ik
2Kk

ALtk 5 T 0 (iealt 0 )

then it is easy to calculate e™:

ki
0 KT

Hence the solution of equation

X = AX, X(0) = Xo = (Xo1, - - - » Xon)

x = eMxg = (X1, . . ., Xon€™™).
Notethat Ak arejust the EIGENVALUES of our diagonal operator. Thus, each component
of the solution hasthe form
celt

where 4 isan eigenvalue of A.
NB In OTHER bases the components of the solutions will be LINEAR COMBINATIONS of the
exponents ekt

General case
In occursthat in general case each component of the solution of an equation

X = AX, Xx:R—>R", Ae ZR",R"), (2
isalinear combination of n members of the form
tMRee't or  tM™Zmet

where 1 isan eigenvalueof A (4 € C) and misanatural number less than multiplicity of
A
Recall that the eigenvalues of a are roots of the characteristic equation

det(A—1E)=0 E denotesthe unit matrix

and that the multiplicity of an eigenvalueis just the multiplicity of the root.



12.6. LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS 175

Case of one scalar equation of n-th order
xM™ = a;x™D 4 4ax, x:R— C, aj € C. (3)

Aswe know (3) can be considered as a specia case of (2). It followsthat:
Any solution of (3) hasthe form

k
x(t)=>_e"'p, (4)
I=1
where 11, ..., Ak arethe different roots of the characteristic equation
M=a "4 +a, (5)

and p isapolynomial of degreelessthan the multiplicity of theroot 4;.
NB Thisresult remainstruefor non—homogeniousequationsx(”) =ax™ D4 +ax+
f(t), if f(t) hastheform (4).

Examples.

1.X+x = 0. The characteristic equation 2 + 1 hasthe roots £i; we have Ree*'t = cost,
Imett = +sint. The functions cost, sint form a fundamental system solutions. The
general solution is ¢y cost + ¢z sint.

2. % — x = 0. The characteristic equation 12 — 1 has the roots +1. The corresponding
functions € and e~! form a fundamental system of solutions. The general solution is
c1€ + cpet. (In particular sht and cht are solutions.)

3.% = 0. Thecharacteristic equation 22 = 0 hasone 2-multipleroot 0. The corresponding
functionsfrom (4) are 1 and t. They form afundamental system of solutions. The general
solutioniscy + cot (aswell known, of course).



