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Preface

The principal type of question asked in mathematics is, “Is state-
ment S true?”’ where the statement S is of the form “Every member
of the class A is a member of the class B: 4 © B.” To demonstrate
that such a statement is frue means to formulate & proof of the inclu-
sion A € B. To demonstrate that such a statement is false means to
find a member of A that is not a member of B, in other words a coun-
terexample. To illustrate, if the statement S is “Every continuous
function is somewhere differentiable,” then the sets A and B consist
of all continuous functions and all functions that are somewhere dif-
ferentiable, respectively; Weierstrass’s celebrated example of a func-
tion f that is continuous but nowhere differentiable (cf. Example 8,
Chapter 3) is a counterexample to the inclusion A < B, since f is a
member of A that is not a member of B. At the risk of oversimplifica~
tion, we might say that (aside from definitions, statements, and hard
work) mathematics consists of two classes—proofs and counter-
examples, and that mathematical discovery is directed toward two
major goals—the formulation of proofs and the eonstruction of coun-
terexamples. Most mathematical books concentrate on the first class,
the body of proofs of true statements. In the present volume we ad-
dress ourselves to the second class of mathematical objects, the coun-
terexamples for false statements.

Generally speaking, examples in mathematics are of two types, il-
lustrative examples and counterexamples, that is, examples to show
why something makes sense and examples to show why something
does not make sense. It might be claimed that any example is a coun-
terexample to something, namely, the statement that such an example
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is impossible. We do not wish to grant such universal interpretation to
the term counterexample, but we do suggest that its meaning be suffi-
ciently broad to include any example whose role is not that of il-
lustrating a true theorem. For instance, a polynomial as an example
of a continuous function is not a counterexample, but a polynomial as
an example of a function that fails to be bounded or of a function that
fails to be periodic ¢s a counterexample. Similarly, the class of all
monotonic functions on a bounded closed interval as a class of in-
tegrable functions is not a counterexample, but this same class as an
example of a function space that is not a vector space is a counter-
example.

The audience for whom this book is intended is broad and varied.
Much of the material is suitable for students who have not yet com-
pleted a first course in calculus, and for teachers who may wish to
make use of examples to show to what extent things may ‘“‘go wrong’’
in calculus. More advanced students of analysis will discover nuances
that are usually by-passed in standard courses. Graduate students
preparing for their degree examinations will be able to add to their
store of important examples delimiting the range of the theorems they
havelearned. We hope that even mature experts will find some of the
reading new and worthwhile.

The counterexamples presented herein are limited almost entirely
to the part of analysis known as “real variables,” starting at the level
of calculus, although a few examples from metric and topological
spaces, and some using complex numbers, are included. We make no
claim to completeness. Indeed, it is likely that many readers will find
some of their favorite examples missing from this collection, which
we confess is made up of our favorites. Some omissions are deliberate,
either because of space or because of favoritism. Other omissions will
undoubtedly be deeply regretted when they are called to our atten-
tion.

This book is meant primarily for browsing, although it should be a
useful supplement to several types of standard courses. If a reader
finds parts hard going, he should skip around and pick up something
new and stimulating elsewhere in the book. An attempt has been
made to grade the contents according to difficulty or sophistication
within the following general categories: (i) the chapters, (ii) the topics
within chapters, and (iii) the examples within topics. Some knowledge
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of related material is assumed on the part of the reader, and therefore
only a minimum of exposition is provided. Each chapter is begun
with an introduction that fixes notation, terminology, and definitions,
and gives statements of some of the more important relevant theo-
rems. A substantial bibliography is included in the back of the book,
and frequent reference is made to the articles and books listed there.
These references are designed both to guide the reader in finding
further information on various subjects, and to give proper credits
and source citations. If due recognition for the authorship of any
counterexample is lacking, we extend our apology. Any such omission
is unintentional.

Finally, we hope that the readers of this book will find both enjoy-
ment and stimulation from this collection, as we have. It has been our
experience that a mathematical question resolved by a counterex.
ample has the pungency of good drama. Many of the most elegant
and artistic contributions to mathematics belong to this genre.

B.R.G.

Irvine, California

J.M.H.O.
Carbondale, Illinots
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Chapter 1
The Real Number System

Introduction

We begin by presenting some definitions and notations that are
basic to analysis and essential to this first chapter. These will be
given in abbreviated form with a minimum of explanatory discussion.
For a more detailed treatment see [16], [21], [22], and [30] of the
Bibliography.

If A is any set of objects, the statement a is a member of A is
written ¢ € A. The contrary statement that a is not a member of A is
written ¢ ¢ A. If A and B are sets, the statement A is a subset of B
is written A C B, and is equivalent to the implication z € A implies
r € B, also written « € A = « € B. The phrase if and only if is
often abbreviated iff, and soinetimes symbolized <. The set whose
members are a, b, ¢, -+ is denoted {a, b, ¢, ---}. The notation
f+--|---} is used to represent the set whose general member is
written between the first brace { and the vertical bar |, and whose
defining property or properties are written between the vertical bar
| and the second brace }. The union and intersection of the two
sets A and B can therefore be defined:

AuB={z|lz€ A or z¢€ B},
AnB={z|z€ A,z € B},

where thé comma in the last formula stands for and. For convenience,
members of sets will often be called points. The difference between
the sets 4 and B is denoted A \ B and defined:

A\B={z|z€ A,z ¢ B}.



1. Functions of a Real Variable

When a general containing set or space or universe of discourse S is
clearly indicated or understood from context, the difference S\ A4 is
called the complement of A, and denoted 4’. In general, the
difference A \ B is called the complement of B relative to A.

If A and B are two nonempty sets (neither A nor B is the empty
set @), their Cartesian produect is the set of all ordered pairs (a, b),
where ¢ € A and b € B, denoted:

AXB={(ab|acAbec B

If (@, 8) € A X B, a is the first coordinate or component of
(a, b) and b is the second coordinate or component of {(a, b).
Any subset p of A X B is called a relation from A to B. A function
from A to B is a relation f from 4 to B such that no two distinet
members of f have the same first coordinate. If the phrases there
exists and there exist are symbolized by the existential quantifier 3,
and the words such that by the symbol 3, the domain (of definition)
D = Dy and range (of values) R = R; of a function f can be defined:

D=D;={z|3y > (&) €S},
R =R;={y|3z > (x,9) € f}.

The function f is & function on A into B iff f is a function from 4 to
B with domain equal to A. The function f is a function on A onto
B iff f is a function on A into B with range equal to B. A function f
is a one-to-one correspondence between the members of 4 and
the members of B iff f is a function on 4 onto B such that no two
distinet members of f have the same second coordinate. The values
of a function are the members of its range. The inverse f~! of a
one-to-one correspondence f is obtained by interchanging the domain
and range of f:

= {9 @) cfl

A constant function is a function whose range consists of one point.
Various types of relations and functions are indicated in Figure 1.
In each case the sets A and B are taken to be the closed unit interval
[0, 1] consisting of all real numbers z such that 0 £ z < 1.
Let f be a function on A into B, symbolized in the following two
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e

22

\%\

L

_

From-to On-into On-onto From-to
relation relation relation function
On-ir}to On-onto One-to-one Constant
function funetion correspondence function

Figure 1

ways:
f:4 — B,
P
A — B.

If z is an arbitrary member of 4, then thére is exactly one member
y of B such that (z, y) € f. This member y of B is written:

y = fx).
Other ways of writing the function just deseribed are:
fiy=f@=), =€ 4, ye€B;
fre € A, f(x) € B;
or,
y=f@):z€ A, yeB,
f@):z € A4,

when it is clear from the context that the notation f(x) represents a
Juncifon rather than merely one of its values.
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If f is a function with domain D, and if S is a subset of D, then
the restriction of f to S is the function g whose domain is S such that

z € 8= g(x) = flx).
The range of the restriction of f to S is denoted f(S). That is,
f8) = {yldz € 83 flx) = y}.

If ¢ is a restriction of f, then f is called an extension of g.

If f and g are functions such that the range of g is a subset of
the domain of f, then the composite of f and g, denoted fo g,
is the function whose value at the point z of the domain of ¢ is
flg(x)); in short, the function y = f(g(x)) is called the composite of
the function f(u) and the function u = g(z). (It should be noted that
the composite of f and g is not in general the same as the com-
posite of g and f; counterexample: (z 4+ 1)% # 2% 4 1.)

If A is a nonempty set, a binary operation from A to A isa
funetion from A X 4 to A. A binary operation on 4 into 4 is a
function on A X A into A. In classical arithmetic there are two fun-
damental binary operations: addition and multiplication. Many prop-
erties of these operations in arithmetic are shared by operations in

more abstract settings, where the operations bear the same names. If

a binary operation F is called addition, and if z = F((z, ¥)), then 2
is also written z = z + y. If a binary operation @ is called multi-
plication, and if z = G((z, ¥)), then z is also written z = 2y, or
z=1-Y.

Definition I. A4 field is a nonempty set F, together with two binary
operations on § into F, called addition and multiplication, such that:

A. For addition:
(¢) The associative law holds:

z,y,2€F=z+(@y+2)=@@+y +e
#%) 3 @ member 0 of F such that

T€EF=>z4+0=z.

@)z €= (—2)€F >z + (~z) = 0.

(tv) The commutative law holds:
L,YyeF=rx+y=y-+uz

1. The Reol Number System

B. For multiplication:
(1) The associative law holds:
z, Y, 2 €F=2yz) = (zpe.
(¢) 4 a member 1 of § such that 1 = Oandz € 5§ = -1 = g.
@zeFz#0=Ac1€F>z 21 = 1.
(1) The commutative law holds:
T,y € F=zy = yz.
C. For addition and multiplication:

The distributive law holds (more precisely, multiplication 4s
distributive over addition): )

Ty, 2 F=zly + 2) = zy + 2z

The member 0 of &, of A(47), is called the zero, or additive iden-
tity, of . The member (—z) of &, of A(¢7), is called the negative,
or additive inverse, of z. The binary operation z — y, defined by
¢ —y =z + (—y), is called subtraction. The member 1 of &,
of B(i), is called the one, or unity, or multiplicative identity,
of §. The member &~ of &, of B(#%), is called the reciprocal, or
multiplicative inverse, of z. The binary operation z/y, defined by
x/y = zy~*, where y # 0, is called division. Division is a “from-to”
operation and not an “on-into” operation since “division by zero”
is excluded. )

A nonempty set G together with a binary operation on G into
G — in this case denoted +- and called addition — subject to prop-
erties A(7), (¢2), and (¢77) is called a group (in this case, an additive
group). In case the commutative law A(i) holds, G is called an
Abelian or commutative group. Thus, with respect to addition
any field is an Abelian additive group. With respect to multiplica-
tion the nonzero members of a field form an Abelian multiplicative
group.

Definition I1. An ordered field is a field § that contains a subset
® such that
(@) @ s closed with respect to addition; that s,

zEPYyEPC=2+ y€ @
(#5) ® is closed with respect to multiplication; that 18,

TER,YEPC=ay € P
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(#57) = € § = exactly one of the three stalemenis is true:

T €@ xz=0; —z € @.

A member x of T is positive iff x € ®; x is negative iff —x € @

Inequalities in an ordered field are defined in terms of membership
in ®. For example,

r<y iff y—z€@;
sy ff z—-yE€® or z=y.

A function f from § to &, where F is an ordered field, is increasing
(or nondecreasing) on a subset 4 of its domain iff

z,y € 4,z <y=fl@) = f@).
The function f is strictly increasing on A iff
z,y € 4,z <y=fz) <f.

The terms decreasing (or nonincreasing) and strictly decreasing
are similarly defined. A function is monotonie on a set iff it is
either increasing or decreasing there. Strictly monotenic has an
obvious definition. :
If & is an ordered field and if z € &, then |z |, called the absolute
value of z, is defined to be z in case z = 0, and to be —z in case
z<0.
The following are a few of the standard properties of absolute value,
where z, y, £ € F.
@ |z]=20;]z| =0iff x = 0.
@) |zy| =|=z]|-|yl
(@) He> 0,z <ceiff —e <z <e
() The triangle inequality: |z + y| £ |z |+ |y].
@) |z | = /2% ; that is, |z | is the unique member of @ u {0}
whose square = z2% :
@) [z —lyl| S|z —yl
If & is an ordered field, and if a, b € &, a < b, then the following
sets are called finite or bounded intervals, further described by the
attached initial adjective, and denoted as indicated with parentheses

3
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and/or brackets:

open: (@,b)={z|lz€% a<z<b}
closed: [a,0] ={z|z€F a =z £ b},
half-open (or half-closed): lo,b) ={z|z2€5, a <z <8},
bhalf-open (or half-closed): (@, ={z|z€% a <z = bl

Infinite or unbounded intervals are similarly delineated:

open: @ +«) ={z]|z > d},
open: (—w,0) ={z|z <a},
closed: f[a, +=) ={z]|z = a}.
closed: (—w,a] ={z]|2 = a}.

open and closed: (— o, +») =g,

A neighborhood of a point @ of an ordered field & is an open in-
terval .of the form (@ — ¢, @ + &), where ¢ is a positive member of
F. This neighborhood can also be written in terms of absolute values,
and will be denoted:

Na,e)=(—¢cate) ={z|]|z—a]<e.

A deleted neighborhood of a point a is a neighborhood of ¢ with
the point a deleted; a deleted neighborhood D(a, ¢) of a, for some
& > 0, is thus defined:

D@, e) ={x|0< |z —a]| < &.

The binary operations max and min on & to & are defined:

z if z=2y
max (z = . = &5
(=, ¥) {ylfa:<y;

. if= 2z 2

x

If 5 is an ordered field, if u € &, and if z < u for every member z
of a nonempty set A of points of &, then u is called an upper bound
of A. A nonempty set in ¥ is bounded above in F iff there exists a
member of & that is an upper bound of the set. If s is an upper bound
of A and if s is less than every other upper bound of 4, then s is
called the least upper bound or supremum of A, written s =

9
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sup (4) = sup A. Similar definitions hold for lewer bound, bounded
below, and greatest lower bound or infimum ¢ of a nonempty
set A, written ¢ = inf (4) = inf 4.

Definition III. A complete ordered field is an ordered field F
in which a least upper bound exists for every nonempty set in § thai
18 bounded above in F.

Any two complete ordered fields & and & are isomorphic in the
sense that there exists a one-to-one correspondence z <> z’, where
z € §and 2’ € §’, that preserves binary operations and order; that
is:

@+y) =+, (=Y, z<yiffa’ <y.

(For a proof and discussion, see [35], pp. 128-131.) As far as structure
is concerned, then, the real number system is uniquely described by
the definition:

Definition IV. The real number system ® is a complete ordered
field.

A function on A onto B is called real-valued iff B C ®&; it is called
a function of a real variable iff A C ®. .

The signum function is the real-valued funection of a real variable
defined and denoted: sgnz = 1 ifz > O;sgna = —1if ¢ < 05
sgn 0 = 0.

If S is any nonempty space and if 4 is any subset of S, then the
characteristic function of A is the real-valued function x, de-
fined: x4 () = 1ifz € Aand x.(z) = 0ifz € 4" = S\ 4.

Definition V. An inductive set tn an ordered field § is a set A
having the two properties:

(@) 1€ A.

(@ z€Ad=2+ 1€ A

Definition VI. A member n of an ordered field § is ¢ natural
number ¢ff n is a member of every inductive set of F. The set of all
natural numbers of § is denoted .

From this definition follow the familiar properties (cf. [35] pp
17-18) of natural numbers, including the theorem:

10
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Fundamental Theorem of Induction. If § is an inductive set
of natural numbers, then § = 91,

If 9 and %):LL* are the sets of all natural numbers of two ordered
fields ¥ and 5, then 9t and 9t* are isomorphic (cf. [35], pp. 34-35).

Definition VII. A member  of an ordered field 5 is an integer iff
r €N, x =0, 0or —x € N A member z of an ordered field is a

rational number iff there exist integers m and n, n # 0, such that
% =m/n.

The set of all rational numbers of an ordered field &, under the
operations of addition and multiplication of § and the ordering of
%, is also an ordered field, denoted Q. (Any two ordered fields of
rational numbers are isomorphic; ef. [35], p. 67.)

‘Deﬁnition VIII. A ring is a nonempty set ®, together with two
binary operations on & into ®, called addition and multiplication,
such that the following laws of Definition I hold: A(5), (@), (@), (),
B@), C, and a second distributive law:

. T, Y,2€8= (r 4+ yr = 22 + y2.

Deﬁnition IX. An integral domain is a ring © such that the
Jollowing additional laws of Definition I hold: B(@), () — that s,
all laws of Definition I except for B(iti) — and also the following
weakened form of B(44): )

D. z2ED,YED, 0,y # 0= 2y == 0.

That D is a weakened form (that is, a consequence) of B(4k)
can be seen by assuming the existence of z = 0 and y # 0 such that
2y = 0. Then a7 (xy) = (z7'z)y = 1y = y # 0, whereas z-10 = 0.
(Contradiction.) In any ring, law D is equivalent to the law:

D', Cancellation law. 2y = 22,2 # 0= Yy =z

(D = D’ since zy = a2z iff 2(y — 2) = 0; D’ = D since zy = 0 can
be written zy = 20.)

The set of all integers of an ordered field &, with the operations of
addition and multiplication of %, is an integral domain, denoted ¢ .
Any two integral domains of integers are isomorphic (cf. [35], p. 64).

Let f be a function from & to &, where 5 is an ordered field, and

I
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let ¢ € &. Then f is continuous at a iff ¢ belongs to the domain D
of f, and corresponding to an arbitrary positive member ¢ of F 3
a positive member § of § such that | f(z) — f(a) [ < ¢ for every z of
D such that |z — a | < 6. With the aid of the universal quantifier
Y, representing the words for all, for an arbiirary, for every, or for
each, and the language and notation of neighborhoods, this last
portion of the definition of continuity of f at a point a of D can be
expressed: :

Ve>036>05fDnN(,d)) CN{JFa),e).

A point p is a mit point of a nonempty set 4, in an ordered field
g, iff every deleted neighborhood of p contains at least one point of
A:

Ve>0da€ Dip,e)nA.

If f is a function from F to &, if @ is a limit point of the domain D
of f, and if b € F, then the limit of f(z) as z approaches ¢ is said
to exist and equal b, with the notation

lim f(z) = b,

-
Ye>036>053f(DnD(a,d) C NO,s).

One-sided limits are defined similarly, and denoted lim,... f(x)
and lim,... f(z).

A funetion f from an ordered field § to F is uniformly continuous
on a subset A of its dowain D iff

YVe>038>005
T €A, o — 2| <= [flm) — flae) | < &

If f is a function from an ordered field F to &, and if ¢ is a point of
the domain D of f, then the symbol f'(a) denotes the member of F
defined

Fla) = m 1@ = f@) _ ) fle+ 1) — fa)
r— a

h—>0 h

3
Eadid

iz

e R
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providesi this limit exists. The function f’ defined by f'(z) whenever
f'(x) exists for z in the domain of D is called the derivative of f.
A function f from an ordered field & to F is said to have the inter=

mediate value property on an interval I contained in its domain
iff

Vabel,d€EF3a<b

and either fa) < d < f(b) orf(a) > d > f(b),
Acda<e<h  flo) =d

A sequence is a function whose domain is the set of natural
numbers 9. Its value for n is usually denoted by means of a sub-
script, thus: @, , and the sequence itself by braces: {a,}. A sequence
{a.}, where the values or terms a, are members of an ordered field

7, 1s said to be convergent and to have the limit b, or to converge
to b, where b € &, iff

Vec®INECRIn>N=]a, ~b| <e¢

where @ is the set of positive members of & . A sequence is divergent
iff it fails to be convergent (that is, iff a limit b fails to exist). A

sequence {a.}, where the terms a, are members of an ordered field
5, i1s a Cauchy sequence iff

VeE(PENES’LBm,n>N$]am—an|<e.

Every convergent sequence is a Cauchy sequence, and if § = @
every Cauchy sequence is convergent (cf. [34], p. 57).

A complex number is an ordered pair (z, y) of real numbers
z and y. Addition and multiplication of complex numbers are

defined:
@y + W) = @+ uy+ ),

@, ¥, v) = @u — w, 2 + yu).

The complex numbers form a field € (cf. [34], p. 497), with zero

(0, 0) and unity (1, 0). In the sequel the standard notation z + 7y
for the ordered pair (z, ) will be usual.

1. An infinite field that cannot be ordered.
To say that a field F cannot be ordered is to say that it possesses

13
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no subset @ satisfying the three properties of Definition II of the
Introduction. A preliminary comment is that since every ordered
field is infinite, no finite field can be ordered ([35], p. 38).

An example of an infinite field that cannot be ordered is the field
€ of complex numbers. To show that this is the case, assume that
there does exist a subset ® of € satisfying Definition II. Consider
the number ¢ = (0, 1). Since ¢ # (0, 0), there are two alternative
possibilities. The first is ¢ € @, in which case ¢* = (-1, 0) € @,
whence ¢ = (1, 0) € @. Since ¢ and ¢* are additive inverses of
each other, and since it is impossible for two additive inverses both
to belong to @ (cf. Definition I, (44%)), we have obtained a contradic-
tion, as desired. The other option is —¢ = (0, —1) € @, in
which case (—2)2 = (—1,0) € ®, whence (—2)* = (1, 0) € @,
with the same contradiction as before.

2. A field that is an ordered field in two distinet ways.

The set & of all numbers of the form r 4 s4/2, where r and s are
rational and the operations of addition and multiplication are those
of the real number system ® of which  is a subset, is an ordered field
in which the subset ® of Definition II is the set of all members of &
that are positive members of ®, that is, positive real numbers. A
second way in which & is an ordered field is provided by the subset
®& defined:

r+svV2ERET — /26 6.

That & satisfies the three requirements of Definition II is easily
verified.

Each of the fields @ of rational numbers and & of real numbers is
an ordered field in only one way ([35], p. 146).

3. An ordered field that is not complete.

"The ordered field @ of rational numbers is not complete. This can
be seen as follows: The set 4 of all positive rational numbers whose
squares are less than 2,

A=fr|reg, r>0, r* <2

is nonempty (1 € A) and is bounded above by the rational number
9. Let us assume that @ is complete. Then there must be a positive

14
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rat%onal number ¢ that is the supremum of A. Since there is no
rational number whose square is equal to 2 (cf. [35], p. 126), either
¢ < 2orc? > 2. Assume first that ¢ < 2 and let d be the positive

number
1 2 -
d 4
mm<< T 1)2,1>.

Then ¢ + d is a positive rational number greater than ¢ whose square
1s less than 2:

c+dr<er+dc+ 1) <2

But this means that ¢ 4+ d € A, whereas ¢ is an upper bound of 4 .
(Contradiction.) Now assume that ¢? > 2 and let d be the positive
number

— ¢ —2
2c+ 1)
Then ¢ — d is a positive rational number less than ¢ whose square is
greater than 2:

(c—ad)?>¢c®—dlc+1)2> 2.

Since ¢ — d is therefore an upper bound of A less than the least upper
bound ¢, a final contradiétion is reached.

4. A non-Archimedean ordered field.

An ordered field F is Archimedean iff the set 9 of natural numbers
of § is not bounded above in ¥ (equivalently, whenever a, beg
a > 0,b > 0, then there exists a natural number n such that ng > b)i
Let f be a polynomial function on ® into ®:

f@):,;akxk’ @me€®R, k=201---,mn,

and let g be a nonzero polynomial function (that is, g(z) is not iden-
tically zero), and let f/g be the rational function k defined by h(z) =
f(x)/g(x) whose domain consists of all real numbers for which g(z) # 0.
Let 3¢ consist of all rational functions f/g in lowest terms (the only
common polynomial factors of f and g are constants), with addition

15
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and multiplication defined:

for_fstgr for_fr
g s gs '’ g s gs

where the right-hand member in each case is reduced to lowest terms.
Then 3¢ is a field ([35], p. 104). If a subset @ of 3¢ is defined to consist
of all nonzero f/g of 3¢ such that the leading coefficients (that is,
the coefficients of the terms of highest degree) of f and ¢ have the
same sign, then @ satisfies the requirements of Definition II, and
3¢ is an ordered field. But any rational function f/1, where f is a
nonconstant polynomial with positive leading coefficient, is an upper
bound of the set 9T of natural numbers of 3¢ (the natural numbers of
3¢ are the constant rational functions of the form 7n/1, where » is the
constant polynomial whose values are all equal to the real natural
number n). For a more detailed discussion, see [35], pp. 99-108.

5. An ordered field that cannot be completed.

To say that an ordered field & cannot be completed means that
there is no complete ordered field ® containing & in such a way that
the operations of addition and multiplication and the order relation
of & are consistent with those of ®. The preceding example 3¢ of
rational functions cannot be completed in this sense or, in other
words, cannot be embedded in the real number system (cf. Definition
IV). The reason, in brief, is that if 3¢ could be embedded in &, then
the natural numbers of 3¢ would correspond in an obvious fashion
with those of ®&. Since 9 is bounded above in € but not in ® ({35],
p. 122), a contradiction is obtained.

6. An ordered field where the rational numbers are not dense.

The “rational numbers” of the ordered field 3¢ of Example 4 are
not dense in ¢. That is, there are two distinct members of 3¢ having
no rational number between them. In fact, any ordered field ¥ in
which the rational numbers are dense is Archimedean. To see this,
let @ be an arbitrary positive member of F, and let m/n be a rational
number between 0 and 1/a. Adjust notation if necessary in order to
assume (without loss of generality) that m and n are both positive.
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whenee # > a. Consequently @ is not-an upper bound of 2, and
since ¢ is arbitrary, 97 is not bounded above. It follows, then, that
since 3¢ is not Archimedean the rational numbers of 3¢ cannot be
dense in 3C. Examples of two distinet members of 52 having no ra-
tional number between them are any two distinct nonconstant poly-
nomials with positive leading coefficients.

7. An ordered field that is Cauchy-complete but not complete.

If the ordered field 3¢ of rational functions, Example 4, is extended
by means of equivalence classes of Cauchy sequences, the resulting
structure is an ordered field in which every Cauchy sequence converges.
However, by Example 5, this Cauchy-completion cannot becomplete in
the sense of the definition given in the Introduction in terms of least
upper bounds. (For a treatment of Cauchy-completion in general,
see [20], pp. 106-107, [21].)

8. An integral domain without unique factorization.

A unit of an integral domain ® is a member u of © having a
multiplicative inverse » in ® : w» = 1. (The units of the integral
domain ¢ of integers are 1 and —1.) Any member of © that is the
product of two nonzero members of D neither of which is a unit is
called compesite. Any nonzero member of D that is neither a unit
nor composite is called prime. An integral domain O is a unique
factorization domain iff every nonzero nonunit member of D
can be expressed as a product of a finite number of prime members
of ®, and when so expressed is uniquely so expressed except for the
order of the factors or multiplication of the factors by units.

In the real number system ® define the set ® of all numbers of
the form a + b+/5, where a, b € 9. Then @ is an integral domain.
The following two facts are not difficult to prove (cf. [35], p. 144):
(#) The units of ® consist of all & + b+/5 such that | a2 — 5b2 | = 1.
(%) If @ + b\/5 isanonzero nonunit, then | a* — 5% | = 4. Con-
sequently, if 1 < [a? — 5b%| < 16,a -+ b+/5 is prime. In particular,

17
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2,1 4+ +/5,and —1 + +/5 are all prime members of & since for
each, | a® — B5b%| = 4. Furthermore, the two factorings of 4,

2:2 = (1 + v/5)(~1 + /5),

are distinct in the sense defined above: No factor of either member
is a unit times either factor of the other member. (For details see
[35], p. 145.)

9. Two numbers without a greatest common divisor.

In an integral domain D, a member m divides a member n, written
m | n, iff there exists a member p of D such that mp = n. A mem-
ber d of D is called a greatest commoeon divisor of two members a
and b of D iff:

) d|la and d]|b;
(41) cla,clb=cld.

In the integral domain & of the preceding example, the numbers 4
and 2(1 4+ +/5) have no greatest common divisor. (For details,
see [35], pp. 145-1486.)

10. A fraction that cannot be reduced to lowest terms uniquely.

If fractions are constructed from pairs of members of the integral
domain ® of Example 8, the fraction 2(1 + +/5)/4 can be reduced
to lowest terms in the following two ways:

20+ v5) _1++/5 _ 2
4 2 ~14++/5
The results are distinet in the sense that neither numerator is a

unit times the other, and neither denominator is a unit times the
other.

11. Functions continuous on a closed interval and failing to
have familiar properties in case the number system is not
complete.

We conclude this chapter with a collection of functions defined
on a closed interval [a, b] € @ and having values in @. These ex-
amples would all be impossible if the rational number system @,
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which is not complete (¢f. Example 3), were replaced by the real
number system ®, which is complete. The ordered field g will
be considered to be embedded in ® in order that symbols such as
4/2 can be used. The letter x is assumed to represent a rational
number in every case.

a. A function continuous on a closed interval and not bounded there
(and therefore, since the interval is bounded, not uniformly continuous
there).

1

f(x) = PR U 0

IIA

z =< 2.

A

b. A function continuous and bounded on a closed interval but not
uniformly continuous there.

_Jo, 0=z<+/3,
f(")‘{l, V2 <z <2

c. A function uniformly continuous (and therefore bounded) on a
closed interval and not possessing « moximum value there.

fl@) = © — a3, 0=sz=1.

d. A function continuous on a closed interval and failing to have the
intermediate value property.

Example b; or f(z) = z? on [1, 2], which does not assume the
value 2 intermediate between the values 1 and 4.

e. A nonconstant differentiable function whose derivative vanishes
identically over a closed interval.
Example b.

f. A differentiable function for which Rolle’s theorem (and therefore
the law of the mean) fails.
Example c.

g. A monotonic uniformly continuous nonconstant function having
the tntermediate value property, and whose derivative is identically O on
an tnterval.

This example is more difficult than the preceding ones. It can be
constructed by means of the Cantor set defined and discussed in
Chapter 8. For details, see Example 15, Chapter 8.
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Chapter 2

Functions and Limits

Introduction

In this chapter it will be necessary to extend some of the deﬁmtlons
of Chapter 1, or to introduce new ones. Unless a specific statement to
the contrary is made, all sets under consideration will be assumed to
be subsets of ®, the real number system, and all funetions will be
assumed to be real-valued functions of a real variable.

We start by extending unions and intersections to infinite collections
of sets Ay, Ao, ++- ¢

o0
UA1,=A1UA2U e =

n=1

{x|z € A, for at least one n = 1,2,---},

-0
n1A” =A;nd;n---={zx|x € A, foreveryn = 1,2, ---}.

A set A is closed iff it contains all its limit points; that is, iff there
is no point of A’ that is a limit point of A. A set A4 is open iff every
point of A has a neighborhood lying entirely in A. A point p is a
frontier point of a set A iff every neighborhood of p contains at
least one point of A and at least one point of A’. The set of all
frontier points of A is called the frontier of A4, and is denoted F(A).
A point p is an interior peint of a set A iff there exist a neighborhood
of p that lies entirely in A. The set of interior points of A is called
the interior of A, and is denoted I(4). Any closed set A is the
union of its interior and its frontier: A = I(A) u F(A). The closure
of A, denoted A, is the union of the set A and the set of all limit
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points of A. An open covering of a set A is a family {U,} of open
sets U, whose union contains 4 ; in: this case {U,} covers A. A set
4 is compact iff every open covering of A contains a finite subfamily
that covers A. In the space ® a set is compact iff it is closed and
bounded. (This is the Heine-Borel theorem and its converse; cf. [34],
p. 202.)

A set A is countable iff A is finite or there exists a one-to-one
correspondence whose domain is 9, the set of natural numbers, and
whose range is 4 .

An important property of the real number system is that, for any
real number z, there exists a unique integer n such that

n=zr<n+1 or z—1<n=uzx

Since n is determined uniquely as the greatest integer less than or
equal to z, a function f is thereby defined, known as the greatest
integer function or the bracket function, denoted f(z) = [z], and
equivalently defined as the integer [z] satisfying

or z—1<[z]=2«x

bl <2 < ]+ 1,

Square brackets should be interpreted as indicating the bracket
funetion only when an explicit statement to that effect is made.

A function f on ® into ® is periodic with period p iff f(x + p) =
f(x) for all z € ®. A function is periodic iff it is periodic with period
p for some nonzero p.

Let ¢ be a limit point of the domain D of a function f, and assume
that f(x) is bounded in some neighborhood of a, for * € D. The
limit superior and limit inferior of f at a, denoted lim,., f(z) and
Him,... f(z), respectively, are defined in terms of the functions ¢ and ¢
ag follows: For 6 > 0,

¢(8) = sup {f(z) |z € D n D(g, 8)},
¥(8) = inf {f() |2 € D nD(g, 9)},
lim f(z) = inf {¢(5) | 5 > 0},

za

hm (@) =
lim f(z) = lim ¢(2) = sup (¥() |5 > 0.
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1. Functions of a Real Variable

A function f is upper semicontinuous at a point a € D iff lim,., f(z)
= fla); f is lower semicontinuous at o iff lim... f(z) = flo); f is
semicontinuous at ¢ iff f is either upper semicontinuous at a or
lower semicontinuous at a.

A function f is locally bounded at a point o that is either a
point or a limit point of the domain of f iff there exists a neighborhood
of a on which f is bounded; f is locally bounded on a subset A of its
domain iff f is locally bounded at every point of 4.

Infinite limits 4= «, and limits of f(z) as © ~— == «, are defined as
in the case of lim,., f(z) = b, except that (deleted) neighborhoods of
infinity are used:

D(+wx,N) = (¥, +=),
D(—w»,N) = (—«,N).
For example: ’
lim fz) = 4+ iff VKIs> 05 f(DnD(gd) C D(+=, K),

>0

lim flz) =5

L0

it Ve>03dN3IfDnaD(—=,N))C NO,e).

Basie definitions of convergence and uniform convergence of in-
finite series, and the Weierstrass M-test for uniform convergence,
will be assumed as known (cf. [34], pp. 381, 444, 445).

1. A nowhere continuous fonction whose absolute value is
everywhere continuous.

f(z) = 1 if z 1s rational,
TNV =9N 1 if ¢ is irrational.

2. A function continuous at one point only. (Cf. Example 22)

fa) = {9‘_ .

if z is rational,
if z is irrational.

The only point of eontinuity is 0.

3. For an arbitrary noncompact set, a continuous and un-
bounded function having the set as domain.

22
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(a) If A is an unbounded set of real numbers, let
fl@)y =2, x€ A,
(b) If A is a bounded set of real numbers that is not closed, let ¢
be a limit point of A but not a member of 4, and let
_ 1
If f is continuous on a compact set A , then f is bounded there
(cf. [36], p. 80).

4. For an arbitrary noncompact set, an unbounded and locally
bounded function having the set as domain.

Example 3.

If f 1s locally bounded on a compact set A , then fis bounded there.

5. A function that is everywhere finite and everywhere locally
unbounded.

If z is a rational number equal to m/n, where m and n are integers
such that the fraction m/n is in lowest terms and # > 0, then m
and n are uniquely determined (ef. [35], p. 53). Therefore the following
function is well defined:

n  ifzisrational, z=m/nin lowest terms, = > 0;

0 if z is irrational.

-]

If f were bounded in N(a, £), then for all m/n in N(a, €) the de-
nominators n would be bounded, and hence the numerators m would
be too. But this would permit only finitely many rational numbers
in the interval N(q, ¢). (Contradiction.) (Cf. Example 27, Chapter 8,
for a function incorporating these and more violent pathologies. Also
cf. Example 29, Chapter 8.)

6. For an arbitrary noncompact set, a continuous and bounded
function having the set as domain and assuming no extreme
values. .

(a) If A is an unbounded set of real numbers, let
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2
x

flz) = ZETD x€A.
Then f(z) has no maximum value on 4 . If f(z) is defined
2
e (N2l T
fl@) = (-1) FIT € A,

where [| z [] is the greatest integer less than or equal to |z |, then
J(x) has neither a maximum value nor a minimum value on A.

(b) If A is a bounded set of real numbers that is not closed, let ¢
be a limit point of 4 but not a member of 4, and let

f@) = —|z — ¢, z € A.
Then f(z) has no maximum value on A. If f(z) is defined
fa@y = (=YL ~ |z — ¢},

where brackets are once again used to represent the “bracket func-
tion,” and L is the length of some interval containing A4, then f(z)
has neither a maximum nor a minimum value on A .

7. A bounded function having no relative extrema on a com-
pact domain. .

Let the compact domain be the closed interval [0, 1], and for
z € [0, 1], define

( (—_ﬂ if z is rational, x = m/n in lowest terms, n > 0.
flz)y={n+1
0 if  is irrational .

Then in every neighborhood of every point of [0, 1] the values of f
come arbitrarily close to the numbers 1 and —1 while always lying
between them. (CI. [14], p. 127.)

8. A bounded function that is nowhere semicontinuous.

The function of Exarmple 7 is nowhere upper semicontinuous since
lim,... f(x) is everywhere equal to 1 and therefore nowhere < fla).
Similarly, this.function is nowhere lower semicontinuous. (Notice
that the function of Example 1 is upper semicontinuous at a iff g is
rational and lower semicontinuous at ¢ iff a is irrational.)
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9. A nonconstant periodic function without a smallest posi-
tive period.

The periods of the function of Example 1 are the rational numbers.

The periods of any real-valued function with domain ® form an
additive group (that is, the set of periods is closed with respect to
subtraction). This group is either dense (as in the present example)
or discrete, consisting of all integral multiples of a least positive
member. This latter case always obtains for a nonconstant periodic
function with domain @& that has at least one point of continuity.
(CA1. [36], p. 549.) ’

10. An irrational function.

The funetion 4/ is not a rational function (cf. Example 4, Chapter
1) since 1t is undefined for z < 0.

The function [z] is not a rational function since it has discontinuities
at certain points where it is defined.

The function | z | is not a rational function since it fails to have a
derivative at a point at which it is defined.

The function /22 + 1 is not a rational funection. This can be
seen as follows: If /22 + 1 = f(z)/¢() for all z, then /22 + 1/z =
f(x)/xg(x) for all z 5¢ 0, and hence lim .+, f(x)/zg(x) = 1. This
means that f(z) and zg(x) are polynomials of the same degree, and
therefore lim,, . f(x)/zg(z) = 1, whereaslim,, . /2% + 1/z = —1.
(Contradiction.)

11. A transcendental function.

A function f is algebraic iff 3 a polynomial p(u) = D 1w a(z)u?,
whose coefficients ao(z) , a1(z) , -+« , ¢.(z) are real polynomials (that
is, their coefficients are all real) not all of which are identically zero
and such that the composite function p(f(z)) vanishes identically on
the domain of f. A function is transcendental iff it is not algebraic.

An example of a transcendental function is ¢”, for if it is assumed
that

ao(z) + ai@)e” + -+ - + a,(2)d™,
where ao(z) is not the zero polynomial, vanishes identically, a contra-
diction is got by taking the limit as  — — « and using ’Hospital’s
rule on indeterminate forms to infer the impossible conclusion
lim ae(z) = 0.

X0,
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Another example is sin z, since if
bo(z) + bi(x) sinz + --- 4 b,(z) sin” z,

where bo{z) is not the zero polynomial, vanishes identically, then
bo(kw) = O for all integral k. (Contradiction.)

Other examples (for similar reasons) are In z (the inverse of ¢*) and
the remaining trigonometric functions.

The following functions listed under Example 10 as irrational are

algebraic: /z, [z | (& | = V), and /22 + 1.

12. Functions ¥ = f(u),u € ®, and u = g(x), x € ®, whose
composite function y = f(g(x)) is everywhere continuous, and
such that

lim f(u) = ¢, lim g(x) = b, lim f(g(x)) # ec.

u-+b x>a X

I
if w0, u & ®,

fw) °
u) =
1 if w=0,
then lim,.o f(u) = 0. If g(z) = 0 for all z € @, then, flglx)) = 1
for all z, and hence lim,. f(g(x)) = 1.
This counterexample becomes impossible in case the following
condition is added: z # a = g(z) # b.

13. Twe uniformly continucus functions whose product is not
uniformly continuous.

The functions z and sin z are uniformly continuous on ® since
their derivatives are bounded, but their product z sin z is not uni-
formly continuous on ®.

In case both functions f and ¢ are bounded on a common domain
D and uniformly continuous on D, their product fg is also uniformly
continuous on D. Since any function uniformly continuous on a
bounded set is bounded there, it follows that the present counter-
example is possible only when the common domain under consider-
ation is unbounded and at least one of the functions is unbounded.
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14. A function continuous and one-to-one on an interval and
whose inverse is not continuous. .

For this example it is necessary that the interval nof be a closed
bounded interval (ef. [34], p. 192), and that the function not be
strictly real-valued (cf. [34], p. 50, p. 52, Ex. 25). Our example in
this case is a complex-valued funetion z = f(z) of the real variable
z , with continuity defined exactly as in the case of a real-valued
function of a real variable, where the absolute value of the complex
number z = (a, b) is defined ’

2] = [(a, b)] = (a® + b2
Let the function 2 = f(z) be defined:
z = f(z) = (cos z, sin z), 0=z <2nr
Then f maps the half-open interval [0, 27) onto the unit circle |2 | = 1
continuously and in a one-to-one manner. Since the unit circle is

compact the inverse mapping cannot be continuous (cf. [34], p. 192),
and fails to be continuous at the point (1, 0).

15. A function continuous at every irrational point and dis-
continuous at every rational point.

If 2 is a rational number equal to m/n, where m and n are integers
such that the fraction m/n is in lowest terms and n > 0, let f(z) be
defined to be equal to 1/n. Otherwise, if z is irrational, let f(z) = 0.
(Ct. [34], p. 124.)

It will be shown in Example 10, Chapter 8, that there does not
exist a function continuous at every rational point and discontinuous
at every irrational point.

16. A semicontinuous function with a dense set of points of
discontinuity.

The function of Example 15 is upper semicontinuous at every
point a, since

lim f(z) = 0 < f(a).

17. A function with a dense set of points of discontinuity
every one of which is removable.
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If @ is a rational number and if the function of Example 15 is
redefined at ¢ to have the value zero, then, since

lim f(z) = 0 = f(a),
as redefined, f becomes continuous at a.

18. A monotonic function whose points of discontinuity form
an arbitrary countable (possibly dense) set.

If A is an arbitrary nonempty countable set of real numbers, a; ,
Gy, 0z, ,let > pa be a finite or convergent infinite series of positive
numbers with sum  (the series being finite iff A is finite, and having
as many terms as A has members). If A is bounded below and z <
every point of 4, let f(z) = 0. Otherwise, define f(z) to be the sum
of all terms P, of 2_p, such that a, < z. Then f is increasing on ®,
continuous at every point not in A, and discontinuous with a jump
equal to p, at each point a,, (thatis, lims.q,y f(@) — e~ (@) = pa).

Tt should be noted that for monotonic functions this example
illustrates the most that can be attained by way of discontinuities:
for any monotonic function the set of points of discontinuities is
countable (¢f. [36], p. 59, Ex. 29). Example 1 shows that without
monotonicity the set of points of discontinuity may be the entire
domain.

"19. A function with a dense set of points of continuity, and a
dense set of points of discontinuity no one of which is re-

movable.
In Example 18, let the set 4 be the set @ of all rational numbers.

20. A one-to-one correspondence between two intervals that
is nowhere monotonic.

Let f(z) be defined for 0 £ z < 1:
vx if z is rational,
flz) = e e
1 — z 1if z is irrational.

Then there is no subinterval of [0, 1] on which f is monotonic. The
range of f is again the interval [0, 1], and f is one-to-one.
A function having these properties and mapping the interval [a, b]
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onto the interval [¢, d] is

- a

c+(d-—c):_
g(z) =

d N ZT—a L T—
+ (¢ d)b—-a lfb—

rT— Q

1fb__

is rational,

a. . ..
o irrational.

21. A continuous function that is nowhere monotonic.

Let fi(r) = |z | for |z| £ 1, and let fi(z) be defined for other
values of z by periodic continuation with period 1, ie., fi(z + n) =
fi(z) for every real number z and integer n. For n > 1 define £,(z) =
471f;(4"'z), so that for every positive integer n, f, is a periodic
funetion of period 4—"*1, and maximum value £-4-»*+1, Finally, define
f with domain ®:

f(z) = anu) _ AT

»=1 4" —1

Since | f.(z) | £ %-47+1 by the Weierstrass M -test this series con-
verges uniformly on ®, and f is everywhere continuous. For any
point a of the form @ =k - 47", where & is an integer and m is a
positive integer, f,(a) = 0 for n > m, and hence f(a) = fi(a) + ---
=+ fm(a@). For any positive integer m, let h., be the positive number
4~2m=1 Then f,(@ + hwn) = 0forn > 2m + 1, and hence

fla + hn) — fla) = [fila + hn) — fi(@)] +

+ [fula + hn) — fu(a)]
+ fapile + hy) + + fompi(e 4+ hw)
—thm + (m + Dby = b, > 0,

%

Similarly,
fla = hw) — fla) 2 —mhw + (M + Dhy = by > 0.

Since members of the form a = k-4 are dense, it follows that in
no open interval is f monotonie.

The above typifies constructions involving the condensation of
singularities. '
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22. A function whose points of discontinuity form an arbitrary

given closed set.
If A is a closed set, define the set B:

xz € F(4) or
lz€I(4)ng,
and define the function f:

'_ 1 if z2¢B,
@ =10 & z € B.

If ¢ € A, f is discontinuous at ¢: if ¢ € F(4) then f(c) = 1 while
z is a limit point of the set ® \ A, on which f is identically 0; if
¢ € I(4) n g then f(x) = 1 while ¢ is a limit point of the set I(4) \ g,
on which £ is identically 0; if ¢ € I(4)\ @, then f(c) = 0 while ¢ is
a limit point of the set 7(4) n ©, on which f is identically 1. The
function f is econtinuous on the set ® \ A, since this set is open and
f is a constant there.

23. A function whose points of discontinuity form an arbitrary
given F, set. (Cf. Example 8, Chapter 4, and Examples 8, 10, and
22, Chapter 8.)

A set A is said to be an F, set iff it is a countable union of closed
sets (cf. Example 8, Chapter 8). Fora given F,set A = A;u 4.0 -
where A, Ag, --- are closed and 4, € A,y forn = 1,2, --- |
let Ay denote the empty set @, and define the disjoint sets B,,
n =12 -

Jx € (An\ An-)\ I(A,\ 44—1) or
Lx € I(Aﬂ \ An—-l) n Q
Let the function f be defined:

z € B, iff

JZ”" if z€ B,
f@) = ) :
0 if z4& BiuByuy -+

If ¢ € A, f is discontinuous at ¢: if ¢ € (A, \ A1) \ T(4,\ 4,—1)
then f(¢) = 2~ while ¢ is a limit point of a set on which f has values
differing from 2-= by at least 2-=1; if ¢ € (A, \ An-1) 0 Q then
f(e) = 2~ while ¢ is a limit point of the set 7(4,\ 4.1\ @ on
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which f is identically 0; if ¢ € I(4,\ 4,1)\ @, then f(¢) =
while ¢ is a limit point of the set I(4,\ 4,_;)n Q on which f is
identically 2. If ¢ ¢ A, f is continuous at c: if ¢ > 0 is given,
choose N such that 2% < ¢; then choose a neighborhood of ¢
that excludes 41, 42, +-+, Ay and inside which, therefore, f(z) <
277 L e

It should be noted that for any function f on ® into & the set of
points of discontinuity is an F, set (cf. [36], p. 84, Exs. 30-33, p. 332,
Ex. 41).

24. A function that is not the limit of any sequence of con-
tinuous functions. (Cf. Example 10, Chapter 4.)

The function f in Example 1 has the property that there is no
sequence {f,} of continuous functions such that lim, . . f.(z) = f(z)
for all real z, but the proof is not elementary. For a discussion and
references, see [10], pp. 99-102. The idea is that f is everywhere
discontinuous, while any function that is the limit of a sequence of
continuous functions must have a dense set of points of continuity.

The characteristic function of the set @ of rational numbers is
the limit of a sequence {g,} of functions each of which is the limit of
a sequence {h,} of continuous functions, as follows: If {r,} is a
sequence that is a one-to-one correspondence with domain 9% and
range Q, define

1"d z=r,ry -
ga(z) = .
0 otherwise.

Each function ¢, is the limit of a sequence of continuous functions
each of which is equal to 1 where g,(z) = 1, equal to 0 on closed
subintervals interior to the intervals between consecutive points
where ¢,(z) = 1, and linear between consecutive points that
are either endpoints of such closed subintervals or points where
go(x) = 1. Notice that for each 2, {g.(2)} is increasing, while the
sequence that converges to g.(z) can be chosen to-be decreasing.

©y O Ty,

25. A function with domain [0, 1] whose range for every non-
degenerate subinterval of [0, 1] is [0, 1]. (Cf. Example 27, Chap-
ter 8.)

A function having this property was constructed by H. Lebesgue
(cf. [28], p. 90) and is described in [10], p. 71. (Also cf. [14], p. 228.)
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If z is an arbitrary number in [0, 1], let its decimal expansion be
r = 0.(11(12(13 .

where, in case z ecan be expressed ambiguously by either a terminat-
ing decimal or one with indefinitely repeated 9’s, it is immaterial
which expansion is chosen. For definiteness suppose the terminating
expansion is consistently chosen. The value f(z) depends on whether
or not the decimal 0.aias05 - -+ is repeating or not — that is, on
whether the number 0.a,aza5 - - - is rational or not (cf. [35], p. 178):

0 if 0.aiasas --- is irrational,

f@) = {

if 0.a1as05 --- is rational with its
first repeating segment beginning
Wlth Aop—1.

0.020m+20244 ***

Let I be an arbitrary subinterval of [0, 1], and choose the digits
a1,03, """, Qap—2 8O that both 0.a1as * -+ @9,—20 and 0.a:0s - -- Aon—2l
belong to I and such that ae,—s is different from both 0 and 1. If
y = 0.bibebs --- is an arbitrary point in [0, 1], we have only to
define a1 = Qa1 = *** = Qg5 = 0 and a4,3 = 1, with sub-
sequent a’s with odd subscripts defined by cyclic repetition in groups
of n, to obtain a number

T = 0.0:10:03 *** Gom—1D102m 11020213 *

belonging to the interval I and such that the expansion

0.010305 -+ * Gon—302m—102n11 "

is a periodic decimal whose first period starts with as,—;, and con-
sequently such that

f(:l?) = O.blbzbs e

The graph of f is dense in the unit square [0, 1] X [0, 1], although
each vertical segment {z} X [0, 1] meets the graph in exactly one
point.

A function whose range on every nonempty open interval is ® and
that is equal to zero almost everywhere (and hence is measurable) is
given in Example 27, Chapter 8. (Also cf. Example 26, below.)

Since the unit interval [0, 1] contains infinitely many disjoint
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open intervals (no two have a point in common — for example,
1 1 .

(n g n) ,n = 1,2, -..) —the function f of the present example

takes on every one of its values infinitely many times. Another ex-

ample of a function that assumes every value infinitely many times

is given in Example 9, Chapter 10.

26. A discontinuous linear function.

A function f on ® into ® is said to be linear iff f(z + 3) = f(z) +
f(y) for all z, y € ®. A function that is linear and not continuous
must be very discontinuous indeed. In fact, its graph must be dense
in the plane ® X ®. For a discussion of this phenomenon, and
further references, see [10], pp. 108-113. In case f is continuous it
must have the form f(z) = cx, as can be shown by considering in
succession the following classes of numbers: 9, 4, @, ®.

Construction of a discontinuous linear function can be achieved
by use of a Hamel basis for the linear space of the real numbers &
over the rational numbers @ (cf. references 29, 30, and 32 of [10]).
The idea is that this process provides a set 8 = {r,} of real numbers
7, such that every real number x is a wunique linear combination of
a finite number of members of S with rational coefficients p,:x =
PayTa; + *** + Paylay. The function f can now be defined:

flz) = Doy + - _I_pak)

since the representation of x as a linear combination is unique. The
linearity of f follows directly from the definition, and the fact that f
is not continuous follows from the fact that its values are all rational
but not, all equal (f fails to have the intermediate value property).

27. For each n € 9, n(2rn + 1) functions ¢;(x;), j = 1, 2,
-,n,i=1,2, .-, 2n + 1, satisfying:
(a) All ¢;(x;) are continuous on [0, 1].
(b) For any function f{x;, %3, -+, %x,) continuous for
0 =< x15 %95 *¢+ 5 Xn = 1, there are 2n + 1 functions y;,
i=1,2, ---,2n -} 1, each continucus on ®, such that

‘ 2n+1 n
Sz 29, o+ %) = le i (;; ¢ij(xj))-
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I. Functions of a Keal Variable

This theorem is due to A. N. Kolmogorov [26] and resolves a
famous problem posed by D. Hilbert. Stated as a solution of Hil-
bert’s (thirteenth) problem, the above result reads: Every continuous
function f(xy, @2, <<+, Z.) of n real variables, 0 = 1, 23, -+ -,
2, £ 1, may be expressed as a sum (the sum Z%Zfl above) of the com-
posites of continuous functions of single variables and sums of continuous
functions of single variables (the sums )7 above).

The proof is highly ingenious, although it is accessible to any reader
with the patience to trace through a rather straightforward mul-
tiple induction.

We note only that the functions ¢,; are universal in that they do
not depend on f. The functions ¢, while not independent of f, are not
uniquely determined by f (even after the functions ¢,; have been con-
structed). Details will be found in the cited reference.
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Chapter 3

Differentiation

Introduction
In some of the examples of this chapter the word derivative is
permitted to be applied to the infinite limits

fm (G ) = S(0) _ fz+ ) = @) _

—— w‘
0 h

-+ o, lim
h->0

However, the term differentiable funciton is used only in the strict
sense of a function having a finite derivative at each point of its
domain. A function is said to be infinitely differentiable iff it has
(finite) derivatives of all orders at every point of its domain.

The exponential function with base e is alternatively denoted
¢" and exp (z). )

As in Chapter 2, all sets, including domains and ranges, will be
assumed to be subsets of ® unless explicit statement to the contrary
is made. This assumption will remain valid through Part I of this
book, that is, through Chapter 8.

1. A function that is not a derivative.

The signum function (ef. the Introduction, Chapter 1) or, indeed,
any function with jump discontinuities, has no primitive — that is,
fails to be the derivative of any function — since it fails to have the
intermediate value property enjoyed by continuous functions and
derivatives alike (ef. [34], p. 84, Ex. 40). An example of a discon-
tinuous derivative is given next.
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{. Functions of a Real Variable

2. A differentiable function with a discontinuous derivative.
The function

z’ siml if z #0,
flz) = z
0 ifz=0
has as its derivative the function
, Zchinl—-(:os1 if z5#0,
=) = z x
0 ifx= O’

which is disecontinuous at the origin.

3. A discontinuous function having everywhere a derivative
(not necessarily finite).

For such an example to exist the definition of derivative must be
extended to include the limits =4 . If this is done, the discontinuous
signum function (Example 1) has the derivative

@ 0 if z#0,
T ==
g 4w i z=0.

4. A differentiable function having an extreme value at a
point where the derivative does not make a simple change in
sign.
The function
x4(2 + sin1> ifz =0,
flz) = "”
0 ifz=20

has an absolute minimum value at z = 0. Its derivative is

(:vZ [490 (2 -+ sin l) — COS l:l if x # 0,
@) = @ :
0 ifz =0,

which has both positive and negative values in every neighborhood
of the origin. In no interval of the form (a, 0) or (0, b) is f monotonic.
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5. A differentiable function whose derivative is positive at a
point but which is not monotonic in any neighborhood of the
point.

The function

:1:—{—290‘2sin1 if z # 0,
flz) = z
LO fz=0
has the derivative
, l—l-élacsinl—Zcosl ifez =0,
f (Q;) = x x
1 iz = 0.

In every neighborhood of 0 the function f’(z) has both positive and
negative values.

6. A function whose derivative is finite but unbounded on a
closed interval.
The function

{x sm1 ifz 0,
2

fle) =¢
Lo ifzx=0
has the derivative
1
2xsm cos— ifz %0
f(z) = f ’
ifz =0,

which is unbounded on [—1, 1}.

s

7. A function whose derivative exists and is bounded but pos-
sesses no (absclute) extreme values on a closed interval.
The function

. (x‘*e"é’”g sin §3 if x';é 0,
flx) = x
0 ifz=0
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has the derivative

( —}z? 3 _
F@) =" [<4x
0

In every neighborhood of the origin this derivative has values ar-
bitrarily near both 24 and —24. On the other hand, for 0 < & =
fz] = 1 (cf. [34], p. 83, Ex. 29),

8

12°) sing—3 — 24 cos —3] f 20,
x z

f z=0.

—3q2 _1 2 ~in2 . E 2
0<e <1 4he <1 16h’

and

s 1 s\. 8 81 9.3
(4::: §x>sm;c§ 24cos;§ =H4—l-2h.

Therefore 0 < A = 1 implies

' 3 2 9 3 __9 2 —
lf(x)l<<1 1—6h>(24+§h><24 SH(1—h) < 24

Therefore, on the closed interval [—1, 1] the range of the function

J' has supremum equal to 24 and infimum equal to —24, and neither

of these numbers is assumed as a value of f’.

8. A function that is everywhere continuous and nowhere
differentiable.

The function |z | is everywhere continuous but it is not dif-
ferentiable at # = 0. By means of translates of this function it is
possible to define everywhere continuous functions that fail to be
differentiable at each point of an arbitrarily given finite set. In the
following paragraph we shall discuss an example using an infinite
set of translates of the function |z |.

The function of Example 21, Chapter 2, is nowhere differentiable.
To see this let a be an arbitrary real number, and for any positive
integer n , choose h, to be either 41 or —4~"-15o that | f.(a + h,) —
fa@)| = |ha|. Then |fula + k,) — fu(a) | has this same value
| by | for all m < n, and vanishes for m > n. Hence the difference
quotient (f(a + h.) — f(a))/h. is an integer that is even if = is even
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and odd if » is odd. It follows that

n—>+oo hm

cannot exist, and therefore that f’(a) cannot exist as a finite limit.
The first example of a continuous nondifferentiable function was
given by K. W. T. Weierstrass (German, 1815-1897):

-+
flx) = ;) b” cos {a*mx),

where b is an odd integer and ¢ is such that 0 < ¢ < 1 and ab >
1 + $r . The example presented above is a modification of one given
in 1930 by B. L. Van der Waerden (cf. [48], p. 353). There are now
known to be examples of continuous functions that have nowhere a
one-sided finite or infinite derivative. For further discussion of these
examples, and references, see [48], pp. 350-354, [10], pp. 61-62, 115,
126, and [21], vol. II, pp. 401-412.

The present example, as described in Example 21, Chapter 2,
was shown to be nowhere monotonic. For an example of a function
that is everywhere differentiable and nowhere monotonie, see [21],
vol. II, pp. 412-421. Indeed, this last example gives a very elaborate
construction of a function that is everywhere differentiable and has
a dense set of relative maxima and a dense set of relative minima.*

9. A differentiable function for which the law of the mean
fails. . ’

Again, we must go beyond the real number system for the range of
such a function. The complex-valued function of a real variable z,

f(z) = cos -+ 7 sin z,

is everywhere continuous and differentiable (cf. [34], pp. 509-513),
but there exist no a, b, and £ such that ¢ < £ < b and

(cos b+ ¢ sin b) — (cos a + 4 sin @) = (—sin £ + ¢ cos £)(b — a).
Assuming that the preceding equation is possible, we equate the
squares of the moduli (absolute values) of the two members:

*BSee also A. Denjoy, Bull. Soc. Math. France, 43 (1915), pp. 161-248 (228ff.).
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I. Functions of a Real Variable
(cosb —cosa)? + (sinb — sin a)? = (b — a)?
or, with the aid of elementary identities:
S.m2b—a__ (b—a)2
2\ 2/
Since there is no positive number A such that sin & = & (cf. [34],
p. 78), a contradiction has been obtained.

10. An infinitely differentiable function of x that is positive
for positive x and vanishes for negative x.
The function

et i x>0,
f(””)={o if 70

is infinitely differentiable, all of its derivatives at # = 0 being equal
to O (cf. [34], p. 108, Ex. 52).

11. An infinitely differentiable function that is positive in
the unit interval and vanishes outside.

e-—l/ z2(1—2)2

J@) = {O

12. An infinitely differentiable “‘bridging function,” equal to 1
on [1, + =), equal te 0 on (— «, 0], and strictly monotonic on

if 0<z<l,
otherwise.

[0, 11.
exp I:-‘IE exp (——1—>:| if 0<z<l,
z 1 — 22
7= =1 it 20,
1 if z=>1.

13. An infinitely differentiable monoteonic function f such that
liinf(x) = 0, lim f/(x) # 0.
>+ z->tw

If the word monolonic is deleted there are trivial examples, for
instance (sin x?)/z. For a monotonic example, let f(z) be defined to
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beequalto 1 forz < 1, equalto 1/n on the closed interval [2n — 1, 2n],
forn = 1,2, -+, and on the intervening intervals (2n, 2n + 1)
define f(x) by translations of the bridging function of Example 12,
with appropriate negative factors for changes in the vertical scale.
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Chapter 4

Riemann Integration

Introduction

The definition of Riemann-integrability and the Riemann (or def-
inite) integral of a function f defined on a closed interval [a, 0],
together with the principal elementary properties of this integral,
will be assumed known. The same is the case for the standard im-
proper integrals and, in Example 14, for the Riemann-Stieltjes
integral.

Tn some of the examples of this chapter the concept of measure zero
is important. A set A C ® is said to be of measure zero iff for any
£ > 0 there is an open covering of A consisting of a countable collec-
tion of open intervals whose lengths form a convergent infinite series
with sum less than e. The interior of every set of measure zero is
empty. A point-property is said to hold almost everywhere iff
the set where the property fails is of measure zero. A function f whose
domain is a closed interval [a, b] is Riemann-integrable there iff it
is bounded and continuous almost everywhere (cf. [36], p. 153, Ex.
54).

1. A function defined and bounded on a closed interval but not
Riemann-integrable there.
The characteristic function of the set @ of rational numbers,

restricted to the closed interval [0, 1], is not Riemann-integrable
there (ef. [34], p. 112).

2. A Riemann-integrable function without a primitive.
The signum function (Example 1, Chapter 3) restricted to the
interval [—1, 1] is integrable there, but has no primitive there.
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3. A Riemann-integrable function without a primitive on any
interval.

Example 18, Chapter 2, with 4 = @n|[0, 1], is integrable on
[0, 1] since it is monotonic there, but has no primitive on any sub-
interval of [0, 1] since its points of jump discontinuity are dense
there.

4. A function possessing a primitive on a closed interval but
failin)g to be Riemann-integrable there. (Cf. Example 35, Chap-
ter 8.

The function f of Example 6, Chapter 3, is an example of a func-
tion having a (finite) derivative g(z) at each point = of a closed in-
terval I. The function g, therefore, has a primitive but since g is
unbounded it is not Riemann-integrable on I.

The two preceding examples (Examples 3 and 4) are of interest
in connection with the Fundamental Theorem of Caleulus. One form
of this theorem states that if a function f(z) (i) s iniegrable on the
interval [a, b] and (%) has a primitive F(z) there (F'(z) = f(z) for
a = x £ b), then the Riemann integral of f(z) can be evaluated by
the formula [ f(z) dz = F(b) — F(a). A second form of this theorem
states that if a function f(z) is continuous on the interval [a, b],
then both (7) and (%) of the preceding form are true, with G(z) =
[5f() dt being a specific primitive, and for any primitive F(z),
ffi fx)dz = F() — F(a). A third form of the theorem reads the
same as the first form stated above, except that the function F(z)
is assumed merely to be continuous on [a, b] and to possess a deriva-
tive F'(z) equal to f(z) at all but a finite number of points of [a, b].

5. A Riemann-integrable function with a dense set of points
of discontinuity.

Example 3 provides a monotonic function having the specified
properties.
Example 15, Chapter 2, provides a nowhere monotonic function

having the specified properties. In this latter case [Lf(zx)dz = 0
forallg and b .

6. A function f such that g(x) = [;f(t) dt is everywhere dif-
ferentiable with a derivative different from f(x) on a dense set.
If f is the function of Example 15, Chapter 2 (cf. the preceding
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Example 5), g(z) = [§ f(t) dtis identically zero, and therefore ¢’(z) = 0
for all z. Therefore ¢g'(x) = f(z) iff z is irrational.

7. Two distinct semicontinuous functions at a zero *‘dis-
tance.”
In this case the distance d between two functions f and g in-

tegrable on [a, b] is defined to be the integral of the absolute value of -

their difference:
, .
d Ef,, 1f(z) — ¢(2) | d.

If f is the semicontinuous function of the preceding example (cf.
Example 16, Chapter 2) and if g is identically zero, then f(z) and
g(z) are unequal for all rational values of z (and thus f and ¢ are
decidedly distinct functions), while the distance d defined above is
equal to zero.

8. A Riemann-integrable function with an arbitrary F, set of
measure zero as its set of points of discontinuity. (Cf. Example
22, Chapter 8.)

Somewhat as in Example 23, Chapter 2, let A be a given F, set of
measure zero, A = A; u As u ---, where A, As, --- are closed
subsets of an interval [a, b] and A, C Apysforn = 1,2, --- . Let
A, denote the empty set @, and define the function f:

. 2-» if $6An\An_1,
f(x)={o it 24 A

If ¢ € A, f is discontinuous at ¢: if ¢ € A,\ A,.1, then since
A, \ Aa_1 is a set of measure zero it contains no interior points and
¢ is a limit point of a set on which f has values differing from 27" by
at least 271 If ¢ ¢ A, fis continuousat ¢ :if € > 0 is given, choose
N such that 2-¥ < ¢ ; then choose a neighborhood of ¢ that excludes
Ay, As, -+, A, and inside which, therefore, flz) < 2% < e

9. A Riemann-integrable function of a Riemann-integrable
function that is not Riemann-integrable. (Cf. Example 34,
Chapter 8.)

If f(z) = 1 0 < & < 1 and f(0) = 0, and if g is the function f
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of Example 15, Chapter 2, restricted to the closed interval [0, 1],
then f(g(z)) is the characteristic function of the set @ of rational
numbers, restricted to [0, 1], equal to 1 if z is rational and equal to
0 if z is irrational. (Cf. Example 1 of this chapter.)

10. A bounded monotonic limit of Riemann-integrable func-
tions that is not Riemann-integrable. (Cf. Example 33, Chapter
8.)

The sequence {g,} defined in Example 24, Chapter 2, when re-
stricted to the closed interval [0, 1], is an increasing sequence of
Riemann-integrable functions; that is, for each z € [0, 1], g.(z) =
gopr@) forn =1,2, ... [ If g(z) = lir_{l ga(z) for z € [0, 1], then

g is the characteristic function of the set @ of rational numbers, re-
stricted to the closed interval [0, 1], and thus (cf. Example 1) g is not
Riemann-integrable there. :

11. A divergent improper integral that possesses a finite Cauchy
principal value.

The improper integral fi: z dz is divergent, but its Cauchy prin-
cipal value (cf. [34], p. 145, Ex. 30) is

lim | 2dz = lim 0 = 0.

a->to a a-»>4-00
12. A convergent improper integral on [1, 4+ «) whose in-
tegrand is positive, continuous, and does not approach zero
at infinity.

For each integer n > 1 let (gn) = 1, and on the closed intervals
In — n2, n] and [n, n 4 n~? define g to be linear and equal to 0 at
the nonintegral endpoints. Finally, define g(z) to be 0 for z = 1 where
g(z) is not already defined. Then the function

f(z) = g(z) + 5}2'

is positive and continuous for x = 1, the statement lim f(z) = 0 is

x>

false, and the improper integral

+ao
) f(z) de

converges.
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If the requirement of positivity is omitted, a simple exa,mpl‘e
satisfying the remaining requirements (cf. [34], p. 146, Ex. 43) is
J1* cos 2% dz.

13. A convergent improper integral on [0, + ) whese in-
tegrand is unbounded in every interval of the form [a, + =),
where a > 0.

The improper integral [¢°x cos x*dx satisfies these conditions
(cf. [34], p. 146, Ex. 43). . ,

An example where the integrand is everywhere positive and con-
tinuous can be constructed in a manner similar to that of the preced-
ing Example 12 by letting g(n) = n and considering the closed
intervals [n — »%, n] and [n, n + n73%.

14. Functions f and g such that f is Riemann-Stieltjes in-
tegrable with respect to g on both [a, b] and [b, c], but not

on [a, ¢}
Let
_fo if 05z<1,
f(“’)={1 if 1szs2,
_foif 0=z=1,
1@ =31 # 1<zzx2

andleta = 0,b = 1, and ¢ = 2. Then

fol f(z) dg(z) = 0, fl f(z) dg(z) = 1,

but since f and g have a common point of discontinuity at z = 1,
2
[ 1) dg(@)

does not exist (cf. [34], p. 151, Ex. 10).
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Sequences

Introduction

The concepts of sequence, Cauchy sequence, convergence, and di-
vergence are defined in the Introduction to Chapter 1. Limits superior
and inferior at a (finite) point. for funections are defined in the In-
troduction to Chapter 2. The corresponding formulations for se-
quences of real numbers will be assumed as known. The first six
examples of the present chapter are concerned only with sequences
of real numbers. For such sequences it should be emphasized that
although the word limit is sometimes used in conjunction with the
word 4nfinite, the word convergent always implies a finite limit. It will
be assumed (in Example 7) that the reader is faniiliar with the de-
finition and elementary properties of uniform convergence of fune-
tions. Convergence and divergence for sequences of sets are defined
with Example 8 for use with Examples 8 and 9. Throughout this
book the single word sequence will be used to mean infinite sequence
unless it is otherwise specifically modified.

1. Bounded divergent sequences.
The simplest example of a bounded divergent sequence is possibly

0.1,0,1, - -,

or {a.}, where a, = Oif nis odd and a, = 1isn is even. Equivalently,

A more extreme example is the sequence {r,} of rational numbers
in [0, 1] — that is, {r.} is a one-to-one correspondence with domain
M and range @ n {0, 1].
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2. For an arbitrary closed set, a sequence whose set of limit
points is that set.

Any point that is the limit of a subsequence of a sequence {a,} is
called a limit point or subsequential limit of the sequence. Any
limit point of the range of a sequence is a limit point of the sequence,
but the converse statement is not generally true. Counterexample:
the alternating sequence 0, 1, 0, 1, --- has two limit points, O and
1, but its range has none,

Since the set of all limit points of a sequence {a,} is the closure of

the range of {a,}, this set is always closed. The following example.

shows that every closed set A can be got in this way; in fact, that A
is the set of limit points of a sequence {a,} of distinct points. It will
follow that A is not only the set of limit points of the sequence {a.},
but the set of limit points of its range as well.

If A is the empty set, let 0, = nforn = 1,2, .-+ . Now let 4
be an arbitrary nonempty closed set (of real numbers), and let
{r,} be an arrangement into a sequence of distinet terms of the set
g of all rational numbers ({r.} is a one-to-one correspondence with
range Q). The sequence {a,} whose set of limit points is 4 will be a
subsequence of {r,} defined recursively as follows: We start by
partitioning ® into the four disjoint intervals (— «, —1), [—1, 0),
[0,1) and [1, + ). If An(— o, —1) = O, let a1 be the first term
of the sequence {r,} belonging to (— o, —1);if An(—ow, —1) = @
and An[—1, 0) # @, let a; be the first term € [—1, 0); if
An(—©,0) =@,and Anl0, 1) # @, let a; be the first term €
[0,1);finally,if A n (— «,1) = @,let a, be the first term € [1, + ).
After a, is selected, a. distinet from a; is determined in like fashion by
considering the intervals [—1, 0), [0, 1), and [1, 4+ ) in turn — un-
less An [—1, + ) = @, in which case only a; is determined at this
stage. In any case, at least one term a; and at most four terms a1, a,,
as, a4 of the sequence {a,} are thus defined. The second stage pro-
ceeds similarly, in terms of the partition of ® into the 2-22 4+ 2 = 10
intervals (— », —2), [-2, —2), -+, [5,2), [2, -+ »). At each step,
after a;, as, ---, @, are chosen, the term @,41 is chosen from an
interval I in case A n I # @, a,.1 being the first term of 7, distinct
from those already selected and belonging to I . The kth set of £-2% 4- 2
intervals consists of (— o, —k), [— k,— k-4 27%t1), - -« [ [k — 2% k),
[k, 4 ). It is not difficult to show that the sequence {a,}, thus
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defined recursively, has the properties elaimed. Notice thatif A = ®,
then {a,} is a one-to-one correspondence with range § — presumably
distinet from {r,}.

3. A divergent sequence {a,} for which lim (a,1, — a@,) = 0
>4

for every positive integer p.
Let a, be the nth partial sum of the harmonic series:

G=14i4 -+
n

Then {a,} is divergent, but for p > 0,

1 1 P
- - v < _ B
n + + + n+p n+1 -
It is important to note that the zero limit lim (@, —

n->4o0
is not uniform in p. In fact, for the stated properties to hold, this
zero limit cannot be uniform in p since the statement that it s uniform
in p is equivalent to the Cauchy criterion for convergence of a se-
quence (cf. [34], p. 447, Ex. 43).

One form of expressing the principal idea of the preceding paragraph
is the following: If {a,} diverges, then there exists a strictly increasing
sequence {p,} of positive integers such that (¢,4,, — a.) 7 0. For
the particular sequence of the partial sums of the harmonic series the
sequence {p,} can be chosen to be {n}, since in this case

1 1 n
nrit Tt aFaZaTa
The following example is related to another aspect of this question
(with ¢(n) = n + pa).

0.

Aptp — Qg

an) =0

1
Optp, = Op = = 5

4. For an arbitrary strictly increasing sequence {¢,} = {¢(n)}
of positive integers, a divergent sequence {a,} such that
lim (@ymy —an) = 0.

n->+w

By induction, ¢(n) = n for all » = 1, 2, --- | and more gen-
erally, (n + k) = n + ¢(k) forallnand k = 1, 2, --- . Therefore
lim ¢(n) = 4 ». There are two cases to consider.

n->-4-00
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If ¢(n) — nis bounded, say ¢(n) — n < Kforalln = 1,2, --.,
then the sequence {a,} can be chosen to be the sequence of partial
sums of the harmonic series, since

1 1 K
Tarit T am Ear

If ¢(n) — n is unbounded, let k be the smallest positive integer
such that ¢(k) > k, and define a, to be equal to 1 if n = k, ¢(k),
¢(¢(%)), - -+, and equal to O otherwise. Since {¢(n)} is strictly in-
creasing there exists a subsequence of {a.} identically equal to 1,
and since ¢(n) — n is unbounded there exists a subsequence of {a,}
identically equal to 0. Therefore {a,} diverges. On the other hand,
Gy = Gy for every n = 1, 2, ... | and therefore as¢y — @, — O.

This example can be generalized in various ways. For example, it is
sufficient to assume merely that ¢(n) — 4o asn — + o, and it is
possible at the same time to require that {a.} be unbounded. Space
does not permit inclusion of the details.

Go(n) — On

5. Sequences {a,} and {b,} such that lim @, 4 lim b, <
lim (a, + b,) < lim a, + im b, < lim (a, + b,) < Iim a, +
lim b,.

Let {a.} and {b,} be the sequences repeating in cycles of 4:
(@):0,1,2,1,0,1,21,0,1,2,1,0,1, 21, ---,
(b:2,1,1,0,21,1,0,2,1,1,0,2,1,1,0, ---.

Then the inequality statement specified above becomes

0<1<K<2<3<4

6. Sequences {a1.}, {a}, - -+ such that

lm (an + @@ + --) > fim ap + Hm an + -0
Such an example is given by Gw, = 1 if m = n and ., = 0 if
m#£ n,mn = 1,2, --- , where all infinite series involved converge.
The inequality stated above becomes 1 > 0.
It should be noted that the inequality exhibited in this example
is impossible if there are only finitely many sequences. For example,

50

z
|
%
E
g
g
§
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lim (a, +b,) < @im a, + [m b,.

n->+eo n-++00 n->+00

(CE. [34], p. 59, Ex. 19.)

7. Two uniformly convergent sequences of functions the se-
quence of whose products does not converge uniformly.

On any common domain D let f be any unbounded function and let
the sequences {f,} and {g,} be defined:

falx) = f(z), ga(x) = l/n
Then f, — f and g, — 0 uniformly on D, but f.g. — 0 nonuniformly
on D. A specific example is D = ®, f(z) = z.

It should be noted that if both sequences are bounded and con-
verge uniformly on D, then the product sequence also converges

-uniformly on D.

8. A divergent sequence of sets.
The limit superior and limit inferior of a sequence {4,} of
sets are defined and denoted:

- 4o 4o . 40  +o
lim 4, = N[ U 4., lim 4, = U [N 4,],
n->to0 n=1 m=n notw n=1 m=n

respectively. A sequence {A,} is convergent iff lim 440 4, = 1m0
A, and, in this case, converges to this common value. A sequence of
sets is divergent iff it fails to be convergent. Since lim .10 A, =
{z |z € infinitely many A,} and imustw 4, = {z | 2€ all but a finite
number of 4,}, the oscillating sequence A, B, A, B, A, B, --- has
limit superior equal to the union A u B and limit inferior equal to
the intersection A nB. Such a sequence therefore converges iff
4 = B.

The close analogy between this example and the alternating se-
quence {a, b, a, b, - - -} of numbers (cf. Example 1, above) should not
escape notice.

9. A sequence {A,} of sets that converges to the empty set but
whose cardinal numbers — - «.

Let A, be defined to be the set of n positive integers greater than
or equal to » and less than 2n:
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An={m|mée R n<m< 2n}, n=1,2---.

Then, since no positive integer belongs to infinitely many of the
sets of {A4,}, the limit superior and limit inferior are both empty.

The preceding example can be visualized in terms of placing pairs
of billiard balls, which bear numbers 0, 1, 2, --- , into a bag while
repeatedly withdrawing one. For example, at one minute before
noon balls numbered 0 and 1 are placed in the bag and ball number
0 is removed. At { minute before noon balls numbered 2 and 3 are
added, and ball number 1 is removed. At 1 minute before noon balls
4 and 5 are added and ball number 2 is taken out. This process is
continued, and the question is asked: “How many balls are in the
bag at noon?” Answer: “None.”

Since the natural numbers can be put into a one-to-one correspond-
ence with their reciprocals, and since as subsets of ® all finite sets are
compact (closed and bounded), all of the sets 4, of this example are
compact, and can even be assumed to be uniformly bounded (con-
tained in the same bounded interval). If the sequence {4,} is as-
sumed to be decreasing (Any1 € A, forn = 1,2, -- ), then the limit

+00

im0 A, is the same as the intersection (N A4,, and may be
n=1
empty even though the cardinal number of every A4, is infinite and
even though every A, is bounded (exa_,mple:{l , L }) or
n’'n4+1" |
closed (example: {n, n + 1, - -}) but not both. (Cf. [34], p. 201.)
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Chapter 6

I nﬁnite Sertes

Introduction

Unless explicit statement to the contrary is made, all series con-
sidered in this chapter will be assumed to be real, that is, consisting
of terms that are real numbers; If {s,} is the sequence of partial sums
of an infinite series Za,, =@ + @ + -+ + a, + ---, that is,
S =14 - +a,forn=1,2, --- , the series > ay is said to con-
verge iff 1im,, . s, exists and is finite. This limit s is called the sum
of the series D _a,, with the alternative notations:

+eo
Zan = 2_:1&7, = 8.
n=

The series 20, is said to diverge iff it fails to converge, that is,
iff 1My et i infinite or fails to exist. The statement > n = +o
means that Hma.iess = -+ ©. A sequence {a,} or a series >, is
nonnegative or positive iff a, = 0 for everynora, > 0 for every n,
respectively. Foranonnegative series > ., the statement Y, <t
means that the series converges, and the statement Dn = o
means that the series diverges.

For certain purposes series may start with a term a,, in which case
> ay should be interpreted to mean > F 2, or the sum of this series.
For a power series > 2.z, the term aoz” should be understood to
mean ao even when z = 0; that is, for present purposes 0° = 1. For
a Maclaurin series

SH700)
n=0 n!
the term for » = 0 is £(0); in other words, ) = f@).

’
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1. A divergent series whose general term approaches zero.
The harmonic series D1 /.

2. A convergent series Zan and a divergent series an such
thata, =2 b,,n=1,2, --- .
Leta, =0and b, = ~1/n,n = 1,2, ---.

3. A convergent series Za,, and a divergent series an such
that [a,| 2 |b,,n=1,2, ...

Leb >z be the conditionally convergent alternating harmonic
series Z(—l)"“/n, and let »_b, be the divergent harmonic series

> 1/n.

4. For an arbitrary given positive series, either a dominated
divergent series or a dominating convergent series.

A nonnegative series ) a, is said to dominate a series Db, iff
an Z |by]| forn = 1,2, --- . If the given positive series is > ba,
let a, = b, forn = 1,2, --- , Then if an diverges it dominates the
divergent series Zan, and if D b, converges it is dominated by the
convergent series ) a,. The domination inequalities can all be made
strict by means of factors £ and 2. '

This simple result can be framed as follows: There exists no positive
sertes that can serve simultaneously as a comparison test series for

convergence and as a comparison test series for divergence. (CH. Example
19, below.) ‘

5. A convergent series with a divergent rearrangement. .

With any conditionally convergent series Zan, such as the alter-
nating harmonic series Z(—l)"“/n, the terms can be rearranged
in such a way that the new series is convergent to any given sum,
or is divergent. Divergent rearrangements can be found so that the
sequence {s,} of partial sums has the limit + «, the limit — ®, or
no limit at all. In fact, the sequence {s,} can be determined in such
a way that its set of limits points is an arbitrary given closed interval,
bounded or not (cf. Example 2, Chapter 5). The underlying reason
that this is possible is that the series of positive terms of >.a, and
the series of negative terms of Y a, are both divergent.
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To be specific we shall indicate a rearrangement of the series
> (—1)*/n such that the sequence {s,} of partial sums has the
closed interval [a, b] as its set of limit points. We start with the single
term 1, and then attach negative terms:

until the sum first is less than a. Then we add on unused positive
terms: .

1

1 1 1
l=5-317 "~ T3ty t " Tgra

2 4
until the sum first is greater than b . Continuing with this idea we
adjoin negative terms until the sum first is less than ¢ ; then positive
terms until the sum first exceeds b; then negative terms, etc., ad
infindtum. Since the absolute value 1/n of the general term (—1)*+1/n
approaches zero, it follows that every number of the closed interval
[a, b] is approached arbitrarily closely by partial sums s, of the re-
arranged series, for arbitrarily large n. Furthermore, for no number
outside the interval [a, b] is this true.

In the procedure just described, if the partial sums are permitted
to go just above 1, then just below —2, then just above 3, then just
below —4, ete., the sequence of partial sums of the rearranged series
has the entire real number system as its set, of limit points.

W. Sierpinski (cf. [43]) has shown that if Y a, is a conditionally
convergent series with sum s, and if s’ < s, then for some rearrange-
ment involving the positive terms only (leaving the negative terms
in their original positions) the rearranged series has sum s’. A similar
remark applies to numbers s” > s and rearrangements involving only
negative terms. This is clearly an extension of the celebrated “Rie-
mann derangement theorem” (cf. [36], p. 232, Theorem III), illus-
trated in all its essentials by the discussion in Example 5.

In a different direction, there is an extension that reads: If 2 a, is
a conditionally convergent series of complexr numbers then the sums
obtainable by all possible rearrangements that are either convergent
or divergent to o constitute a set that is either a single line in the
complex plane (including the point at infinity) or the complex plane
in toto (including the point at infinity). Furthermore, if 2 v, is a
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conditionally convergent series of vectors in a finite-dimensional space,
then the sums obtainable by all possible rearrangements constitute
a set that is some linear variety in the space (cf. [47]).

6. For an arbitrary conditionally convergent series Zan and
an arbitrary real number x , a sequence {&,} , where |&,| = 1
forn = 1,2, --- , such that an a, = X.

The procedure here is similar to that employed in Example 5.
Since Z] a,| = 4+« , we may attach factors ¢, of absolute value 1
in such a fashion that eras + <+ + & ta = a1+ -+ + | a. | > 2.
Let 7, be the least value of » that ensures this inequality. We then
provide factors ¢, , of absolute value 1, for the next terms in order to
obtain (for the least possible ns):

€101 F 00 Eny Uy = |a1'+ +}an1|
_Ian1+1l— —!anzl<x'

If this process is repeated, with partial sums alternately greater than
z and less than z, a series ) ¢, a, is obtained which, since a, — 0
as n — -+ «©, must converge to z.

7. Divergent series satisfying any two of the three conditions
of the standard alternating series theorem.
The alternating series theorem referred to states that the series

D €nCay, Where |&,| = Land ¢, > 0, n = 1, 2, --- , converges
provided

() & = (_1)n+17 no=1,2 -,

(%) Cni1 = Ca, no=1,2 -,

(412) iMoot €, = 0.
No two of these three conditions by themselves imply convergence;

that is, no one can be omitted. The following three examples demon- -

strate this fact:

(@):Lete, =1,¢, = 1/n,n = 1,2, --- . Alternatively, for an
example that is, after a fashion, an “alternating series” let {e,} be
the sequence repeating in triplets: 1, 1, —1, 1, 1, —1, -« .

(#): Let ¢, = 1/nif nis odd, and let ¢, = 1/n?if n is even.

(4%): Let ¢, = (n 4+ 1)/n (or, more simply, let ¢, = 1), n = 1,
2 -e-.
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8. A divergent series whose general term approaches zero and
which, with a suitable introduction of parentheses, becomes
convergent to an arbitrary sum.

Introduction of parentheses in an infinite series means grouping of
consecutive finite sequences of terms (each such finite sequence con-
sisting of at least one term) to produce a new series, whose sequence
of partial sums is therefore a subsequence of the sequence of partial
sums of the original series. For example, one way of introducing
parentheses in the alternating harmonic series gives the series

(-D+G-D-

T 12

1
34 (2n — 1)-2n

Any series derived fram a convergent series by means of introduetion
of parentheses is convergent, and has a sum equal to that of the given
series.

The final rearranged series described under Example 5 has the
stated property since, for an arbitrary real number, a suitable intro-
duction of parentheses gives a convergent series whose sum is the
given number.

+ + e 4 +...

9. For a given positive sequence {b,} with limit inferior zero,
a positive divergent series ) _a, whose general term approaches
zero and such that lim,.. . a, /b, = 0.

Choose a subsequence by,,, bu,, *°*, bu, - of nonconsecutive
terms of {b,} such that lim;, o b,, = 0, and let a,, = b3, for k =
1,2, -+« . For every other value of n :n = my, mo,ms, «++ ,my, + -+,

let am; = 1/5. Then a, — 0 as n — -+ o, 2 a, diverges, and a,,/bn, =
by, > 0ask — -+,

This example shows (in particular) that no matter how rapidly a
positive sequence {b,} may converge to zero, there is a positive
sequence {a,} that converges to zero slowly enough to ensure di-
vergence of the series > a., and yet has a subsequence converging to
zero more rapidly than the corresponding subsequence of {b,}.

10. For a given positive sequence {b,} with limit inferior zero,
a positive convergent series )_a, such thatlim, ., a,/b, = + «.
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Choose a subsequence by, by,, <+, bay, -+ of {b,} such that for
each positive integer &, b,, < k=3, and let a,, = k2fork = 1,2, ---.
For every other value of n let @, = n~2 Then ».a, < 4+, while
/by, = k — 4 0. :

This example shows (in particular) that no matter how slowly a
positive sequence {b,} may converge to zero, there is a sequence
{a,} of positive numbers that converges to zero rapidly enough to
ensure convergence of the series Y a,, and yet has a subsequence
converging to zero more slowly than the corresponding subsequence
of {b,}.

11. For a positive sequence {¢,} with limit inferior zero, a
positive convergent series Za,, and a positive divergent series
Zb,. such thata,/b, = ¢, , n =1,2, --- .

Choose a subsequence €., Cuyy ** -, €ny, -+ Of {c,} such that for
each positive integer %, ¢,, < k% and let a., = ¢, by, = 1 for
k=12, .. .Forevery other valueof nlet a, = n2 b, = (n%,)-L

Then Y _a, converges, J_d, diverges since b, > 0 as n — + , and
0. /bn = o forn =12, ...

This example shows (in particular) that no matter how slowly a
positive sequence {c.} may converge to zero, there exist positive

series of which one is convergent and the other is divergent, the

quotient of whose nth terms is ¢,.

12. A function positive and continuous for x = 1 and such
that ffwf(x)dx converges and st Jf(n) diverges.
Example 12, Chapter 4.

13. A function positive and continuous for x = 1 and such
that f T°f(x)dx diverges and D12, J(n) converges.

For each » > 1 let g(n) = 0, and on the closed intervals
fn — n, n] and [n, n 4 n~] define g to be linear and equal to 1 at
the nonintegral endpoints. Finally, define g(z) to be 1 for z = 1
where g(z) is not already defined. Then the function

f@) = g@) + 7,

is positive and continuous for z = 1, f T°f@)dr = 4+, and
i fm) = 2 3Zint < + o,
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14. Series for which the ratio test fails.
For a positive series ) _a, the ratio test states (cf. [34], p. 390)
that if the limit
lim Gn+1
n>tw Ay

exists in the finite or infinite sense (0 < p £ + =), then
(@) if0 £ p < 1, D_a, converges;
(@) if 1 < p £ + o, Y. a, diverges.
The statement that if p = 1 the test fails is more than an empty
statement. It means that there exist both convergent and divergent
positive series for each of whi¢h p = 1. Examples are

+ 1 +ec1
Zw md X

respectively.

The ratio test may also fail by virtue of the nonexistence of the
limit p. Examples of convergent and divergent positive series are
respectively

+
e 1,1 1 1 1 1
1;_121 =2?+§I+§Z+2§+§E+§E+s

where
fim " =2 and lim g'lﬁ=—1-,
noatw  On naFeo O 8
and
“+o0 u '
;:‘:127»—(—1) =22 4 20 4 24 4 23 4 26 25 ... ,
where

T Ot - a
Iim = =8 and lim 2" =

natwo Op notoo Oy

A refined form of the ratio test states that if

DO -

(443) Tim %+
nateo Ay

< 1, Za,. converges;

(@) lim “™ > 1, 3 q, diverges.

nete Qg
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This form of the ratio test may fail as a result of the inequalities

. a  Q
lim =* <1 < lim =%,
natoo Oy nston Ap
Examples for which both equalities and strict inequalities oceur are
given above.

15. Series for which the root test fails.
For a nonnegative series ) a, the simplest form of the root test
states (cf. [34], p. 392) that if
lim VVa, = ¢
n->+oo
exists in the finite or infinite sense (0 < ¢ < + =), then
() if0 £ ¢ < 1, Y_a, converges;
(@) if 1 < ¢ £ + o, ) a, diverges.
The ratio test and the root test are related by the fact that if
liMy s o (@ny1/0,) existsin the finite or infinite sense, then lim,., v/ ay,
exists and is equal to it (cf. [34], p. 394, Ex. 31). Consequently, if the
ratio test in the form (z) or (42), Example 14, is successful, the root
test is also. Furthermore, the first two examples illustrating failure

of the ratio test (Example 14) also serve to exemplify failure of the

root test for the same reason. The last two examples of the failure of
the ratio test illustrate the possibility of success for the root test (ef.
Examnple 16).

The root test, as stated above, fails for the convergent series

KR+ (-D\" _ 1,1 ,1 .1 1 1
S ) Rt R R

since [iMpaio vy = & and lim,.+w Va, = 3. It also fails for the

divergent series
+o0 n\ n
54+ (—1
> (B0,
n=1
since lim,. 1 V@, = 3 and lim, .+ Va, = 2.
A refined form of the root test states that if
(443) limp.ye /. ‘a, < 1, > _a, converges;
(@) liMpsieo Van, > 1, 2 a, diverges.
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This form of the root test is at least as strong as (actually stronger
than — cf. Example 16) the refined form of the ratio test (Example
14), since (cf. [34], p. 394, Ex. 31)

. Gnt1 . . T G
lim -2 < lim va, < lim Ve, £ [m —2,

n>to Op n >0 n->to0 no>too Ap

The refined form of the root test establishes convergence and di-
vergence for the preceding two examples, since lim, .. v a, is equal
to 3 and 3, respectively, for these two series.

The refined form of the root test can fail only by virtue of the
equation lim,, . va, = 1! Examples of this type of failure have
already been given.

16. Series for which the root test succeeds and the ratio test
fails.
The convergent series 2 ooy 277"™ for which the ratio test fails
(Example 14) is one for which the root test succeeds. Indeed,
(~1)=mn

Vi, =2 n —21=1<1.

Similarly, for the divergent series ¥ 5= 2°~ ", of Example 14,

n—(—1)n

Vo, =2 7  —20=2>1.

17. Two convergent series whose Cauchy product series di-
verges.

The Cauchy product series of the two series D oo a, and D 1o,
is defined to be the series 2 .o ¢, where

Cn = Ic=z()akbn_k = aﬂbn +a1bn——1+ tet +anbo.

The theorem of Mertens (cf. [36], p. 239, Ex. 20) states that if Y a,
converges to A, if Y b, converges to B, and if one at least of these
convergences is absolufe, then the product series ) _c, converges to
AB.

Let > a, and > b, be the identical series

Uy = by = (_1)n(n + 1)1 n=2012--.
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Then 2 a, and 2 b, converge by the alternating series test (Example
7), while > ¢, diverges since

1 1 1
n | — ——+ = — —— +
e Vivn+1 \/2\/n+\/3\/n-—-1
1
+-——..—_.-__.._————:
Vn+ 11
2 2 2 2
frretaretaret o taTe
_2(n+1) _
_mgl, n=20,1,2, ,

the first inequality holding since /(1 + z)(n + 1 — z) on the closed
interval [0, ] is maximized when z = in.

18. Two divergent series whose Cauchy product series con-
verges absolutely.
The Cauchy product series of the two series
24242 4B 4 o kW =12 -,
—14+14+1 41 4+ -1+, n=12 -,
is
—2404+0 4+0 4+ - +0 4 -+, n=12 .

More generally, if a, = a*forn =2 1 and if b, = b*forn = 1, and

if @ # b, the term ¢, of the product series of Y.a, and b, for
n21,is

€= aob® + boa” + a*1b + a*2 b + a3 H 4 - - ab?
= @ br + bO ar — a* — b* + (an+1 — bn+1)/(a —_ b)
= {a"la + (bo — )@ — 0)] — oo + (1 — a)(a — b)]}/(a — b),

and therefore ¢, = Oin case ¢ = (I — bo)l@ — b) and b =
{ao — 1)(a — b). If a and b are chosen so that ¢ — b = 1, then ay
and boare givenbyao =b+ 1 =a,bo=1—a = —b.

19. For a given sequence {Zj,}:la,,m}, n=1,2,---,of positive
convergent series, a positive convergent series Z::lam that
does not compare favorably with any series of { oG] .
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The statement that the series ) e10n compares favorably with
the series D _me1mn, for a fixed positive integer n, means:

3ME$)19m>M=>am§amm

and therefore the statement that such comparison does not obtain
means:

VMeRIAm > M D tn > tum.
For all positive integers M and n, define the positive numbers
S,” SMn, and RMn: ’
+-0

Z Qmny

m=M+1

i

e * M
Sn = Z Omn,y Sun = Z Amny Ryn
m=1 m=1

and for each n € 9 choose M(n) so that 1 < M(1) < M(2) < ---
and
Ry, < 274
max (Rue i, Ruw.2) < 272
max (Buwmy,1, - » Buwam) < 277
For any positive integer m, define a,, as follows:
20,1 1 =ms=s MQ),
an = { (b + 1)max (am1, Gmz, - 5 Gmt)
if M(ky <m £ Mk + 1) fork > 1.

In order to prove that ».a. converges, we first establish an in-
equality for the (finite) sum of the terms of this series for M (k) <
m= Mk + 1), where k > 1:

M(k+1) M{kt+1) 13
an £ D [(k +1) 2 amn]
m=M(k)+1 m=M (k)+1 n=1
k M(k+1) k
= (k -+ 1) Z[ Z amn:l = (k -+ 1) Z RM(k),'n.
=1 | m=M(k)+1 fa=}

k
S(+1) 22 < (k4 1)2"
n=1
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We therefore have

oo M(2) M(3)
Sn= 2wt > ane
m=1 m=1 m=M(2)+1
M(2) 40 M(k+1)

§2Z=:1am1+z > Om

k=2 m=M(k)+1

o0
< 2SM(2),1+];2 (F+1)227% < 4,

On the other hand, for any fixed n, whenever £ = n and m > M(k),
On/Omn = k + 1, whence limm.iw @m/Gme = -+ ®. Therefore the
series 2 1 G does not compare favorably with the series S G
In fact, the series > 2 am does not compare favorably with the series
> hZ) Gm, even when such favorable comparison is defined:

AMand K € X3m> M= tn £ K,
or equivalently, when failure to have favorable comparison means:
VMand K ¢ Xdm > M D an > Kamn-

A sequence of positive convergent series is called a universal com-
parison sequence if and only if it has the property that a given

positive series converges if and only if it compares favorably with at -

least one series of the universal comparison sequence. That is;, a
sequence of positive convergent series is a universal comparison
sequence if and only if the convergence or divergence of every positive
series can be established by comparison with some member series of
the sequence. Example 19 shows that no such universal comparison
sequence exists.

20. A Toeplitz matrix T and a divergent sequence that is
transformed by 7 inte a convergent sequence.

An infinite matrix is a real-valued or complex-valued function on
9 X 9, denoted T' = (¢;;), where ¢ and j € 9. In case the infinite
series .= t:; aj, where {a;} is a given sequence of numbers, con-
verges for every 7 € 91, the sequence {b;}, defined by

+o0
by = D tijaj,

=1

is called the transform of {a;} by 7. An infinite matrix 7' = (&)
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is called a Toeplitz matrix? iff for every convergent sequence {a;}
the sequence {b;} is well defined, and the limit lim ;. b; exists and is
equal to the limit lim;,+. a;. An important basic fact in the theory
of Toeplitz matrices is that the following three properties form a
necessary and sufficient set of conditions for an infinife matrix
T = (¢:;) to be a Toeplitz matrix (for a proof see [49]):

+o0
(1) AMecrdVicxm X |t;] <M,
=1 » v
]
(2) Hm Dty =1,
i»tw j=1
3) Viex lm ¢&; =0.
{00

Let T be the Toeplitz matrix (¢;;), where t;; = 1/7if 1 £ 7 =4
and ¢;; = 0if ¢ < j:

—_

1 0 0 0
b3 000
rT=% 3 3 0
1 1 1 1
4 4 4 4
The sequence {a;} = 1, —1, 1, —1, ---, (—=1)* ... does not
converge, but its transform by 7,
1 __1 ++1
{bi}=1701%;0:%7"'s""t%£—)—; ?

converges to 0.

More generally, if {a.} is any divergent sequence each of whose
terms is either 1 or —1, there exists a Toeplitz matrix T that trans-
forms {a,} into a convergent sequence. In fact, T can be defined so
that {a,} is transformed into the sequence every term of which is 0.
Such a matrix T = (f,;) can be defined as follows: Let {n.} be a
strictly increasing sequence of positive integers such that a,, and
;41 have opposite signs for7 = 1,2, --- , and let

{% if j=7l,.i or j'—:’n,;-l-l,

0 otherwise.

Then T is a Toeplitz matrix that transforms {a,} into 0, 0, ---.
1 Named after the German mathematician Otto Toeplitz (1881 —1940).
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21. For a given Toeplitz matrix T = (¢;;), a sequence {a,}
where for each j, a; = =1, such that the transform {b; of
{a;} by T diverges.

By reference to conditions (1)-(3) of Example 20, we choose two
sequences 7; < <13 < -, 51 < J2 < j3 < --- as follows. Let ¢,
be such that, in accordance with (2),if 7 = 4;,

+o0
Sti=14es |ew| < 0.05.
j=1 .

Then let j; be such that according to (1) and (2),

71 e
; tii =1+d  and > |tai] < 0.05,
F=

F=j;+1

where [ d: | < 0.1.
Next choose ¢z > ¢ so that for 7 = 4, according to (2) and (3),

71 T
Z I tij I < (005) and Z f,q'j =1 —I— €24, |92i| < (005)2,
J=1 Gl

and then choose j, > j; so that according to (1) and (2),

i e
2oty =14d and 2 [ty ] < (0.05)
j=1 J=iot1

where | d, | < 2(0.05)%
Having chosen ¢; < 4, < ++» < ¢ and j; < 72 < -+ < j;, choose
ire1 > 1 80 that aceording to (2) and (3), for ¢ = 444y,

ik +eo
Z l ti,', < (005)k and Z i-;j =1 €r11,4, I €k+1,i! < (0.05)k+1,
J=1 J=1

and then choose ji11 > Ji so that according to (1) and (2),

Fha1 NI
Dotuni =1+ dws, and X [tg,| < (0057,
=1 J=jp 11

where | diy1 | < 2(0.05)4+1,
Define the sequence {a;} by the prescription:

a; =

{lforlgjéjl,j2<j§j3,"°

—lforjy <7 =Jo, s <JEJay e
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Ifkisodd and k& > 1, then

iz 73

J1
biy =;tm— >0ty D by — e

F=j1+1 J=jgt1

Ik [
+j > b + 2. ti,7 04

=it pRerns]
J1 je 3 i3 72
=D tig — | 2 by — 2 byi ) + tig — D b
=1 =1 =1 = =i
7% Ikt +0
e (Xt — 2t ) + tiss .
=1 =1 P Rt

All quantities Y7, tij, except X ik, tiy; = 1 -+ dy, are less than
(0.05)¥1 in absolute value. Thus, since

+ o0
20 e | S 2 [t | < (0.05)%
J=ipt1 Je=jpt1

we see that
by, > 1 — 2(0.05)1 — 2(k — 1)(0.05)*1 — (0.05)*
=1-[2(k — 1) + 2.05](0.05)*1,

Methods of calculus show that the funection of & defined on the last
line above is an increasing function for £ = 1, and therefore takes on
its least value if £ = 3 at the point where & = 3. Therefore, if % is
an odd integer greater than 1:

b, > 1 — [4 4+ 2.05](0.05)2 > 0.9.

Similarly, for & even, it can be shown that b, < —0.7. Therefore
the sequence {b,} diverges.

Examples 20 and 21 show that although some Toeplitz matrices
transform some sequences whose terms are all 41 into convergent
sequences, no Toeplitz matrix transforms all such sequences into
convergent sequences.

A refinement of the preceding technique permits the following
conclusion: If {T.} is a sequence of Toeplitz matrices, there is a se-
quence {a,} such that |a,| = 1 forn = 1,2, --- and such that for
each m the transform of {a,} by T'w is divergent. Indeed, in the context
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preceding, let {i;} and {j;} be strictly increasing sequences of positive
integers chosen so that the related properties hold as follows: We
choose ¢; and j; so that the related properties hold for T;; then
1z and j; 5o that the related properties hold for both Ty and 7,; ete.
Let the sequence {a,} be defined as in Example 21. For any fixed m
the sequence {a,} is transformed into a sequence {b,,} and, since the
numbers i and j; for k > m constitute sequences valid for the counter-
example technique applied to T, it follows that Lim,, . bn, does
not exist for any m. '

22. A power series convergent at only one point. (Cf. Example
24.)
The series D aog nia» converges for # = 0 and diverges for z = 0.

23. A function whose Maclaurin series converges everywhere
but represents the function at only one point.
The funetion

i g0,

f(x)E{O f z=0

is infinitely differentiable, all of its derivatives at x = 0 being equal -

to 0 (cf. Example 10, Chapter 3). Therefore its Maclaurin series
+eo  a(n) +o0
Z f n('O) xn — Z_:O 0

n=0

converges for all x to the function that is identically zero, and hence
represents (converges to) the given function f only at the single point
z = 0.

24. A function whose Maclaurin series converges at only one
point.
A function with this property is described in [10], p. 153. The
function
+c0

f@) = 2 e cos nz,
n=0

because of the factors e present in all of the series obtained by
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successive term-by-term differentiation (which therefore all con-
verge uniformly), is an infinitely differentiable function. Its Maclaurin
series has only terms of even degree, and the absolute value of the
term of degree 2k is '

- 2 2j
~+oo x%e nn4k (nx % —
n=0 (2]6) !

2k
forevery m = 0,1,2, --- ,and in particular for n = 2k. For this
value of n and, in terms of any given nonzero z, with & any integer
greater than e/2z, we have

2\ 2 2k
(22)" o = () 5

This means that for any nonzero z the Maclaurin series for f diverges.

The series ) .o n! z» was shown in Example 22 to be convergent
at only one point, # = 0. It is natural to ask whether this series is
the Maclaurin series for some function f(z), since an affirmative
answer would provide another example of a function of the type
described in the present instance. We shall now show that it is in-
deed possible to produce an infinitely differentiable function f(z)
having the series given above as its Maclaurin series. To do this, let
¢no(x) be defined as follows: Forn = 1,2, --. | let

(m— 1)) if 0= ]|z| =<2/ (nl)

bno(z) = { 0 if |z| =z 21/(nl)?

where, by means of the type of “bridging functions” constructed for
Example 12, Chapter 3, ¢.0(z) is made infinitely differentiable every-
where. Let fi(z) = ¢10(z), and forn = 2,3, .-+, let

¢”1(x) = ‘/O‘x ¢n0(t) dt7

Pn2(z) = /0 ) bui(t) dt,

fn(x) = ¢n,n—1(x) = \/O.a’ ¢n,n—2(t) dt.
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Thus fn,(x) == ¢n,n~—2(x)y fn”(x) = ¢"'"_3(x)’ T ’fn("—l)(x) = ¢n0($)y
Fa® (@) = ¢ud’(@). For any z and 0 = k £ n — 2, [f,®@) ]| =
(2~ /n?)| z [**2/(n — k — 2)! since

,¢n1(x) [ S 27ntl/n?

[ dna(@) | = 27/ | 2|,

| $nma@) | < @12 | 1 |2/ (0 — 2)L.

The series 2 1o [ @), for each & = 0, 1, 2, --- | converges
uniformly in every closed finite interval. Indeed, if [z | < K,

+o I{nﬁk—2

o0
n§+2 !fn(k)(x) I § n;

SFhen?-20 1t (n — k — 2)1”

and uniform convergence follows from the Weierstrass M -test (cf.
[34], p. 445). Hence we see that

+o0
@ = 25

is an infinitely differentiable function such that fork = 0,1, 2, ---,

f®(x) = Zf ®(z).
Fork=n = 1,5,%9(0) = ¢no® " *(0) = 0. Forn = land k = n — 1
[2®0) = ¢n0(0) = (0 — 1)) For 0 £ k < n — 1, f,®(0) =
Thus the Maclaurin series for f(z) is Z —omnlan,

25. A convergent trigonometric series that is not a Fourier
series.
We shall present two examples, one in case the integration involved
is that of Rlemann and one in case the integration is that of Lebesgue.
sin m:
The series Z

n=1

where 0 < a = %, converges for every real

number z, as can b.e seen {cf. [34], p. 533) by an application of a
convergence test due to N. H. Abel (Norwegian, 1802-1829). How-
ever, this series cannot be the Fourier series of any Riemann-in-
tegrable function f(z) since, by Bessel’s inequality (cf. [34], p. 532),
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forn= 1,2, “os

<1
ot ot s i [igr

Since f(z) is Riemann—integrable so is [f(2)]?, and the right-hand side
of the preceding inequality is finite, whereas if @ < % the left-hand
side is unbounded as n — 4 . (Contradiction.)

0
. sin nx :
The series i also econverges for every real number z. Let
n=2
S .
sin nx
= Inn °

flz) =

If f(x) is Lebesgue-integrable, then the function
F) = [ 1) a
1] .

is both periodic and absolutely continuous. Since f(z) is an odd fune-
tion (f(z) = —f(—x)), we see that F(z) is an even function (F(z) =
F(—=z)) and thus the Fourier series for F(z) is of the form

o

Z a, COS N,
=0

where ay = lf F(z) dz,and forn = 2,
™ Jo

™

an = —2«/ F(z) cos nx dz
™ Jo

F( )smnx /‘ F (s )smnx
2 sin nz 1
_;r/o f(z) n dv = T alnn

(F'(x) exists and is equal to f(z) almost everywhere.) Since F(z)
is of bounded variation, its Fourier series converges at every point,
and in particular at z = 0, from which we infer that > .2 a, con-
verges. But since @, = —1/(n In n), and > 2 (—1/(n In n) di-
verges, we have a contradiction to the assumption that f(z)is
Lebesgue-integrable.
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sin nz .
is not the
n

“+o0
Finally, to show that the trigonometric series Y

n=2
Fourier series of any Lebesgue-integrable function we need the follow-
ing theorem (for a proof see [52] and [63]): If a trigonometric series is
the Fourier series of a Lebesgue-integrable function g, and ¢f it con-
verges almost everywhere to a function f, then f(x) = g(x) almost every-
where and therefore f 1s Lebesgue-integrable and the given irigonometric
series 18 the Fourier series of f.

26. An infinitely differentiable function f(x) such that

lmyouf(x) = 0

and that is not the Fourier transform of any Lebesgue-in-
tegrable function.

Let {¢.},n = 0, &1, 42, -+ , be a doubly infinite sequence such
that

}e0

Z cneinx
converges for all © but does not represent a function Lebesgue-
integrable on [—m, «] (cf. Example 25). We shall show that if A(z)
is any infinitely differentiable function that vanishes outside [, 1],
if h(0) = 27, and if

+o0

@) = 3 ehl — m),

then f(z) is a function of the required kind.

Since h(x) vanishes outside [—3%, 1], the series that defines f(x)
has only finitely many nonzero terms for any fixed z. Hence, the
series converges for all ¢ and represents some function f(z). By the
same argument, the series converges uniformly in every finite in-
terval as does the series arising by termwise differentiation any finite
number of times, and furthermore

“+w

f(k)(x) = ;_ cnh(k>(x - n))
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If F(2) is Lebesgue-integrable and satisfies

+eo N
f_ F()E™ dt = f(z),

0

let .
g() = ; F(t 4+ 2xm).

Since F(¢) is Lebesgue integrable, g(t) is defined for almost every
t, gt + 27) = g(¢), and

T +a0 T “+eo
f_ﬂ[g(ﬂIdtém;w[WlF(t+27rm)ldt=f_w |F(t) |dt < + .

(For references on the preceding facts and the following equality,
see [29], pp. 130-132, pp. 152-153.) We compute:

Ed o0 T
_2-1—[ g(t)e ™ dt > f F(t+ 2xm)e ™™ dt
T v—7 —T

== i
271' m=—c0

1 4+ T .

— _2__ ) f F(t + Zwm)e~zn(t+27rm) dt
T m=—w J—7
1 e —int . 1

=5 | PO dt = o f(n)

“+e0
=L 3 ahln— ) = ZH(0) = ¢

27 =T 2

In other words, the ¢, are Fourier coefficients of the Lebesgue-
integrable function ¢(¢). This contradiction establishes the fact that
F(x) 1s not the Fourier transform of a Lebesgue-integrable function.

27. For an arbitrary countable set E C [—=, «], a continuous
function whose Fourier series diverges at each point of E and
converges at each point of [—=, =] \ E.

The idea behind this example goes back to Fejér and Lebesgue.
An exposition of the details is given in [52], pp. 167 —173, where
references to the original papers are also to be found.

28. A (Lebesgue-) integrable function on [—=, =] whose Fourier
series diverges everywhere.
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This example is due to A. Kolmogorov. Details are given in [52],
pp. 175-179, together with references.

29. A sequence {a,} of rational numbers such that for every
function f continuous on [0, 1] and vanishing at 0 (f(0) = 0)
there exists a strictly increasing sequence {n,} of positive in-
tegers such that, with n, = 0:

+0 Nyl

flx) = Z( > anx“>,

y=0 \n=n,+1
the convergence being uniform on [0, 1] .

We make a preliminary observation:

For any positive integer m, the set of all polynomials with rational
coefficients and involving only powers z* such that n = m is dense
in the space Co([0, 1]) of all funetions continuous on {0, 1] and vanish-
ing at 0, in the “uniform topology’ given by the distance and norm
formula:

p(f,9) = || f — g || = max {|f(z) — g(@) |0 = 2 < 1}.

This follows from the Stone-Weierstrass theorem (cf. [42], p. 288,
and [29], pp. 9-10).

Now let {f,} be an enumeration of a countable dense set of func-
tions in Co([0, 1]). For example, {f,} might be a sequence consisting
of all polynomials with rational coefficients and zero constant term.
Let P, be such a polynomial for which o(fi, P1) = ||f1 — P1 || < L.
Let P, be such a polynomial for which, among the terms with non-
zero coefficients, the least exponent exceeds the degree of Pi, and
for WhiCh p(fz - Pl, P2) = ”fz - (P1 + Pz) “ < %. Having de-
fined polynomials Py, Py, ---, P, in Co([0, 1]) such that their
coefficients are rational and such that:

(a) the “least exponent of Py’ > deg Pr, k= 1,2, -+ ,n — 1,

ZP

choose a polynomial P,,; in Co([0, 1}) with rational coefficients and
such that
(') the “least exponent of P,1" > deg Pn,

() —lc—12 n,
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n+1
1

Let m; = “least exponent of P;” and let M; = deg P, for every
7€ N. Then m; £ M; < my, for 7 € N. The sequence {a,} is
now deﬁned as follows: a1 = @2 = -+ = @m,—1 = 0, an, = coefficient
of x m Py, @myi1 = coefficient of 2™ in Py, -+ | au, = coefficient
of 2¥* in P,. In general for M; <n < mi let a, = 0;for m;y; <
n = M, let a, = coefficient of z» in P;. If £ € Co([0, 1]), let

0 < ki < ks < --- besuch that || f — fi, | < 1/u for every u € 9.
Then
Eu k
DO ENTEVANN PR B p s
4= i= u

Hence if no = 0 and n, = M;, for» € 9%, then

+o Ty
o) = 5 (35 me),
y=0 \n=n,+1
where the (grouped) series on the right converges umiformly in
fo, 11.

This startling result is due to W. Sierpinski. Its close similarity to
Example 5, last paragraph, should be noted. In this latter case, a
single series of numbers is obtained, as the result of a rearrangement,
having the property that corresponding to an arbitrary real number z
there exists a subsequence of partial sums — and hence a method for
introducing parentheses in the series — that gives convergence to z.
In the present case there is a single power series having the property
that corresponding to an arbitrary member of Co([0, 1]) there exists a
subsequence of partial sums — and hence a method of introducing
parentheses in the series — that gives uniform convergence to f.
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Chapter 7

U niform Convergence

Introduction

The examples of this chapter deal with uniform convergence — and
convergence that is nof uniform — of sequences of functions on certain
sets. The basic definitions and theorems will be assumed to be known
(cf. [34], pp. 441462, [36], pp. 270-292).

1. A sequence of everywhere discontinuous functions con-
verging uniformly to an everywhere continuous function.

_J1/n if =z is rational,
fal2) = {0 if 1 is irrational.

Clearly, lim, 1o f»(z) = 0 uniformly for —w <z < 4 =,

This simple example serves to illustrate the following general
principle: Uniform convergence preserves good behavior, not bad be-
havior. This same principle will be illustrated repeatedly in future
examples.

2. A sequence of infinitely differentiable functions converging
uniformly to zero, the sequence of whose derivatives diverges
everywhere.

If f.(z) = (sin nx)/A/n , thensince | f,(x) | < 1/4/7 this sequence
converges uniformly to 0. To see that the sequence {f,’(x)} converges
nowhere, let z be fixed and consider

b. = fu'(x) = \/n cos nzx.
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Ifz = 0,b, = /n— 4o asn— 4 o, We shall show that for any
z # 0the sequence {b,} is unbounded, and hence diverges, by showing
that there are arbitrarily large values of n such that | cos nz | = 1.
Indeed, for any positive integer m such that | cos mz | < 3,

| cos2mz | = |2cos?mz — 1| =1 — 2cos?mz > 3,

so that there exists an n > m such that | cos nx | > 3.

3. A nonuniform limit of bounded functions that is not
bounded.
Each function

min<n,1> if 0<z=1,
falz) = &
0 if =0

is bounded on the closed interval [0, 1], but the limit function f(z),
equal to 1/zif 0 < 2 £ 1 and equal to 0 if z = 0, is unbounded
there.

Let it be noted that for this example to exist, the limit cannot be
uniform.

4. A nonuniform limit of continuous functions that is not
continuous.
A trivial example is given by

__Jmin (1, nx) if =z

0,
max (—1, nz) if 0,

AV

whose limit is the signum function (Example 3, Chapter 3), which is
discontinuous at z = 0.

A more interesting example is given by use of the function f (cf.
Example 15, Chapter 2) defined:

(1

- i z= g in lowest terms, where p and ¢ are integers
flx) = and ¢ > 0.

0 if zis irrational.
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For an arbitrary positive integer n, define f.(x) as follows: According

to each point <£ s é), wherel £ ¢ < n,0 £ p £ ¢, in each interval

of the form (g - 1’) define

57;2’11

1
in each interval of the form <£ , Py "“2> define
q’q 2n

)

and at every point z of [0, 1] at which f,(z) has not already been
defined, let f,(z) = 1/n. Outside [0, 1] f.(x) is defined so as to be
periodic with period one. The graph of f.(z), then, consists of an
infinite polygonal arc made up of segments that either lie along the
horizontal line y = 1/n orrise with slope +-2n2 to the isolated points
of the graph of f. (Cf. Fig. 2.) As n increases, these ‘‘spikes” sharpen,
and the base approaches the z axis. As a consequence, for each
r€®andn =1,2, ---,

Fal@) Z fora(a),
and
Jim f,(&) = J@),

as defined above. Each function f, is everywhere continuous, but
the limit function f is discontinuous on the dense set ¢ of rational
numbers. (Cf. Example 24, Chapter 2.)

5. A nonuniform limit of Riemann-integrable functions that
is not Riemann-integrable. (Cf. Example 33, Chapter 8.)

Each function g,, defined for Example 24, Chapter 2, when re-
stricted to the closed interval [0, 1] is Riemann-integrable there,
since it is bounded there and has only a finite number of points of
discontinuity. The sequence {g,} is an increasing sequence (g,(z) <
guri(z) for each z and n = 1, 2, ---) converging to the function f
of Iixample 1, Chapter 4, that is equal to 1 on §n [0, 1] and equal
toOon [0, 1]\ @.
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1
1
2
1
3
14
y 4 ) ) |
5
1'112§ 5 4 3
0 i3 2 3 1 L i 3 32

[, (@) for n=b
Figure 2

6. A sequence of functions for which the limit of the integrals
is not equal to the integral of the limit.

Let
o’z if 0=sz2= i,
2n
5 1 . 1 1
o= dn — e — - S <z,
fulz) =410 n (m 2n> if 5 S TS
0 if -1~§ r =1
n
Then
. h .1 1
nl}}}rlwfo fo(®) de = nl_lfﬁo 5= 5
but

I
=
R
a8

It
o

1
Im f.(z) do

0 n->towo 0
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Another example is the sequence {f.(x)} where f,(z) = nze e,

0z=1.
A more extreme case is given by

P

I’z if 0<zx

in which case, for any b € (0, 1]

b
lim | fu(z)de = lim = = +o,
n->t0 Jg ‘ n->+}c0 2
while
b

b
lim fu(z) de = f 0dz = 0.
0

0 n->tw

7. A sequence of functions for which the limit of the deriva-
tives is not equal to the derivative of the limit.

If fuw) = o/(1 + n%?) for ~1 £ 2 < landn = 1,2, -, then
fz) = limy.ie fo(x) exists and is equal to 0 for all z € [—1,1] (and
this convergence is uniform since the maximum and minimum values
of f,(z) on [—1, 1] are &= 1/2n). The derivative of the limit is identi-
cally equal to 0. However, the limit of the derivatives is

. . 1 — %t 1 if 2z=0
n’ = T g 1 .
Jim Ja(2) = lim e {0 if 0<|z]=1

8. Convergence that is uniform on every closed subinterval
but not uniform on the total interval.
Let f.(x) = 2 on the open interval (0, 1).

9. A sequence {f,} converging uniformly to zero on [0, + ) but
such that f:w fa(x) dx +— 0.

1 if 0z=
Letfn(x)s{o/n :.f 2;2—‘”’
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Then f, converges uniformly to 0 on [0, 4 »), but
+o0
[ f@ e =151
0

A more extreme case is given by

1I/n if 022 20t

fa(@) = {o if 2> ne
Then f:”f,,(x) dx = n— + o, .

10. A series that converges nonuniformly and whose general
term approaches zero uniformly.

The series »_»e;z"/n on the half-open interval [0, 1) has these
properties. Since the general term is dominated by 1/n on [0, 1) its
uniform convergence to zero there follows immediately. The con-
vergence of the series follows from its domination by the series
> z*, which converges on [0, 1). The nonuniformity of this con-
vergence is a consequence of the fact that the partial sums are not
uniformly bounded (the harmonic series diverges; cf. [34], p. 447,
Exs. 31, 32).

11. A sequence converging monuniformly and possessing a
uniformly convergent subsequence.
On the real number system @®, let

if = isodd.
falz) =

if nis even.

i 3R

The convergence to zero is nonuniform, but the convergence of the
subsequence {fx(z)} = {1/2n} is uniform.

12. Nonuniformly convergent sequences satisfying any three
of the four conditions of Dini’s theorem.
Dini’s theorem states that if {f,} is a sequence of functions defined
on a set A and converging on A to a function f, and if
(2) fais continuouson 4, n = 1,2, --+,
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(%) f is continuous on 4,
(¢é2) the convergence is monotonie,
() A is compact,
then the convergence is uniform.
No three of these conditions imply uniform convergence. In other
words, no one of the four hypotheses can be omitted. The following
four examples demonstrate this fact.

0 if 2=0 or =z

A

1

S

(1) : fulz) = .
Then {f.(z)} is a decreasing sequence for each z, converging non-
uniformly to the continuous function 0 on the compact set [0, 1].

(#%): The sequence {z*} converges decreasingly and nonuniformly
to the discontinuous function

_jo if o
Jw) = {1 itz
on the compaet set [0, 1].
(#97): Example 6.
(#): The sequence {z*} on [0, 1).

<1,
1

A
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Chapter 8

Sets and Measure on the Real Axis

Introduction

Unless a specific statement to the contrary is made, all sets con-
sidered in this chapter should be assumed to be subsets of ®, the
real number system. A s-ring, or sigma-ring, is a nonempty class 4
of sets that is closed under the operations of countable unions and set
differences (A1, As, -+- € A = U2, 4, € 4and A;\ 4, € A). If
A is any nonempty class of sets, the o-ring generated by A is the
intersection of all o-rings containing 4 (there is always at least one
o-ring containing 4, the class of all subsets of &, so that the generated
o-ring always exists). It is natural to think of the o-ring generated by
A as the smallest o-ring containing 4. The o-ring generated by the
class C of all compact subsets of & is called the class B of Borel sets
(that is, a set is a Borel set iff it is a member of the o-ring generated
by C).

If A is any subset of ® and z any real number, the translate of A
by z is defined and denoted:

r+A={yly=z+a,a€ A} ={zx+alac A}].
A class A4 of sets is closed under translations iff
A€CArzcRr=>zr+ A €A

If S is a o-ring of subsets of a space X, a set-function p with domain
S is nonnegative extended-real-valued iff its values, for sets
S € 8, satisfy the inequalities 0 £ p(S) £ + ». A nonnegative
extended-real-valued set-function p on a o-ring S is 2 measure on S

33
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iff p(®) = 0 and p is countably additive on S:
81,8, - €8,8.,n8, =0form #n=

40 o0
p (ngl Sn) = ; p(8r).

If p is a measure on a o-ring S of subsets of a space X, and if X € S,
then the ordered pair (X, S) is called a measure space and p is called
a measure on the measure space (X, S). If the class of sets S is
understood from context, the single letter X may also be used to
indicate a measure space. If p and ¢ are two measures on the same
measure space (X, S), p is absolutely continuous with respect to
o (written p K ¢) iff

A€ S,a(4) = 0= p(4) = 0.

For any measure p on a measure space (X, S), a null-set for p is
any subset of a member A of S of measure zero: p(4) = 0. A measure
p on (X, 8) is complete iff every null-set for p is a member of S.
Borel measure is the uniquely determined measure p on the
measure space (®, B) that assigns to every bounded closed interval
its length:
pla, b)) =b —a if a=b.

The class B of Lebesgue-measurable sets is the o-ring generated by
the union of B and the class of all null-sets of Borel measure on B.
Lebesgue measure is the uniquely determined complete measure on
B whose contraction to B is Borel measure; that is, Lebesgue measure
is the completion, or complete extension, to B of Borel measure on B.
Since the length of a compact interval [a, b] is invariant under
translations, the o-rings B and B are closed under translations, and
both Borel and Lebesgue measure are translation-invariant:

AEB,:UE(R'—'#Z’-‘-AEB,#(CD-{—A)=}L(A),
AcBrzea=z+AcB u@+ 4) = ud).

For any set £ C ®, Lebesgue inner and outer measure are defined
and denoted:

inner measure of £ = p«(F) = sup {u(4) |4 C E, A ¢ B},
inf {u(4) |4 D E, A € B}.

outer measure of £ = p*(f) =
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These are also equal to
px(E) = sup {u(4) | A C E, A € B}

= sup{p(4) | A C E, A compact},
p*(B) = inf {u(4)|A D E, A € B}

= inf {u(A) [A D E, A open}.

For proofs of the preceding facts, and for further discussion, see
[16], [18], [30], and [32].

We shall occasionally refer to the axiom of choice, or such variants
as the well-ordering theorem or Zorn’s lemma. These are sometimes
classed under the title of The Maximality Principle. The reader is
referred to [16], [30], and [46].

It will be assumed that the reader is already familiar with the con-
cept of equivalence relations and equivalence classes. These topics are
treated in references [16] and [22].

1. A perfect nowhere dense set.

A perfect set is a closed set every point of which is a limit point
of the set. A fundamental fact concerning perfect sets is that every
nonempty perfect set A of real numbers — or, more generally, any
nonempty perfect set in a complete separable metric space -— is un-
countable; in fact, A has the cardinality ¢ of @ (there exists a one-
to-one correspondence with domain & and range A). (For a proof
and discussion, see [20], pp. 129-138.)

A nowhere dense set is a set A whose closure A has no interior
points: I(A) = @ Clearly, a set is nowhere dense iff its closure is
nowhere dense, and any subset of a nowhere dense set is nowhere
dense. A less obvious fact is that the union of any finite collection of
nowhere dense sets is nowhere dense. Proof by induction follows from
the special case: If A and B are closed and nowhere dense, then A u B is
nowhere dense. (If U is a nonempty open subset of 4 u B, then
U\ B is a nonempty open subset of A.)

A celebrated example of a perfect nowhere dense set was given by
G. Cantor (German, 1845-1918), and is known as the Cantor set.
This set C is obtained from the closed unit interval [0, 1] by a se-
quence of deletions of open intervals known as “middle thirds,”
as follows: First delete all points « between § and Z. Then remove the
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middle thirds of the two closed intervals [0, 1] and [3, 1] remaining:
(3, 8) and (%, §). Then remove the middle thirds of the four closed
wtervals [0, 3], [§, 31, [3, 7], and [§, 1] remaining: (3, &%), (%, &),
(3%, 8%), and (3%, ££). This process is permitted to continue indefi-
nitely, with the result that the total set of points removed from [0, 1]
is the union of a sequence of open intervals and hence is an open set.
The set C' is defined to be the closed set remaining. Since every point
of €' is approached arbitrarily closely by endpoints of intervals re-
moved (these endpoints all belong to C), C is perfect. Since there is
no open interval within [0, 1] that has no points in common with at
least one of the open intervals whose points are deleted at some stage,
the (closed) set C is nowhere dense.

The Cantor set C' can be defined in terms of the ternary (base
three) system of numeration. A point z € C iff z can be represented
by means of a ternary expansion using only the digits 0 and 2. For
example, 0.022222- - - and 0.200000- - - are the endpoints of the first
interval removed, or % and £, respectively, in decimal notation. For
a discussion of this description of C, cf. [18] and [32]; also ef. Example
2, below.

2. An uncountable set of measure zero. :

The Cantor set C' of Example 1 is uncountable since it is & non-
empty perfect set, and it has measure zero since the set of points
deleted from the closed interval [0, 1] has measure

1,12 T
5t33tggg T - -t

The ternary expansions of the points of the Cantor set can be
used to show that C has the cardinality ¢ of the real number system
®. (This method is independent of the one cited above that is based
on the properties of perfect sets.) In the first place, the points of ¢
are in one-to-one correspondence with the ternary expansions using
only the digits 0 and 2, and therefore (divide by 2) with the binary
expansions using the digits 0 and 1. On the other hand, the non-
terminating binary expansions are in one-to-one correspondence with
the points of the half-open interval (0, 1], and hence with the real
numbers. This much shows that the set of all binary expansions — and
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therefore C' — is uncountable, with cardinality af least t. To see that
the cardinality is actually equal to ¢ we need only observe that the
set of ferminating binary expansions is countable (or, even more
simply, that C < ®). For further discussion of the mapping just
described, see Example 14, below.

3. A set of measure zero whose difference set contains a
neighborhood of the origin. : .

If A is any nonempty set, its difference set, D(A) is the set of all
differences between members of A:

DA) = {z ~y|z € A,y € A},

A fact of some importance in measure theory is that whenever 4 is
a measurable set of positive measure, the origin is an interior point
of the difference set A (cf. [18], p. 68). The Cantor set C of Example 1
is an example of a set of measure zero that has this same property.
In fact, the difference set of C is the entire closed interval [—1, 1]:

D) = [—1, 1].

The simplest way to see this is to consider the product set C X C,
and to show that for any number « such that —1 £ & £ 1, the line
y = 2 + ameets the set € X C in at least one point. (Cf. [10], p. 110,
where references are given.) Since C is obtained by a sequence of
removals of “middle thirds,” the set C X C can be thought of as
the intersection of a countable family of closed sets Cy, Cs, -+,
each of the sets C, being a union of “corner squares” as follows
(cf. Fig. 3): The set C consists of four by % closed squares located
in the corners of the total square [0, 1] X [0, 1] : [0, 3] X [0, 3],
[0, 31 X [3, 1], [3, 11X [0, §], and [3, 1] X [4, 1]; the set C; consists of
sixteen § by 4 closed squares located by fours in the corners of the
four squares of Ci; the set C; consists of sixty-four % by % squares
located by fours in the corners of the sixteen squares of Cb; ete.
For any given o € [—1, 1], the line y = & 4+ & meets at least one of
the four squares of C;; choose such a square and denote it S;. This
line must also meet at least one of the four squares of C, that lie
within Sy; choose such a square and denote it S, If this process is
continued, a sequence of closed squares {S,] is obtained such that
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Figure 3

Spp1 © Sp for m = 1,2, --- . Since the side of S, is 3™, there is
exactly one point (z, ) that belongs to every square of the sequence
{S,} (cf. [34], p. 201, Ex. 30). The point (2, y) must therefore belong
to C X C, and since this point must also lie on the line y = z 4+ ¢,
we have the desired members z and y of C whose difference is the
prescribed number «.

4. Perfect nowhere dense sets of positive measure.

The process used to obtain the Cantor set C' of Example 1 can be
modified to construct a useful family of perfect nowhere dense sets.
Each of these sets, to be called a Cantor set, is the set of points
remaining in [0, 1] after a sequence of deletions has taken place as
follows: If « is an arbitrary positive number less than 1, first delete
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from [0, 1] all points of the open interval (3 — %o, I + 1a), of length
1a and midpoint . From the two remaining closed intervals [0,
1 — 1o] and [3 + 1a, 1], each of length 3(1 — 1), remove the
middle open intervals each of length 1. Then from the four closed
intervals remaining, each of length #(1 — 1a — 1), remove the
middle open intervals each of length «/32. From the eight closed
intervals remaining, each of length (1 — }a — o — }a), remove
middle open intervals each of length «/128. After n stages the measure
of the union of the open intervals removed is (3 + 1 + --- 4+ 2-7),
and therefore the measure of the union of the open intervals removed
in the entire sequence of removal operations is . The measure of
the remaining Cantor set is 1 — «. For this reason, Cantor sets
defined in this fashion are often called Cantor sets of positive
measure. They are all perfect nowhere dense sets. It will be shown
in Example 23, below, that all Cantor sets, of positive or zero measure,
are homeomorphic (cf. Introduction, Chapter 12). It will follow,
then, from the second paragraph of Example 2, above, that every
Cantor set has cardinality ¢ equal to that of R.

A third construction of a Cantor set is the following: Let 0 < 8 < 1
and let {8,} be a sequence of positive numbers such that D 1=y 2°8,
= B. Delete from [0, 1] the open interval I,, centered at 1 and of
length Bo. Then from [0, 1]\ I, delete two open intervals 1,1, I,2,
each centered in one of the two disjoint closed intervals whose union
is [0, 1]\ I, and each of length 8;. Continue deletions as in the pre-
ceding constructions: At the nth stage of deletion, 2» open intervals,
LY L2 -+, LY, properly centered in the closed intervals consti-
tuting the residue at the (n — 1)st stage and each of length g,, are
deleted, n = 1,2, --- .

5. A perfect nowhere dense set of irrational numbers.

A final example of a perfect nowhere dense set can be constructed
by making use of a sequence {r.} whose terms constitute the set of
all rational numbers of (0, 1). Start as in the definition of the Cantor
set C, but extend the open interval so that the center remains at %,
so that its endpoints are irrational, and so that the enlarged open
interval contains the point r;. At the second stage remove from each
of the two remaining elosed intervals an enlarged open middle “third”’
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in such a way that the midpoints remain midpoints, the endpoints
are irrational, and the second rational number 7, is removed. If this
process is repeated according to the indicated pattern, a perfect
nowhere dense set D remains, and since all rational numbers between
0 and 1 have been removed, this “Cantor” set D consists entirely of
irrational numbers, except for the two points 0 and 1. If the endpoints
of the original interval are chosen to be irrational numbers, a perfect
nowhere dense set can be constructed in this fashion so that it consists
entirely of irrational numbers.

6. A dense open set whose complement is not of measure zero.

Let A be a Cantor set of positive measure in [0, 1], and let B =
A’ = ®\ A. Then B is a dense open set whose complement A has
positive measure.

7. A set of the second category.

A set is said to be of the first category iff it is a countable union
of nowhere dense sets. Any subset of a set of the first category is a
set of the first category, and any countable union of sets of the first
category is a set of the first category. The set @ of rational numbers

is of the first category. A set is said to be of the second category

iff it is not of the first category. An example of a set of the second
category is the set ® of all real numbers. More generally, any complete
metric space is of the second category (cf. [36], p. 338, Ex. 33). This
general result is due to R. Baire (cf. [1], p. 108, [20], pp. 138-145,
and [27], p. 204). It follows from this that the set ® \ @ of irrational
numbers is of the second category. We outline now a proof — inde-
pendent of the general theorem just cited — that any set A of real
numbers with nonempty interior I(4) is of the second category.
Assume the contrary, and let C be a nonempty closed interval [a, ] ,
interior to A, and let C = Fyu Fyu -- -, where the sets F, are closed
and nowhere dense, n = 1,2, --- . Let C; be a closed interval [a;, by]
C (a, b) \ Fy; let C: be a closed interval [as, bs] C (a1, b1) \ Fs; in
general, for n > 1, let C, = [a,, bs] C (@41, bu—1) \ F. Then there
exists a point p belonging to every C, n = 1,2, --- (ef. [34], p. 201,
Ex. 30), whence p € C. But this is impossible since p belongs to
no Fp,n = 1,2 ... (Contradiction.)
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8. A set that is not an F, set.

Recall (Example 23, Chapter 2) that an F, set is a set that is a
countable union of closed sets. Examples of ¥, sets abound: finite
sets, closed intervals, open intervals (for example, (0, 1) is the union
of the sets [1/n, (n — 1)/n]), half-open intervals, @ (f the rational
numbers are arranged in a sequence 4, 75, -+ - , then @ is the union
of the one-point closed sets {ri}, {rs}, <+, {ra}, +--). An example
of a seb that is not an F, set is the set ® \ g of irrational numbers. To
prove this, assume the contrary, and let ®\ @ = C, u C, u --- ,
where C,, is closed, n = 1, 2, --- . Since no subset of the set &\ Q
of Irrational numbers has an interior point, every closed subset of
®\ Q is nowhere dense, and this implies that & \ @ is of the first
category. (Contradiction; ¢f. Example 7.)

9. A set that is not a G; set.
A set A is said to be a G; set iff it is a countable intersection of
open sets. It follows from the de Morgan laws for set-complemen-

tation:
oo ’ +w +o0 ’ +o
(U A,.) =N A, (n A,.) = U 4,
n=1 n=] =1 n=1

that a set A is a G set iff its complementary set 4’ = ® \ 4 isan
F, set. Therefore, since the set ® \ @ of irrational numbers is not an
F, set, the set @ of rational numbers is not a G; set.

If countable unions of G; sets and countable intersections of F, sets

~are formed, two new classes of sets are obtained, called Gs, sets and

Fys sets, respectively. In fact, two infinite sequences of such classes
exist: labeled F,, F,;, Fos,, + - - and Gs, Gy, (a3, - -+ . For a treatment
of these sets, cf. [20].

10. A set A for which there exists no function having 4 as its
set of points of discontinuity.

Let A be the set ® \ @ of irrational numbers. Then since A is not
an F, set there is no real-valued function of a real variable whose set
of points of discontinuity is A (cf. the final remark of Example 23,
Chapter 2). In other words, there is no function from ® to ® that is
continuous at every rational point and discontinuous at every ir-
rational point. (Cf. Example 15, Chapter 2.)
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11. A nonmeasurable set.

The axiom of choice provides a means of constructing a set that is
not Lebesgue-measurable. In fact, the set thus produced cannot be
measurable with respect to any nontrivial countably additive trans-
lation-invariant measure. More specifically, if p is a measure function
defined for all sets A of real numbers, finite-valued for bounded sets,
and such that

ple + A) = p(4)

forevery r € ® and A C @, then p(4) = 0 for every A < ®. We
shall now prove this fact.

We start with an equivalence relation ~ defined on (0, 1] X (0, 1]
as follows: z ~ y iff ¢ ~ y € Q. By means of ~ the half-open interval
(0, 1] is partitioned into disjoint equivalence classes C. The axiom of
choice, applied to this family of equivalence classes, produces a set
A having the two properties: (1) no two distinct points of 4 belong
to the same equivalence class C; (2) every equivalence class C
contains a point of A. In terms of the equivalence relation ~ these two
properties take the form: (1) no two distinct members of A are
equivalent to each other; (2) every point z of (0, 1] is equivalent to
some member of A. We now define, for each r € (0, 1], an operation
on the set A, called translation meoduloe 1, as follows:

r + A4) mod 1) = [r + A)u (r — 1) + A)In (0, 1]
={+4)n©0 1} u{(C—=1)+4)n O 1]}

The two properties of the set A stated above imply, for translation
modulo 1: (1) any two sets (r + A)(mod 1) and (s + A)(mod 1)
for distinct rational numbers r and s of (0, 1] are disjoint; (2) every
real number z of (0, 1] is a member of a set (r + A)(mod 1) for
some rational number r of (0, 1]. In other words, the half-open
interval (0, 1] is the union of the pair-wise disjoint countable col-
lection {(r + A)(mod 1)}, where r € @n (0, 1]. An important
property of the sets obtained from A by translation modulo 1 (on the
basis of the assumptions made concerning u) is that they all have the
same measure as A:
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p((r + A)(mod 1))

=pu((r + 4) n 0, 1]) + p((( — 1) + 4) n (0, 1])
w4+ A)n 0, 1)) + p((r + 4) n (1, 2]
p(+ 4)n(0,2]) = plr + 4) = p(4).

On the assumption that A has positive measure we infer from the
countable additivity of g:

p(0, 1) = 2 u((r + A)(mod 1)) =
7eg1(0,1]

I

I

2 uw(d) =+,
7eQN(0,1]

which is impossible since (0, 1] is bounded. Consequently u(4) = 0,
and

w(©1) = 2wl + A)mod 1)) = > pu(4) =
7eQ1(0,1} e (0,11

whence
+0 +e0

#(®) = 2wl n + 1) = 2 w((0, 1)) = 0.
As a consequence of this, p is the trivial measure function for which
every set has measure zero.

Finally, since Lebesgue measure is a nontrivial translation-invariant
measure for which bounded intervals have positive finite measure,
the detailed steps just presented show that the set A is not Lebesgue-
measurable.

Since all F, sets and all G, sets are Borel sets, and therefore measur-
able, the preceding nonmeasurable set is an example of a set that is
neither an F, set nor a G; set.

The construetion just described can be looked at in terms of sets
on a circle, as follows: In the complex plane @, let the unit circle
3= {z|z€ e, |z| = 1} beregarded as a group under multiplication.
For each z € 3 there is a unique 9,0 < 8 < 1, such that z = ¢,
Let 3o = {2|2 = e 9 € 9,0 < 0 < 1}. Then 75 is a normal
subgroup, and the quotient group § = 3/3, exists. If § is a one-to-one
preimage of § in 3 (a complete set of representatives in J), obtained
by the use of the axiom of choice, and if Lebesgue measure u on [0, 1)
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is carried over to a measure 4 on 3 by the rule:
E C Jis measurable iff F = {f|e™ ¢ F,0 £ ¢ < 1}
is Lebesgue-measurable and g(E) = 2xu(F),

then § isnot measurable. Indeed, Ujegno) €278 is a countable disjoint
union of sets, each of which is measurable, all with the same measure,
if § is. Furthermore, this union is 3 since § is a complete set of repre-
sentatives, whence J is a countable disjoint union of measurable sets,
all of the same measure, if § if measurable. Since i(¥) = 2, we see
#(8) cannot be positive. But if i(§) = 0, then g(3) = 0.

The procedures outlined above can be extended to more general
topological groups, for example to compact groups having countably
infinite normal subgroups. (For definitions and discussions of group,
normal subgroup, ete., cf. {22]. Similarly, for topological groups cf.
[291.)

12. A set D such that for every measurable set 4, u.(DnAd) = 0
and p*(D nA) = u(A).

A set D having this property may be thought of, informally, as
being the ultimate in nonmeasurability — D is as nonmeasurable as
a set can be! The set D, as is the case with the nonmeasurable set 4
of Example 11, is again constructed with the aid of the axiom of
choice, but the details are somewhat more complicated. For a com-
plete discussion, see [18], p. 70. This example shows that every
measurable set A contains a subset whose inner measure is equal to
zero and whose outer measure is equal to the measure of A. It also
shows that every set of positive measure contains o nonmeasurable subset.

F. Galvin has given a construction of a family {E;},0 £ ¢t =< 1,
of pairwise disjoint subsets of [0, 1] such that each has outer measure 1.

13. A set 4 of measure zero such that every real number is a
point of condensation of 4.

A point p is a point of condensation of a set A if and only if
every neighborhood of p contains an uncountable set of points of A .
Let C be the Cantor set of Example 1, and for any closed interval
[a, B], where a < 3, define the set C(a, 8):

Cle, ) ={a+ (B — )|z € Cl
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Then C(a, B) is a perfect nowhere dense set of measure zero. Let B
be the set that is the union of all sets C(a, 8) for rational « and g,
where @ < . Since B is the union of a countable family of sets of
measure zero it is also a set of measure zero. On the other hand, since
every open interval I must contain a set C(a, 8), and since every
C(a, B) is uncountable, every real number must be a point of conden-
sation of B. (Cf. [14], p. 287.)

14. A nowhere dense set 4 of real numbers and a continuous
mapping of A onto the closed unit interval [0, 1].

The set A can be any Cantor set (Examples 1 and 4), since all
Cantor sets are homeomorphic (Example 23). We shall describe a
specific mapping ¢ for the Cantor set of Example 1. The mapping is
that described in the second paragraph of Example 2: For any z € C,
let 0.cxcoc; <+ - be its ternary expansion, wheree, = Qor2,n = 1, 2,
---,and let

€1 C2 C3

¢($)EO.222 oy

where the expansion on the right is now interpreted as a binary
expansion in terms of the digits 0 and 1. It is clear that the image of
C, under ¢ , is a subset of [0, 1]. To see that [0, 1] < ¢(C), we choose
an arbitrary y € [0, 1] and a binary expansion of y:

Yy = 0.b1b2b3 crt .
Then
= 0.(2b1)(2bs) (2bg) - -+

(evaluated in the ternary system) is a point of C such that ¢(z) = 7.
Continuity of ¢ is not difficult to establish, but it is more conveniently
seen in geometric terms as discussed in the following example, where
the mapping ¢ is extended to a continuous mapping on the entire
unit interval [0, 1].

It should be noted that ¢ is not one-to-one. Indeed, this would be
impossible since C and [0, 1] are not homeomorphic, and any one-to-
one continuous mapping of one compact set onto another is a homeo-
morphism (cf. [34], p. 192). (The set C is totally disconnected, having
only one-point subsets that are connected, whereas its entire image
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[0, 1] is connected.) An example of two points of C that have the
same image is the pair 0.022000000- - - and 0.020222222- - . , since
their images are 0.011000000 and 0.010111111--- = 0.011000000. In
fact, two points z; and z» of C have the same image, under ¢ , 4f and
only if they have the form:

21 = 0.cic3- - -€,2000- - - and zs = O.cics- - -¢,0222- - -,

In other words, ¢(z1) = ¢(x2) iff 2, and z, are endpoints of one of the
open intervals deleted from [0, 1] in the construction of C. Therefore
¢ is an increasing function on C, and strictly increasing except for
such pairs of endpoints. (Cf. Example 30.)

The following general theorem is an extension of the preceding
“existence theorem,” indicating what is possible in metric spaces for
both continuous and homeomorphic (topological) images of the Cantor
set (actually, of any Cantor set, by Example 23) and its subsets (for
definitions, cf. the Introduction to Chapter 12): Ewvery separable
melric space is a continuous tmage of a subset of the Cantor set. Every
compact metric space is a continuous image of the Cantor sel. Every
compact totally disconnected melric space is a homeomorphic tmage of a
closed subset of the Cantor set. Every compact totally disconnected perfect

melric space 1s & homeomorphic image of the Cantor set. (Cf. [1], pp.

119-122.)

15. A continuous monotonic function with a vanishing de-
rivative almost everywhere.

The function defined in Example 14 can be extended so that its
domain is the entire unit interval [0, 1], as follows: If z € [0, 1]\ C,
then z is a member of one of the open intervals (a, b) removed from
[0, 1] in the construction of C, and therefore ¢(a) = ¢(b); define
o(x) = ¢(a) = ¢(b). In other words ¢ is defined to be constant on
the closure of each interval removed in forming C. On the interval
[, 2], ¢(x) = %. On the intervals [%, 2] and [F, §], the values of ¢
are 1 and ¥, respectively. On the intervals [5%, 2%, %, &1, [£2, 2],
and [32, $%], the values of ¢ are %, £, £, and I, respectively. If this
process is repeated indefinitely, we see that the function ¢ with
domain [0, 1] is increasing there, and (locally) constant in some
neighborhood of every point of [0, 1]\ C. (Cf. Fig. 4.) Since ¢ is
increasing on [0, 1] and since the range of ¢ is the entire interval
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Figure 4

[0, 11, ¢ has no jump discontinuities. Since a monotonic function can
haveé no discontinuities other than jump discontinuities (cf. [34], p.
52, Ex. 24), ¢ is continuous. Since ¢ is locally constant on the open
subset [0, 1]\ C, which has measure 1, ¢’(z) = 0 almost everywhere
in [0, 1]. The function ¢ just defined is called the Cantor function.

In much the same way as the Cantor function is defined in terms
of the Cantor set, other “Cantor functions” can be defined in terms
of other Cantor sets (of positive measure). Perhaps the simplest way,
in terms of a given Cantor set 4 on [0, 1], to define the corresponding
Cantor function g is to define g first on the closures of the successively
removed intervals: on the central interval, g(x) = %; on the next two
the values of ¢ are ; and £, on the next four the values are %, §, £, %,
ete. On the dense subset [0, 1]\ A4, ¢ is increasing and its range is
dense in [0, 1]. Therefore the domain of ¢ can be extended to [0, 1]
so that g is increasing and continuous on [0, 1], with range [0, 1].

By making use of Example 5—a “Cantor set” of irrational
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numbers — it is possible to construct a function k that is increasing
and continuous on [0, 1], with range [0, 1], and such that #'(z) =
for every rational number z € [0, 1]. In fact, the range of A(x) for
rational z € [0, 1] can be made equal to the entire set § n [0, 1] of
rational points of [0, 1], instead of simply those of the form m/2" as
in the preceding-cases. In this way we obtain a function satlsfymg
the requirements of Example 11g, Chapter 1.
For a strictly monotonic example, see Example 30.

16. A topological mapping of a closed interval that destroys
both measurability and measure zero.

If ¢ is the Cantor function of Example 15, define a function ¢ by:
Y)=z+¢@k), O0=z=1,

with range [0, 2]. Since ¢ is increasing on [0, 1], and continuous there,
y is strictly increasing and topological there (continuous and one-to-
one with a continuous inverse on the range of ¥). Since each open
interval removed from [0, 1] in the construction of the Cantor set C
is mapped by ¢ onto an interval of [0, 2] of equal length, u(¥ (I \ €)) =
p(I\ C) = 1, whence p(¥(C)) = 1. Since C is a set of measure zero,
Y is an example of a topological mapping that maps a set of measure
zero onto a set of positive measure. Now let D be a nonmeasurable
subset of ¥(C) (cf. Example 12). Then ¢—1(D) is a subset of the set ¢
of measure zero, and is therefore also a (measurable) set of measure
zero. Thus ¢ is an example of a topological mapping that maps a
measurable set onto a nonmeasurable set. (See also Example 23.)

17. A measurable non-Borel set.

The set ¢~1(D) of Example 16 is a measurable set, but since it is
the image under a topological mapping of a non-Borel set D, y—1(D)
is not a Borel set. (Cf. {20], p. 195.)

18. Two continuous functions that do not differ by a constant
but that have everywhere identical derivatives (in the finite
or infinite sense).

This example was given by Rey Pastor [38] (also ef. [10], p. 133).*

*The example given by Pastor is in error. For a correct example see 8. Saks,
Theory of the integral, Warsaw (1937), pp. 205-206.
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Let ¢ be the Cantor function of Example 15. On the unit interval
[0, 1] define the function h(z) to be equal to zero on the Cantor set
C, and on each open interval (a, b) removed in the construection of
C define h(z) so that its graph consists of two congruent semicircles
with diameter on the z axis, one semicircle lying above the z axis on
the left-hand half of (a, b) and the other semicircle lying below the
z axis on the right-hand half of (a, b):

b—a\ 3a+b2:]”2 g ~a+b
h(z) [K i )f(“’" i > fa<es—-,
) =
b — a\* a4+ 3b 2]1/2. a-+b
l"[( ) - (- )1 * T Ee<h

Then h is everywhere continuous on the interval [0, 1]. Finally, let
J@) = 26() + h() and g(z) = $() + h(). Then ['(zx) — ¢/ (z)
for 0 = z < 1:for every x of the Cantor set C, f'(z) = ¢'(z) =

for every z that is the midpoint of an interval removed in the forma-
tion of C, f'(z) = ¢'(xr) = — «; for every other z € [0, 1\ C,
f(®) = ¢g'(z) = h'(z). On the other hand, f(z) — g(z) = ¢(z), and
¢(z) is not a constant function.

19. A set in [0, 1] of measure 1 and category I.

First example: Let A, be a Cantor set in [0, 1] of measure (n — 1) /n,
n=12---,andlet A = A;u A, u --- . Then, since 4, is nowhere
dense, forn = 1,2, - - , A is of the first category. On the other hand,
since

-1

w4 spd4) =1

forn=1,2,---,u(4) =
Second example: A second such set is given by the complement

(relative to the unit interval) of the set of the second example
under Example 20, below.

20. A set in [0, 1] of measure zero and category II.

First example: If A is the set of the first example under Example 19,
above, then its complement A’ = [0, 1]\ 4 is of the second category
(if it were of the first category, the interval [0, 1] would be a union
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of two sets of the first category and hence also of the first category),
and of measure zero (u([0, 1]\ 4) + u(4) = 1).

Second example: Let @ n [0, 1] be the range of a sequence {r,},
and for each pair of positive integers k& and n, let I, be an open
interval containing r, and of length < 2%, If 4, = U T, and

»=1
By, = [0, 1]\ A, then A is an open set containing @ n [0, 1] and
having measure p(4;) < 2% and hence By is a compact nowhere
dense set of measure u(By) > 1 — 2% (The measure of 4, is less
than or equal to the sum of the lengths of the intervals I;,,n = 1, 2,
, and By can have no interior points since it consists of irrational
+o0

points only.) Therefore the set B = U By, is a subset of [0, 1] of

k=1 00
measure 1 and of the first category; the set 4 = N 4, = [0, 1]\ B

k=1

is a subset of [0, 1] of measure zero and of the second category.

21. A set of measure zero that is not an F, set.

First example: The first example under Example 20 cannot be a
countable union of closed sets F;, Fs, - - - , since if it were, each F,

would be a closed set of measure zero and therefore nowhere dense.

But this would mean that the set under consideration would be of
the first category. (Contradiction.)

Second example: The second example under Example 20, for the
same reasons as those just given, has the stated properties.

Third example: The non-Borel set of Example 17 is of measure
zero, but cannot be an F, set since every F, set is a Borel set.

22. A set of measure zero such that there is no function —
Riemann-integrable or not — having the set as its set of points
of discontinuity.

Each set under Example 21 is such a set, since for any function on
® into ® the set of points of discontinuity is an F, set (cf. Example 23,
Chapter 2; also cf. Example 8, Chapter 4).

The present example is of interest in connection with the theorem:
A necessary and sufficient condition for a real-valued function defined
and bounded on a compact interval to be Riemann-integrable there, is
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that the set of its points of discontinuity be of measure zero (cf. [36],
p. 1563, Ex. 54). A careless reading of this theorem might lead one to
believe that every set of measure zero is involved, since the condition
of the theorem is both necessary and sufficient.

23. Two perfect nowhere dense sets in [0, 1] that are homeo-
morphic, but exactly one of which has measure zero.

We shall prove even more: If C is the Cantor set on [0, 1] of measure
zero and if A is any Cantor set on [0, 1] of positive measure, then
there exists a homeomorphism f of [0, 1] onto [0, 1] such that f(C) =
An immediate consequence of this will be the corollary that all Cantor
sets are homeomorphic.

The idea of the mapping is similar to that of the original Cantor
function (Example 15): Arrange the intervals Iy, I, --- and the
intervals Jy, J, - -+ deleted from [0, 1] in the formation of C and A,
respectively, in the same “order sense.” That is, let I; and J; be the
middle intervals first removed ; then let I; and J, be the “left middles”
and I; and J; be the “right middles” next removed, ete. Then map
the closure of I, onto the closure of J, linearly and increasingly, for
n = 1,2, --- . Then f is defined and strictly increasing on a dense
subset of [0, 1], and since its range is also dense on [0, 1], the con-
tinuous extension of f to [0, 1] is immediate, as deseribed in the second
paragraph under Example 15. (Cf. Fig. 5.) The present function f is
a second example of the type called for in Example 16.

24. Two disjoint nonempty nowhere dense sets of real num-
bers such that every point of each set is a limit point of the
other.

Let A be any Cantor set in [0, 1], and let B be the subset of 4
consisting of all endpoints of the open intervals that were deleted
from [0, 1] in the construction of A, and let E = A\ B. Then B
and E satisfy the requirements.

If the containing space is not restricted to being ® , examples are
easily constructed. For instance, in the Euclidean plane two sets
satisfying the stated conditions are the set of rational numbers on
the x axis and the set of irrational numbers on the z axis.
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C
Figure 5

25. Two homeomorphic sets of real numbers that are of
different category.

We start by defining an increasing continuous function on [0, 1]
that is similar to a Cantor function as defined in the second paragraph
under Example 15. In the present instance let {J.} be the sequence
of open sets removed from [0, 1] in the construction of a Cantor set
A, as described in Example 23, and let {s,} be a one-to-one mapping
of 9t onto @ n (0, 1) . Define the sequence {r,} as follows: let r; = sy;
let 7o = s, where n is the least positive integer such that s, < 7y
let 73 = s, where n is the least positive integer such that s, > 7.
Then let r4 = s, where n is the least positive integer such that s, < rs;
let 5 = s, where n is the least positive integer such that r, < s, < 743
let rs = s, where n is the least positive integer such that r; < s, < 733
let r» = s, where n is the least positive integer such that s, > 7s.
If this procedure is continued, the rational numbers between 0 and 1
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are arranged in a sequence {r,} in such a way that their order relation
corresponds to that of the sequence of intervals J,, as indicated in
Figure 6. In other words, 7 < r, if and only if J,, lies to the left of .J,,.
We now_define the function f so that f(z) = r, if = belongs to the
closure J, of J,, n = 1,2, --- . Asin Example 15, f is defined and
inereasing on & dense subset of [0, 1], with range dense in [0, 1], and
can be extended to a continuous increasing function mapping [0, 1]
onto [0, 1]. If B and E are defined as in Example 24, then f maps B
onto the set @ n (0, 1), and E onto the set (0, 1) \ @ of all irrational
numbers between 0 and 1. In this latter case, the mapping between
Eand (0, 1) \ @isstrictly increasing and bicontinuous. (The continuity
of the inverse mapping follows from the order-relationship among the
points of E and the correspondence to that order-relationship among
the points of (0, 1) \ @.) Therefore E and (0, 1) \ @ are homeomorphic.
That is, any Cantor set shorn of its “endpoints” is homeomorphic to the
set of irrational numbers between 0 and 1. But E is nowhere dense and
hence of the first category, whereas (0, 1) \ @ is of the second category
(cf. Example 7).

It should be noted that, in contrast to the sets of Example 23, the
homeomorphism of the present Example cannot be induced from a
homeomorphism between containing intervals. (If two spaces are
homeomorphie and if two sets correspond under this homeomorphism,
then if one is nowhere dense so is the other; if one is of the first
category, then so is the other.)

26. Two homeomorphic sets of real numbers such that one is
dense and the other is nowhere dense. ,

If, in Example 25, the rational numbers {r,} are not restricted to
the interval (0, 1) but are permitted to encompass the entire set 9,
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then a homeomorphism between E and the set @ = &\ @ of all
irrational numbers is obtained. The set E is nowhere dense, and the
set @ is dense. (Cf. the final paragraph under Example 25.)

97. A function defined on ® , equal to zero almost everywhere
and whose range on every nonempty open interval is Q.

We shall arrive at the construction of a function f having the stated
properties in stages. Our first goal is to define a function ¢ on the
open interval (0, 1) that maps the set C' n (0, 1), where C is the Cantor
set of measure zero, onto ®. If ¢ is the Cantor function (Example
15), then g can be defined:

g(z) = tan [r(p(x) — 3)], O0<z <L

The second step is to define, for an arbitrary open interval I =
(a, b), a subset Z; of measure zero and a function g; with domain Z;
and range ®. This can be done as follows:

Zr={a+ (b—a)x|z € Cn(0,1)},

gz(m)Eg<”_ > 2€ Zr .

b—a

We start defining the desired function f by letting it be equal to
zero on the set ¢ of integers. We now define a sequence {U,} of open
sets as follows: Let U; = @&\ 4, which is the union of all open in-
tervals of the form (n, n - 1), where # is an integer. In each of these
intervals I let Z; be the set of measure zero defined above, and on the
set Z; define f to be equal to g;. The subset U, of U; where f has not
yet been defined is an open set, and therefore a union of disjoint
open intervals. In each of these intervals I let Z; be the set of measure
zero defined above, and on the set Z; define f to be equal to gr.
The subset Us of Us where f has not yet been defined is again an open
set, and therefore a union of disjoint open intervals. If the sets Z;
are again defined as above, the domain of the function f can once more
be extended, to include these sets of measure zero. Let this process
continue, by means of a sequence { U,} of open sets each of which has
a complement of measure zero. The function f thereby becomes de-
fined on a set of measure zero — the complement of the intersection
of Uy, Us, -++, or equivalently, the union of their complements
U/, Uy, +»+ —in such a way that every nonempty open interval
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must contain one of the open intervals I of one of the open sets U,
and the?eforg a set Z; on which the range of f is ®. Finally, we define
f to be identically zero where it has not already been defined.

28. A funct_ion on ® whose graph is dense in the plane.
The function of Example 27 has this property.

29. A function f such that 0 £ f(x) < -+« everywhere but
fZ f(x) dx = 4 for every nonempty opeli interval (a, b).

A function having these properties can be constructed by repeating
the procedures of Example 27, with the following two changes: (7)
let the set C be replaced by a Cantor set of measure £ on [0, 1] and
(%) define the function g;:

gi(z) = I—Il—)g x(Z1),
where | I | denotes the length of the interval I and x(4) is the charac-
teristic function of the set A (cf. the Introduction, Chapter 1). Each
set Z; has measure 3| I |, and therefore the integral of g; over I is
equal‘to 1/(2| I'}). Since every nonempty interval of the form (e, d)
c?intalns subintervals I of arbitrarily small length, the integral
{lf f(z) dz is arbitrarily large and hence, being a constant, is equal to
o0

30. A continucus strictly monotonic function with a vanishing
derivative almost everywhere. (See page 195 for elaboration.)

A function f with these properties is given by A. C. Zaanen and
W. A. J. Luxemburg [3], as follows: If ¢ is the Cantor function of
Example 15,let ¢ (x) = ¢(z) if z € [0, 1]and ¢(z) = 0ifz € ® \ [0, 1],
let {[a. , ba]} be the sequence of closed intervals [0, 1J, [0, 1, I3, 1],

[0, %] y [Z}:; %]7 T [07 %]7 Tt and define )
~+ao
flz) = 22_"tl/<x—— a"> for 052 1.
n==1 bn — Oy

31. A bounded semicontinuous function that is not Riemann-
integrable, nor equivalent to a Riemann-integrable function.

The characteristic function f of a Cantor set 4 of positive measure
on [0, 1] is bounded and everywhere upper semicontinuous. Since its
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set of points of discontinuity is A, which has positive measure, f is
not Riemann-integrable on [0, 1]. Two functions are equivalent iff
they are equal almost everywhere. If the values of f are changed on a
set of measure zero, the resulting function also has a set of positive
measure as its set of points of discontinuity.

32. A bounded measurable function not equivalent to a Rie-
mann-integrable function.
The function of Example 31 has this property.

33. A bounded monotonic limit of continuous functiens that
is not Riemann-integrable, nor equivalent to a Riemann-
integrable function. (Cf. Example 10, Chapter 4.) '

The function f of Example 31 can be obtained as the limit of a
decreasing sequence {f,} of continuous functions as follows: For any
open interval I = (a, b), where 0 < a < b = 1, and for any positive
integer n, define the function ¢, ;:

(1 if 0Zz=<aq,

1 if b=

8
IIA
l—‘

S
o
l
|

b

0 if o+ 2"
gn,I(x)E

linearif e £ 2 =a+

=z sh.

Llinear if b—

If {J.} is the sequence of open intervals removed from [0, 1] in the
formation of the Cantor set A of positive measure (cf. Example 23),
define the sequence {f,}:

Si = gus,
Jfa = g2,y 92,05
fn = Gn,01°GaJg" °°° ’gn.Jn-

34. A Riemann-integrable function f, and a continuous func-
tion g, both defined on [0, 1] and such that the composite
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function f(g(x)) is not Riemann-integrable on [0, 1], nor
equivalent to a Riemann-integrable function there. (Cf, Ex-
ample 9, Chapter 4.)

The function of Example 31 isof the required form f(g(z)) if Sfx)
is defined to be 0 for 0 < 2 < 1and 1 forz = 1, and if g(z) is defined
tobelifz € A,and 1 — §(b — a) + |z — %(a + b) | if z belongs to
an interval I = (a, b) removed from [0, 1] in the formation of A.
The function g(z) is continuous since for all z; and =z, of [0, 1],
gl — g@s) | £ |21 — 22

Note that by appropriate use of “bridging functions” (cf. Example
12, Chapter 3) the functions g, ; of Example 33 and the portions
defining the function ¢ of Example 34 — and therefore the functions
fa of Example 33 and the complete function g of Example 34 — may
be replaced by infinitely differentiable functions.

Finally, it should be noted that in the reverse order this example is
impossible. In other words, every continuous function (with a eom-
pact interval as domain) of a Riemann-integrable function is Riemann-
integrable. (Cf. [36], p. 153, Ex. 55.)

35. A bounded function possessing a primitive on a closed in-
terval but failing to be Riemann-integrable there.

Let the function g be defined for positive z (cf. Example 2, Chapter
3) by the formula g(z) = 2’ sin(1/z), and for any positive number .
) let z. be the greatest positive = less than or equal to ¢ such that
g (z) = 0. For any positive ¢ define the function g.for0 <z = ¢:

— gx) if 0<z=Zum,
9:(x) = {g(xc) if .<z=e

If A is any Cantor set of positive measure on [0, 1], define the fune-
tion f as follows: If z € 4 let f(z) = 0, and if = belongs to an interval
I = (a, b) removed from [0, 1] in the formation of A, let

fa) = {gc(:c —a) if a<z=ia+b),
gl—z +0b) if 3@+0b) Sz<b,
where ¢ = (b — a).
If z is any point of 4 and if y is any other point of [0, 1], then either
f(¥) = Ooryis a point of some removed interval I = (g, b). In the
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former case, | (f(y) — f@)/(y — ) | = 0 < |y — z|. In the latter
case, let d be defined to be the endpoint of (a, b) nearer y. Then, with

c= %(b - a)r

fly) = fl)} _ ‘ i | < l ()
Yy — y—z| " jy—d
= gc(lyy:ddl) éll?zl/:‘fll‘=ly_dlély_w"

Therefore, in either case, | (f(y) — f(2))/(y — )| S|y —=]and

zonsequently f'(z) = 0 for every z € A.
On the other hand, if = belongs to any removed interval (a, b),

|f'(z) | < |2esin (1/2) — cos (1/2) | = 3,

for some z between 0 and 1, so that f is everywhere differentiable on
[a, B], and its derivative f’ is bounded there.

Finally since limy.op g'(%) = 1 (cf. Introduction, Chapter 2), it
follows that for any point z of 4, limy..f'(y) = L Therefore the
function f is discontinuous at every point of 4, and hence on a set of
of positive measure. The function f’ therefore satisfies all conditions
specified in the statement above. :

A construction similar to the above was (presumably first) given
by the Italian mathematician V. Volterra (1860-1940) in Giorn. di
Battaglini 19(1881), pp. 353-372.

36. A function whose improper (Riemann) integral exists but
whose Lebesgue integral does not.

If f(z) = sin z/z if % 0 and f(0) = 1, then the improper integral
4= f() dz converges conditionally (cf. [34] P 465). That is, the
integral converges, but [¢* | f(z) | dz = + . This means that the

function | f(z) | is not Lebesgue-integrable on [0, + =), and therefore .

neither is f(x) .

37. A function that is Lebesgue-measurable but not Borel-

measurable.
The characteristic function of the Lebesgue-measurable non-Borel

set in Example 17 satisfies these conditions.
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38. A measurable function f(x) and a continuous function
g(x) such that the composite function f(g(x)) is not meas-
urable. '

I.n .the nota.mtion of Example 16, let E = ¢~(D). Then the charac-
tens!;lc function f = xz of the set E is measurable and g = ¢! is
contmuoqs, _but the composite function f(g(z)) is the nonmeasurable
characteristic function of the nonmeasurable set D.

It should be noted that in the reverse order this example is impos-

snble.. In.other words, every continuous function of a measurable
function is measurable.

39. A continuous monotonic function g(x) and a continuous
function f(x) such that

[ 1@ doto) = [ ' f(2)g (2) do.

Let f(z) = 1 on [0, 1], and let g be the Cantor function ¢ of Ex-
ample 15. Then the Riemann-Stieltjes (cf. [36], p. 179) or Lebesgue-
Stieltjes integral (ef. [18], [30], and [32]) on the left above is
equal to ¢(1) — ¢(0) = 1, while the Lebesgue integral on the
zig}(;t is equal to 0 since the integrand is almost everywhere equal
o 0.

40. Sequences of functions converging in different senses.

If f, fi, fo, --- are Lebesgue-integrable functions on either the
unit interval [0, 1] (more generally, on a measurable set of finite
measure) or the real number system ® (more generally, on a measur-
able set of infinite measure), then there are many senses in which
the statement

Ji g =5

may be interpreted. We shall consider here four specific meanings
indicate the implications among them, and give counterexamples,
when such implications are absent. We shall indicate by the single
letter S either [0, 1] or ®& as the domain for the functions concerned.
The four interpretations for the limit statement given above that
we shall consider are:
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(?) Convergence almost everywhere*:

ljin falx) = f(x) for almost every z € 8.

(#7) Convergence in measure:

V8>0,”ljr+gan{$|lfn(w) — f@) | > ¢} = 0.

(¢i{) Mean convergencet:
tim [ |f.@) — fe) | dz = 0.
n>te0 JS

(¢») Dominated convergence]:
Convergence almost everywhere holds, and there exists a
Lebesgue-integrable function g such that |f.(z) | £ | g(z) |
forn = 1,2, --- and almost all z € S.

We start with two statements concerning the implications that
hold among (2)—(w). If S is of finite measure, then

(iv) = { (i))} = (ii).

(¢ie

If S is of infinite measure, then

: (@)
@)= {(m‘) = (i),
(Cf. [18], [30], and [32].)
Examples now follow to show that all of the implications missing
above may fail. For all but the last one, each of the examples serves

for spaces of either finite or infinite measure, since all of the func-
tions involved are zero for z € &\ [0, 1].

* A closely related type of convergence is convergence everywhere, which has
a rather trivial relationship to (z).

+ This is the same as convergence in the Banach space L! of all integrable
functions, reduced modulo functions almost everywhere equal to zero. This
can be generalized by means of an exponent p = 1 to convergence in the Banach
space L? of measurable functions the pth powers of whose absolute values are
integrable, reduced modulo functions almost everywhere equal to zero. For
further discussion, see [16], [18], {29], and {32].

1 The type of dominated convergence needed, in case (ii%) is replaced by
convergence in L2, is that given by | fa(z)| < | g(z)|, where g € L».
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(7) = (755): Let f(z) = 0 for all 2 € ®,

_Jn if 0<z<1/n,
Jul@) = {o it ze®\(01/n),
forn=1,2,---.

(z) = (iv): Same as (3) = (442) since (@) => (¢47).

(w2) = (3): Let f(z) = O for all z € ®. For each n € ¢, write
n=2"4+m,where0 £ m <2,k =0,1,2,--- ;then k and m are
uniquely determined by n. Let

m -+ 1

2k

0 otherwise for 2z € ®.

Then fs [ fo@) — f@) |dz = 2% > 0asn — + o , but img. o f,(2)
exists for no.z € [0, 1].

(727) = (4v): Same as (377) = (¢) since (iv) = (7).

(@) = (3): Same as (¢47) = (), since for the function f, of that
example, and any positive &,

sl || fa@) — fx}| > e} £ 2 >0 as n— 4.

(%) = (¢2): Let f(x) = Oforall z € ®, and for any n € 3 let [

and m be determined as in the example for (447) = (5). Let

e m
llfé-,;

A

T =

Jalz) =

Eosp Moo <m+1’
falz) = 2 =TS T

0 otherwise for z € @&.

Then for any positive number &,
wz| [ fale) — f@)| > &} 2+ >0 as n— 4,
but j; [fal®) — f@)|de =140 as n— + o,
(@) = (i): Same as (i) = (27) or (¢%) = (442), since (¥) = (¢) and
() = (443).
Finally, we give an example where the space S is the space ®
of infinite measure:

@)= ():Letflx) =0 forall z€ @,

(1 if nSzZn+1,

fulz) = {
{0 otherwise for z € ®.
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41. Two measures p and » on a measure space (X, S) such that
p is absolutely continuous with respect to » and for which no
function f exists such that y(E) = f ef(x) dv(x) for all E € S.

Let X = ® and let S be the class of all subsets of X. For any set
E € S define

0 if E is countable,
4+ if F is uncountable,

w(E) = {

W(B) = n if E consists of n points, n = 0,
T 4o if E isinfinite.
Then »(E) = 0= E = © and hence u(E) = 0, so0 4 is absolutely

continuous with respect to ». On the other hand, if f is a function
such that

W(E) = fE £(2) dv(z)

for all sets E, then this equation holds in particular when E is an
arbitrary one-point set, £ = {y}, in which case

W(B) =0 = f f(z) do(z) = f(y).

But this means that the function f is identically 0, and consequently
that p(E) = 0 for every F € S. (Contradiction.)

If we interpret 4= -0 as 0, the following statement is true: If f is
a nonnegative extended-real-valued function measurable with respect to
a measure function v on a measure space (X, S) and if

W(B) = [ 1(2) dv(a)

for.all measurable sets E, then u 1is a measure function on (X, S) that
1s absolutely continuous with respect to ». The preceding counterex-
ample shows that the unrestricted converse of this statement is false.
The Radon-Nikodym theorem (cf. [18]) is a restricted form of the
converse.

112

Part 11

Higher Dimensions



Chapter 9

Functions of Two Variables

Introduction

In this chapter a basic familiarity with the concepts of continuity
and differentiability of functions of two variables — and for the last
two examples, line integrals, simple-connectedness, and vector analy-
gis — will be assumed. If f(z, y) is a differentiable function of the two
variables x and y, its partial derivatives will be alternatively denoted:

% = fu(z,y) = (=, y), gg,_/f = fulz, y) = fulz, y),
56—1;_{ = fu(x: y) = fll(x) y): £—g§ = fw(xy y) = flz(x’ ?/), CTte

A region is a nonempty open set R any two of whose points can be
connected by a broken line segment lying completely in E.

1. A discontinuous function of two variables that is con-
tinuous in each variable separately.
Let the function f(z, y) with domain ® X ® be defined:

e y)=($2:f*g'/y"’ it Sy~
1 0 if z=y=0.

Then f is discontinuous at the orlgin since arbitrarily near (0, 0)
there exist points of the form (a, @) at which f has the value . On
the other hand, for any fixed value of y (whether zero or nonzero),
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the function g(z) = f(z, y) is everywhere a continuous function of z.
For a similar reason f(x, y) is a eontinuous function of y for every
fixed value of z.

2. A function of two variables possessing no limit at the origin
but for which any straight line approach gives the limit
Zero.

Let the function f(z, %) with domain ® X & be defined:

2
Ty . 2
f(xy)s(w“ryz S0,
0 if z=9y=0,

and let L be an arbitrary straight line through the origin. If L is
either coordinate axis, then on L, f(z, y) is identically zero, and hence
has the limit 0 as (z, y) — (0, 0) along L. If L is the line y = ma,
then on L, f(z, y) has the value

3
mx  _ mT
o + mex? 22 + m2

fla, mz) =

for z # 0. Therefore im0 f(z, mz) = 0. In spite of this fact, f(z, )
is discontinuous at (0, 0) since, arbitrarily near (0, 0), there are
points of the form (a, a?) at which f has the value 3.

3. A refinement of the preceding example.
Let the function f(z, ¥) with domain & X ® be defined:
e—l/xzy
; — 2 _ if z#0,
fla,yp) ="+ ¢ v

0 if =0,

and let C be an arbitrary curve through the origin and of the form
2" = (y/c)" or y = cx™", where m and n are relatively prime posi-
tive integers and ¢ is a nonzero constant (x = 0in case n is even). Then
if the point (z, y) is permitted to approach (0, 0) along C, we have:

—1/zzx—mln

. . ce
lim f(z, ez™*) = lim —2 " = {,
250 f( b ) 20 3—2/2215_2"‘/" + 62
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(Cf. Example 10, Chapter 3.) In spite of the fact that the limit of
f(z, v) as (z, y) approaches the origin along an arbitrary algebraic
curve of the type y = ca™* is zero, the function f(z, y) is discon-
tinuous at (0, 0) since there are points of the form (a, e~'/") ar-
bitrarily near (0, 0) at which f has the value L.

4. A discontinuous (and hence nondifferentiable) function of
two variables possessing first partial derivatives everywhere.
Each function of the three preceding examples has these properties.

5. Functions f for which exactly twe of the following exist
and are equal:

lim  f(x, y), lim linblf(x, ¥), . lim lim f(x, y).
zra Yy y>b z—~>a

(zy)=~>(a,b)

Let the three limits written above be designated (z), (#2), and (4%),
respectively. The following functions are such that the indicated
limit does not exist but the other two do and are equal:

(£): Example 1, with (a, b) = (0, 0).

G): flz, y) = {g Jrifx Sym ___(1({;7/) it y=#0,

with (e, b) = (0, 0).

_Jr+ysin(l/2) if z#0,
(6#): f(a v) = {0 Ny —

with (e, b) = (0, 0).
In both examples (7)) and (#77),
fewp | =lal+ 1yl =26+ )12

and hence lim 40,0 f(z, ¥) = 0. Each iterated limit, (4) or (¢4%)
that exists is equal to 0. »

It should be noted that if both limits () and (i7) exist they must
be equal, and that if both limits (2) and (¢42) exist they must be equal
(cf. [34], p. 184).

6. Functions f for which exactly one of the following exists:

lim f(x, y), lim 1inb1 fx, ¥), lim lim f(x, y).
z*a Yy y->b

(2zy)>(a.b) z>a
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As in Example 5, designate the three limits above by (2), (i), and
(4i2), respectively. The following functions are such that the indicated
limit exists but the other two do not:

6): f@, y) = {g FRANEE S

with (¢, ) = (0, 0).

1 .
(Z%)f(:lj’y)z $2+ 2+ ySln— if .’135750,
0 if z=0,
with (a, b) = (0, 0).

((ay 1.
Gi): flayy) = (@ p T ESmy Y =0,
0 if y=0,
with (a, ) = (0, 0).

7. A function f for which lim,., lim,.; f(x, y) and
lim,,; lim... f(x, ¥) exist and are unequal.

(‘”2—?/2 . 2 2
if =z # 0
If f(x’y)_____:_ x2+y2 +y H
0 if z=y=0,
then

lim hm [, ) = hm (x2/2?) =

z-»0 y->

hmhmf(a: y) = hm( - /) = —=1.

y=»0 z-=

8. A function f(x, y) for which lim,, f(x, y) = g(x) exists

uniformly in x, lim., f(x, y) = h(y) exists uniformly in vy,
bime.o g(x) = limy.o h(y), but lim, ,;.0,00 f(%, ¥) dees not exist.
_J1 it zy#0Q,
Let I y) = {O if xy=0.
Then

— 1 _J1 if x#0,
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. _J1 i y =0,
hy) = lm f(z, y)-{o i oy =0

and both of these limits are uniform over the entire real number sys-
temn. However, since there are points arbitrarily near (0, 0) at which
f is equal to 0, and points arbitrarily near (0, 0) at which fis equal to
1, the limit of f(z, y) as (z, y¥) — (0, 0) cannot exist.

It should be noted that by the Moore-Osgood theorem (cf. [36],
p. 313), the present counterexample is impossible if all points of the
form (0, y) and all points of the form (z, 0) are excluded from the
domain of f.

9, A differentiable function of two variables that is not con-
tinuously differentiable.
If
z?sin (1/z) + y?sin (L/y) i zy £ 0,
@, y) = z2sin (1/z) if 20 and y =0,
F@& 9 =y sin (1/y) if ©=0 and y =0,
0 if z=y=0,
then both functions

o) = {255 /) = on 4/ 2 20,

ey ) = {205 A/ = os 1/ i w0

are discontinuous at the origin and hence f is not continuously dif-
ferentiable there. However, f is differentiable everywhere. For ex-
ample, f is differentiable at (0, 0), since for A% + k% % O, f(h, k) —
f(0, 0) can be written in the form

1200, Ok 4 £,(0, Ok + aulh, k)b + ex(h, k)E,
where
lim Sl(h, ]C) = lim Sg(h, k) = 0,

(hyke)>(0,0) (h,E)->(0,0)

Indeed, this representation takes the specific form
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(hsin%)h—!— (ksin%)k it ki 50,

f(h,k)—f(0,0)=4<hsin%>h+0-k if R0 and k=0,

O-h+<ksin71€->k i h=0 and k0.

10. A differentiable function with unequal mixed second order
partial derivatives.

2 2
I oy oY
fa,y) =4 &y

0 if ¢=y=0,

if 2"+ ¢ =0,

then

Jx if x#0,
,0) =
B, 0) =3 JOR) g g
=0k
—y if y#0,
:):0, =
F0y) = . f(h,0) _

h~>0

z =0,

f y=0,

and hence at the origin,
7 = lim 5

f(0,0) = lim

h->0

Ju:(0,0) = lim

k-0

fm(oy k) - fz(Oy O) — lim :__If
k B0
The function f is continuously differentiable since both 4f/dx and
df/dy are continuous everywhere. In particular, df/dz is continuous
at the origin sinece, for z2 4 y? 5 0,
of| _ |2y + 4" — i'| _ 62" + )T
ax (.’172 + yZ)Z = (x2 + y2)2
The present example would be impossible in the presence of con-
tinuity of the mixed partal derivatives f,, and f,. in a neighborhood

= 6(z" + )",
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of the origin. In fact (cf. [34], p. 263) if f, f., and f, exist in o region
R and if foy (o1 fya) exists and is continuous at any point (a, b) of R,
then fyz (01 fxy) also exists at (a, b) and foy = f,, there.

11. A continuously differentiable function f of two vari-
ables ¥ and y, and a plane region R such that df/dy vanishes
identically in R but f is not independent of y in R.

Let L be the ray (closed half-line) in ® X ®R:

L={@#yl|lzz0,y=0}
and let R be the region (® X ®) \ L. The function

f( )=x3 if >0 and y>07
©Y) =30 otherwise for (z, y) € R,

is continuously differentiable in R and, in fact, has continuous second
order partial derivatives. (If 2 is replaced by e~/+*, f has continuous
partial derivatives of all orders.) Although the first partial derivative
fo(x, y) of f with respect to y vanishes identically throughout R, the
funetion f is nof independent of y; for instance, f(1, 1) = 1 and
f(, — 1) = 0. This example demonstrates the invalidity of the fol-
lowing argument in showing that a function f having identically
vanishing first partial derivatives throughout a region R is constant
there (cf. [34], p. 280): “Since 9f/dz = 0, f does not depend on x; since
df/dy = 0, f does not depend on y; therefore f depends on neither
z nor y and must be a constant.” If the intersection with a region
R of every line parallel to the y axis is an interval, the present
counter example becomes impossible (cf. [34], p. 288, Ex. 32).

12. A locally homogeneous continuously differentiable func-
tion of two variables that is not homogeneous.

A function f(z, y) is homogeneous of degree n in a region R iff
for all z, y, and positive A such that both (z, ) and (A\z, \y) are in
R, f(Az,\y) = \" f(z, y). A function f(z, y) is locally homogeneous
of degree n in a region R iff f is homogeneous of degree n in some
neighborhood of every point of E. '

Let L be the ray (closed half-line) in ® X ®:

L={ylz=2,yz0,

121



I1. Higher Dimensions

and let B be the region (& X ®) \ L. The function

_Jyt/z if 2>2 and y >0,

fe, y) = {y3 otherwise for (z, y) € R,

is continuously differentiable in B (in fact, f has continuous second
order partial derivatives). Since, for X near 1 and for any (z,y) € R,
fOz, Ay) = Nz, y), f is locally homogeneous of degree 3 in R.
However, f is not homogeneous of degree 3 in R since, for the point
(,y) = (1,2) and for A = 4, f(z,y) = 8 and f(4x, 4y) = f(4,8) =
1024 = 42-8. The function f is not homogeneous of degree n for any
n # 3 since if it were it would be locally homogeneous of degree =,
which is clearly impossible.

13. A differentiable function of two variables possessing no
extremum at the origin but for which the restriction to an
arbitrary line through the origin has a strict relative minimum
there.

The function

fl,y) = (y — 29 (y — 32?)

has no relative extremum at the origin since there are points of the
form (0, b) arbitrarily near the origin at which f is positive, and also
points of the form (@, 2a¢?) arbitrarily near the origin at which f is
negative. If the domain of f is restricted to the z axis, the restricted
funetion 3z* has a strict absolute minimum at z = 0. If the domain
of f is restricted to the y axis, the restricted function y? has a strict
absolute minimum at ¥ = 0. If the domain of f is restricted to the
line y = ma through the origin where 0 < | m | < + o, the restricted
function of the parameter x:

glx) = flz, mz) = (mz — zD(mz — 322 = m2® — 4mz® 4+ 3zt
has a strict relative minimum at the origin since ¢’(0) = 0 and ¢” (0) =
2m? > 0.

14. A refinement of the preceding example.
The funetion

1@, ) E{(y — Uy — 3 i o %0,

y2 if z=0
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has no relative extremum at the origin (cf. Example 13), but if the
domain of f is restricted to the algebraic curve y = ca™", where m
and n are relatively prime positive integers and ¢ is a nonzero con-
stant (z = 0 in case n is even), the restricted function of the param-
eter x:

2 2
g(x) — f(x, cxm/n) — (cmm/n . e—l/z )(C$ml7L — 36«1/1)
—_ x2m/n[c2 _ 4ce—llx2x—m/n + 3e~?/x2x—2mln]
has a strict relative minimum at z = 0. This is true since the factor

2%/ is positive for 2 ## 0, while the quantity in brackets has the posi-
tive limit ¢? as z — Q.

15. A function f for which d/dx [¢f(x,¥) dy #= [2[8/0xf(x, )] dy,
altheugh each integral is proper.
The funetion

3
Y .
f(fcy)z—'l;‘z’e it oy > 0,
0 if y=0,

with domain the closed upper half-plane y = 0, is a continuous
function of = for each fixed value of y and a continuous function of
y for each fixed value of z, although as a function of the two vari-
ables x and y it is discontinuous at (0, 0) (let y = z2). By explicit
integration,

g(z) = fo 1z, y) dy = 2™

for2 every real number z (including z = 0), and hence ¢'(z) =
e (1 — 2z?) for every real number z (including z = 0). For z 5 0,

! * g2 3562 21:4 —z2
'£f1($,y)dy=foe “’(—y?—? dy = ¢ “ (1 — 22%),
while for x = 0, since f1(0, y) = O for all y (including y = 0):
1 1
f £:(0,y) dy = f 0dy = 0.
o 0
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Therefore,
’ 1
g(0) = 15 fo £:00, ) dy = 0.

Each integral evaluated above is proper since in every case ‘the
integrand is a continuous function of the variable of integration.

16. A function f for which [ [o f(x,y) dy dx = fe [3 f(x,5) dx dy,
although each integral is proper..

Let
Y2 if 0<ae<y<],
flz,y)=—~2? if O<y<zec<],
0 otherwise if 01 0=y=s1
For0 <y <1,
! Y dx fldx
fof(x,y)dx—”—/;— ,,x_z_l’

’and therefore

1.1 ' 1
fff(x,y)dxdy=f ldy = 1.
o Jo o

Similarly, for 0 < z < 1,

[Heva=—[ B4 [ By,

and therefore
1 1 1
[ [fopayas=[ (-1 dz=-1.
0 J0 0

17. A double series 2 . G for which Y, Ol # D0 D mltuny
although convergence holds throughout.

Let (@ms), where m designates the number of the (horizontal) row
and n designates the number of the (vertical) column, be the infinite
matrix (cf. Example 20, Chapter 6):

1 1 1 1 1
0 3 % 3 16 3%
1 1 1 1 1
-3 0 5 1 5 1%
-1 -1 0 i 1 1
4 2 2 4 8 hd
-1 -1 109 1 1
8 4 2 2 4
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Then
“+co
Z=1amn=2_m+2—m_1+"‘ =2 =12, .-,
and hence
40 oo
22 =142 4204 =2,
m=1 n=1
Similarly,
+o0 oo ~4-c0
Zl Z G, = Z (‘“2_-”“) = —2,
n=1 m=1 n=1

(Cf. [14], p. 109.)

18. A differential P dx -+ Q dy and a place region R in which
P dx 4 Q dy is locally exact but not exact.
The expression

P dz + Q dy,

where P and @ are continuous in a region R of ® X ®, is called an

exact differential in R iff there exists a differentiable function ¢
defined in R such that

dx ’ Ay
throughout E. The expression P dz + @ dy is called locally exact in
a region R iff it is exact in some neighborhood of every point of R. A
necessary and sufficient condition for P dx + Q dy to be exact in a

region R is that for every sectionally smooth closed curve C lying in
R the line integral of P dz 4 @ dy vanishes:

fCde—{—Qdy:O.

(Cf. [34], p. 587.) A necessary and sufficient condition for P dz + Q dy ,
where P and @ are continuously differentiable, to be locally exact in a
region R is that at every point of B

aP 9@

dy oz
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The expression

Pdr+ Qdy= ——5——de + 5——dy

+ x? + 2 +
is locally exact throughout the “punctured plane”

= {(=,v) [2* + y* > 0},
since

oP _3Q _ Y — z

9y 9 (2 + )2
if 22 + 92 > 0. On the other hand, P dx + @ dy is not exact in R,
since if € is the unit circle z = cos 8, ¥y = sin 6,0 £ 6 = 2m, then,
with 6 as parameter,

2

f Pdo+ Qdy = f [(—sin 8)(—sin 6) -+ cos® 6] d§ = 2r = 0.
(e} 0

1t should be noted that if R is simply-connected (cf. [34], p. 598),
then Pdx + Qdy is exact in R iff it is locally exact in B (cf. [34],

p. 601).

19. A solenoidal vector field defined in a simply-connected
region and possessing no vector potentlal

A vector field (cf. [34], p. 568) Pz -+ Q] + Rlc where P, @, and R
are continuously differentiable functions over a region W in three-
dimensional Euclidean space, is said to be solencidal in W iff its
divergence vanishes identically there:

oQ

Ly +—«—~

If a vector field ; is the curl (cf. [34], p. 572) of a vector field G, in a

region W, the vector field G is called a vector potential for F.
Since the divergence of the curl always vanishes identically (cf. [34],
p. 572), any vector field that has a vector potential is solenoidal. The
converse, however, is not true, as the example

= @ 9+ ) @+ g + b,
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for the region
={@y2|z*+ y2 + 22 > 0},

shows. That F is solenoidal is shown by straightforward differenti-
ation:

o {(:v + o' + &) ) + 5 {x + o + )y} +

= (& + 9 + 2 [(—2x2 + 9+ )
+ @ -2 420+ ---]=0.

That F has no vector potential G can be shown by consideration of
the sphere 22 + y2 + 22 = 1. If 7 denotes the outer normal unit vector

for this sphere S, then the surface integral [ [4 1:4; -7 dS is equal to
ff (& + 0+ D) i+ yj + o) - &+ o+ D
8
(@i + i + k) dS = [[ 148 = 4n.
8

However, if F were the curl of a vector potential, then by Stokes’s

theorem (cf. [34], pp. 636, 637), the surface integral [ [5 F-n dS over
the closed surface S would vanish. The region W is simply-connected
(cf. [34], pp. 639, 640).

Simple-connectedness of a region can be thought of thus, that any
simple closed curve in the region may be shrunk to a point without
leaving the region. In the “punctured space’ region W of this example,
any simple closed curve not passing through the origin can be shrunk
to a point without passing through the origin — and hence without
leaving W. The kind of pathology for the region W that permits the
present counterexample is the impossibility of shrinking spherical
surfaces — or “sphere-like” surfaces — to a point without leaving W.
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Chapter 10
Plane Sets

Introduction

In this chapter we shall assume that the reader is familiar with the
elements of the topology of the Euclidean plane, including such ideas
as boundedness, openness, closedness, compactness, denseness, and
nowhere-denseness. A few other concepts are defined in the following
paragraphs. In each case the space is assumed to be the Euclidean
plane, Es. ‘

The distance d(4, B) between two nonempty sets 4 and B is
defined:

d(A, B) = inf {d(p, ¢) |p € 4, ¢ € B},

where d{p, g) is the distance between the points p : (z1, ) and
q : (22, ¥2), and is given by the formula [(z: — 2:)* + (y2 — yo)V2
Thus, the distance between two sets is always nonnegative, is zero if
the sets have a point in common, and may be zero if the sets are
disjoint. If the sets are disjoint and compact, their distance is positive
(cf. [34], p. 200 (Ex. 17)). The diameter 5(4) of a nonempty set -4
is defined

8(A) = sup {d(p, @) |p € 4, ¢ € A},

is always nonnegative, and is finite if and only if A is bounded.
If A is compact its diameter is attained as the distance between two
of its points (cf. [34], p. 200 (Ex. 18)).

A closed disk is a set of the form

{@l@—n+ -k,
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for some point (h, k) and a positive number 7. An open disk is
defined similarly, with the inclusive inequality < being replaced by a
strict inequality <.

Two nonempty sets A and B are separated iff they are disjoint and
neither contains a limit point of the other: An B = An B = @.
A nonempty set E is connected iff there do not exist two nonempty
separated sets A and B whose union is E. A set containing more than
one point is totally disconnected iff its only connected subsets are
one-point sets. A set A is locally connected iff whenever p € A and
N is a neighborhood of p there exists a subneighborhood M of p such
that every pair of points of M belongs to a connected subset of N.

An are is a continuous mapping into E, of a closed interval (which
may be taken to be the unit interval [0, 1]), or the range of such a
mapping. In this latter case, when the are is considered as a point-set,
the mapping is called & parametrization of the arc. If the mapping
is f(t) = (2(2), y(1)), the functions z(¢) and y(¥) are called the para-
metrization functions for the mapping. If f(t), a < ¢ < b, is an
arc,and if @ = @y < a1 < -+ < @, = b, then the polygonal arc made
up of the segments f(ao)f(a1), f(a)f(az), * - -, f(an)f(as) is called an
inscribed polygon, and the supremum of the lengths

d(f(a0), flan)) + d(flar), flaz)) + -+ 4 d(f(an-1), f(aa))

for all inseribed polygons for the given arc is called the length of
the arc. An arc is rectifiable iff its length is finite. An are is rectifiable
iff its parametrization functions are both of bounded variation (cf.
[36], p. 353 (Ex. 27)). An arc f(), fora £ ¢ < b, is a closed curve
iff fla) = f(0).

An are f(£) is simple iff it is a one-to-one mapping. In this case its
inverse is also continuous and the mapping is a homeomorphism
(cf. [34], p. 240). If y = g(z) is continuous on [a, b] then its graph is
a simple arc (with parametrization z = ¢, y = g(t), £ € [a, b]). A
simple closed curve is an arc f(¢) such that if its domain is the closed
interval [a, b], then f(t) = f(&) iff &1 = G2 or {#1, &} = {a,b}. Equiva-
lently, a simple closed curve is a homeomorphic image of a circle.

A region is a connected open set. The Jordan curve theorem
states that the complement of any simple closed curve (' consists of
two disjoint regions for each of which C is the frontier. (Cf. [33].) A
Jordan region is either of the two regions just described, for some
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simple closed curve C. A non-Jordan region is a region that is not
a Jordan region.

If {C,} is a decreasing sequence of nonempty compact sets
(C,DChpnforn = 1,2, ---), then there exists at least one point
belonging to every C,, n = 1, 2, - - -; in other words, the intersection
of the C,’s is nonempty: N}2, C, = @ . (Cf. [34], p. 201 (Ex. 30).)

A set 4 is convex iff the closed segment joining any pair of points
of A lies entirely in A. (A one-point set is considered to be a special
case of a closed segment.) Since any intersection of convex sets is
convex and since the plane is convex, every set in the plane is con-
tained in a “smallest convex set,” the intersection of all convex sets
containing it. This resulting smallest convex set is called the convex
hull of the given set. Its closure, called the convex closure of the
set, is the smallest closed convex set containing it (cf. [36], p. 332
(Ex. 39)).

A mapping is open iff the image of every open set of its domain is
open. A mapping is closed iff the image of every closed set of its
domain is closed.

For some of the examples of this chapter some familiarity with
plane Lebesgue measure and integration will be assumed. References

to Lebesgue theory are given in the Bibliography, and cited in

Chapter 8.

1. Two disjoint closed sets that are at a zero distance.

Let Fi = {(z, y) |zy = 1}, F: = {(z, y) |y = 0} = the z-axis.
Then F; and F, are closed and disjoint. For any ¢ > 0, the points
(2/¢, £/2) and (2/¢, 0) in F, and F,, respectively, are at a distance
36 < &,

2. A bounded plane set contained in no minimum closed disk.

By a minimum closed disk containing a given bounded plane set
A we mean & closed disk containing A and contained in every closed
disk that contains A. An arbitrary two-point set is contained in no
minimum disk in this sense. In contrast to this, any nonempty
bounded plane set is contained in a closed disk of minimum radius.
Any nonempty plane set A is contained in a minimum closed convex
set in the sense that A is contained in a closed convex set (its convex
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closure) that is itself contained in every closed convex set that contains
A. In the space ® of one dimension every nonempty bounded set is
contained in a minimum closed interval.

3. “Thin”’ connected sets that are not simple arcs.

In the present context the word “thin’’ means “nowhere dense in
the plane.”

First example: The set
8= {(,y) |y =sin (1/2), 0<z = 1}u{(,0)

is not a simple arc because it is not compact ({0} X [~1, 1] ¢ S)).
Second example: If S; is the set of the first example, let

8 =8 = {(z,9) |y = sin (1/2), 0 < = = 1} u ({0} X [—1, 1]).
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Then although S, is compact, the removal of an arbitrary set gf
points from the segment {0} X [—1, 1] does pot dlsconnfzct S.. It will
be shown in Example 11 that the set S; of this example is not an are.
In Example 24 we shall describe a connected set in thg plane that
becomes fotally disconnected upon the removal of one point.

4. Two disjoint plane circuits contained in a square and con-
necting both pairs of opposite vertices.

For purposes of this example a “cireuit” will mean a nowhere dense
connected set. Let the square be [—1, 1] X [~1, 1], and let the
circuits be given as follows (cf. Fig. 7):

={@yly=%—-% —-1=z=20
u{lw,yly=4%sin(x/20) + 1, 0<z<1
{@,ylz=1 Et=sy=1}L
C={yly=—f+3 -1=z=0
u{l, )|y ="4%sin(r/20) — % 0<z <1
vil,ylz=1 —-1=y =i

Then C; connects (—1, —1) to (1, 1) and C; connects (—1, 1) to
(]-7 _1) 3 and Cin Cy = Q).

5. Amappingof the interval [0, 1] onto the square [0,1] x [0, 1].
If t €10, 1), let O.fibts -+ - be a binary expansion of .t, an'o'l to
avoid ambiguity we assume that this expansion contains Tnﬁmtely
many binary digits equal to 0. The point (z, y) of t}%e un}t square
S = [0, 1] X [0, 1] that is the image of ¢ under the mapping f is defined
xEO.tltgts"', yEO.t2t4te"' .
Finally, define f(1) = (1, 1). It is not difficult to see that f is a many-
to-one onto mapping. For example, the point (0.1, 0.1) is the image
of precisely three distinet points 0.11, 0.100101010101---, and
0.011010101- - - .
The mapping f is not continuous. For example, if {1,}] is the sequence

0.0011, 0.001111, 0.00111111, 0.0011111111, sy

and if (., ¥) = f(t.), then the sequences {z,} and {y,} are both
0.01,- 0.011, 0.0111, 0.01111,
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However, t, — 0.01, and (z,, y.) — (0.1, 0.1), while £(0.01) =
(0.0,0.1) # (0.1, 0.1). That is, iMpsye f{ts) % fUimaoioo £a)-

It is left as an exercise for the reader to show that f is neither open
(the image of the open interval from 0.101 to 0.111 contains the
point (0.1, 0.1) but does not contain it in its interior) nor closed (the
image of the closed interval from 0.001 to 0.01 has the point (0.1, 0.1)
as a limit point but not a member).

6. A space-filling arc in the plane.

By a space-filling arc we mean an are lying in a Euclidean space
of dimension greater than one and having a nonempty interior in that
space (it is not nowhere dense). In 1890 the Italian mathematician
G. Peano (1858-1932) startled the mathematical world with the first
space-filling are. We present here a description (given in 1891 by the
German mathematician D. Hilbert (1862-1943)) of an arc that fills
the unit square S = [0, 1] X [0, 1]. Higher-dimensional analogues can
be described similarly. ‘

As indieated in Figure 8, the idea is to subdivide S and the unit
interval 7 = [0, 1] into 4” closed subsquares and subintervals, re-
spectively, and to set up a correspondence between subsquares and

* subintervals so that inclusion relationships are preserved (at each

stage of subdivision, if a square corresponds to an interval, then its
subsquares correspond to subintervals of that interval).

We now define the continuous mapping f of 7 onto S : If z € 1,
then at each stage of subdivision z belongs to at least one closed sub-
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interval. Select either one (if there are two) and associate the corre-
sponding square. In this way a decreasing sequence of closed squares
is obtained corresponding to a decreasing sequence of closed intervals.
This sequence of closed squares has the property that there is exactly
one point belonging to all of them. This point is by definition f(z).
It remains to be shown that (¢) the point f(z) is well-defined, that is,
independent of any choice of intervals containing ; (4) the range of
fis 8; and (¢7) f is continuous. The details are left to the reader.

It should be noted that the mapping f just defined is many-to-one
in places. (For example, the three points §, 3, and § are all mapped
onto the point (3, $).) Thisisinevitable, since if f were one-to-one,
then it would be a homeomorphism, whereas I and S are not homeo-
morphic (removal of any three points disconnects I but not 8). The
fact that f is many-to-one is somewhat paradoxical since it seems to
say that I has more points than §!

7. A space-filling arc that is almost everywhere within a
countable set.

If ¢ is the Cantor function of Example 15, Chapter 8, if f is the
mapping of the preceding Example 6, and if g(z) = f(¢(z)), theng
maps the Cantor set C onto the unit square [0, 1] X [0, 1], and the.
complementary set [0, 1]\ C' onto the image under f of the set of
points of the form m-2—, where n is a positive integer and m is a
positive integer less than 2=,

The present example could also be described as a space-filling arc
that is almost everywhere stationary, or a space-filling arc that is almost
everywhere almost nowhere.

8. A space-filling arc that is almost everywhere differentiable.

By “almost everywhere differentiable” we mean “defined by para-
metrization functions that are almost everywhere differentiable.” The
mapping defined in Example 7 has this property.

9. A continuous mapping of [0, 1] onto [0, 1] that assumes
every value an uncountable number of times.

Each of the parametrization functions of the space-filling arcs of
Examples 6 and 7 has this property as, indeed, must each para-
metrization function for any continuous mapping of [0, 1] onto
[0, 1] X [0, 1]. Each of the parametrization functions for the mapping
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of Example 7 has the additional property that it ¢s differentiable with
a varshing derivative almost everywhere. (Cf. [2].)

10. A simple arc in the unit square and of plane measure
arbitrarily near 1.

As was seen in Example 6, no simple arc can fill the unit square
S = [0, 1] X [0, 1]. By the same argument, every simple arc in the
plane is nowhere dense. It would appear from this that a simple are
cannot occupy “very much” of S. In particular, it cannot occupy
almost all of 8, since if a simple arc 4 in S had measure equal to 1 it
would be dense in 8, and being closed it would be equal to S. How-
ever, it 7s possible for a simple are A to have positive plane measure.
Indeed, if ¢ is any number between 0 and 1, there exists a simple are
A whose plane measure is greater than 1 — £. We now outline a
proof of this remarkable fact.

The general procedure will be to modify the construction given in
Example 6 by cutting open “channels” between adjacent subsquares
of S that do not correspond to adjacent subintervals of I. After the
first stage the “subsquares” become subquadrilaterals which, in turn,
are subdivided by lines joining opposite midpoints. Further open
channels are cut out, and each closed quadrilateral is reduced to a
sequence of eight subquadrilaterals. The first subdivision and the
general scheme, where squares are used instead of general quadri-
laterals, for simplicity, are shown in Figure 9. The second stage 1s
shown in Figure 10. In both cases the channels deleted are indicated
by shading. After n stages there are 8» closed quadrilaterals, those
numbered 8k — 7 to 8k being subquadrilaterals of the quadrilateral
numbered & at stage n — 1 (k = 1, 2, ---, 81). Furthermore , at
each stage, two quadrilaterals are adjacent if and only if they bear
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consecutive numbers, and hence correspond to adjacent subintervals
of I = [0, 1]. It isnot hard to show that the diameter of each quadri-
lateral is at most £ the diameter of the quadrilateral that contains it
at the preceding stage. Consequently, any decreasing infinite sequence
of quadrilaterals determines a unique point of intersection, and the
mapping is well-defined, as in Example 6. Furthermore, this mapping
is continuous for the same reasons that apply in Example 6, and is

o

one-to-one because all irrelevant adjacencies have been removed.

Finally, since the channels removed can be made of arbitrarily small

area, their union can be made of arbitrarily small plane measure, and -

the simple arc remaining has plane measure arbitrarily near 1.

A second method of constructing a simple are with positive plane
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measure is indicated in Figure 11. This is somewhat simpler con-
ceptually than the construction just described, but has the dis-
advantage that certain subintervals of [0, 1] are mapped onto sets of
zero plane measure. The construction suggested in Figure 11 produces
a simple arc containing A X A, where A is a Cantor set. Since, for
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0 < ¢ £ 1, wemay chose 4 to have (linear) measure at least v/1—¢,
the arc in question has plane measure at least 1 — e.

The American mathematician W. F. Osgood (1864-1943),in 1903 (cf.
[37]) constructed a simple arc having plane measure greater than
1 — & by making use of a Cantor set A of linear measure greater than
4/1 — ¢. The simple arc was constructed in such a way that it
contains the product set 4 X 4.

11. A counnected compact set that is not an are.

The set S; of the second example of Example 3 is not an arc because
it is not locally connected: If N = {(z,9) | (x,¥) € So, 22+ 92 < 3},
there is no neighborhood of the origin that is a subneighborhood of &
in which every two points can be joined by a connected set lying in
N (cf. [17], p. 204).

12. A plane region different from the interior of its closure.
Let S = {(z, y) | z® + y? < 1} \ ([0, 1} X {0}), i.e., an open disk
with a slit deleted. Then

S={@ylaz+y =1},

and the interior of S is I(S) = {(z, ¥) | x? + ¥ < 1}.

Since every Jordan region is equal to the interior of its closure
([36], p. 477), this is a simple example of a region that is not a Jordan
region. Example 14, below, shows that not every region that is equal
to the interior of its closure is a Jordan region.

13. Three disjoint plane regions with a common frontier.
This example is most easily deseribed by means of a story. A man
lives on an island in the ocean. On the island are two fresh-water
pools, one of cold and the other of hot water, and the man wishes to
bring all three sources of water to within a convenient distance from
any point of the island. He proceeds to dig channels, but always in
such a way that the.island remains homeomorphic to its original
form. He starts by permitting the ocean to invade his island, coming
within a distance of at most one foot of each point of his residual
island (but not into contiguity with the fresh-water pools). He then
extends the cold fresh-water domain in a similar fashion, and follows
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this by forming channels for the hot fresh-water, with the result that
every point of the island thus remaining is within one foot of all
three types of water supply. Unsatisfied with this result the islander
repeats the triple process just described in order to have each type
of water within a half-foot of each point remaining on the island.
Again he is not satisfied, and refines the approximation to within a
quarter-foot. He then extends this process to an ifinite sequence of
steps, each time halving the critical distance, and also the time of
completion in order to finish in a finite length of time. If we assume
that the original “island” is a compact disk with two inner disjoint
open disks removed, and that the “ocean” is the open plarar comple-
ment lying outside this disk, and that all extensions of the three
original regions remain homeomorphic to their original forms, we
obtain three final disjoint regions, R, R, and R;, each being a
union of the regions of an infinite sequence of regions. The final
“island,” similarly, is the intersection F of the islands of an infinite
sequence, and is the common frontier of the three regions Ry, Ry,
and R;. Since the complement of 7 consists of three disjoint regions
instead of two, no one of the regions Ry, Ry, and R is a Jordan
region. (For a discussion and proof of the Jordan curve theorem, see
[33].) On the other hand, each of these three regions is equal to the
interior of its closure as we shall see in the following Example 14.
The preceding construction may be carried out with any finite
number of (indeed, with countably many) disjoint regions. If more
than four regions are used we can thus produce a “map” in which
all “countries” have a common frontier. This shows that the famous

four-color problem requires careful formulation to avoid a trivial and
negative solution. (Cf. [13].)

14. A non-Jordan region equal to the interior of its closure.
Let B be any one of the regions Ry, Ry, and R; defined in Example
13. As has been noted, R is not a Jordan region. On the other hand,
R is equal to the interior of its closure, as we shall now demonstrate.
In the first place, since R < B and R is open, B = I(R) < I(R).
We now wish to show the reverse inclusion: / R =IRu F)yCR.
If this were false, there would be a point p of F that is an interior
point of R u F. But this means that there is a neighborhood N of p
that lies in R u F and therefore contains no points of either of the
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remaining two regions, in contradiction to the fact that every point
of F is a limit point of each of the three regions Ri, R, and Rs.

15. A bounded plane region whose frontier has positive

measure.
Let A be a Cantor set of positive measure in [0, 1], and let

R=((0,1) X (—1, 1)\ (4 X [0, 1)).
Then R is a region and ‘
FR) = (10} X [—1, 1) u ({1} X [-1,1)u (4 X0, 1)
u (0, 1) X {1Hu (O, 1) X {=1})

whence w(F(R)) = u(4d) > 0. Clearly R is not a Jordan region
(I(R) # R). (Cf. [14], p. 292.) (See Example 4, Chapter 11 for a
Jordan region having a frontier with positive plane measure.)

’

16. A simple arc of infinite length.
First example: Let

{0 if z=1/m, n€N, mnodd,

fle) = 1/n if z=1/n, n€R, neven

let £(0) = 0, and let f(z) be linear in each interval [1/(n 4 1), 1/n],
n € 9. Then the graph of f(z), for z € [0, 1], is a simple arc of
infinite length because of the divergence of the harmonie series.

Second example: Let f(z) = z sin (1/z) for z € 0, 1] and f(0) = 0.
The graph of f(z), forz € [0, 1], is again a simplearc of infinite length
for the same reason as in the first example. The lengths of inscribed
polygonal arcs dominate sums of heights of individual arches of the
graph of f(z), and these sums have the form , 2/(2n — ).

In contrast to the two preceding examples, the graph of the function
defimed f(z) = 22 sin (1/x) for z € (0, 1] and f(0) = 0 is of finite
length for z € [0, 1], since it is differentiable and its derivative is
bounded there. (Cf. [36], p. 353 (Exs. 24 and 27 ), p- 176 (Theorem 1II).)

17. A simple are of infinite length and having a tangent line
at every point.

If f(z) = 22 sin (1/2%) for z € (0, 1] and f(0) = O, the graph of
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f(x) for z € [0, 1] is a simple arc of infinite 1

, ength for reasons gi
ff)r the second egamp.le of Example 16. The graph of f(z) has a taf;‘(;;l;
line at every point since f(z) is everywhere differentiable.

18. A s'imple arc that is of infinite length between every pair
of distinct points on the arc. P

vost ezample: Let f() = (x(2), y(t)) be any space-filling arc mappin,

[0, 1} onto [0, 1] X [0, 1] and possessing the additional propert; ]’Sha%
f maps every nondegenerate interval of [0, 1] onto a set hagin
nonem.pty (two-dimensional) interior. (The mapping of Exam: lf 2
has this property.) Then the graph of either z(t) or y(¢), for ¢ € [I()) 1
has !;he s.tated properties. To see that the graph of x(t), fora < ¢ < ]I;
il}?stmﬁmte length, for example, we may use the fact (cf. Exa:nplez 9)
ea(a;h'x(t) assumes at least two of its values uncountably many times

Second example: Let f be a mapping of the type described in Ex-
ample 10 and such tha’c.e.very nondegenerate subinterval of [0 1] is
mapped onto a set of positive plane measure. Then f has the prop’erties

specified above, since any rectifiable simple
zero (cf. [36], p. 436). ple arc has plane measure

Third example: The graph of any f i i

. : y funetion that is everywher -
tinuous and nowhere differentiable on a closed interval (Zf. Exzrfglle
8, (?hapter 3) has t.he desired properties since if this graph were
;ectlffable fthe function would be of bounded variation, and every
unction of bounded variation is differentiabl ,

T ntiable almost everywhere.

Fourth example: Cf. [14], p. 190.

19. A smooth curve C containing a point P that is never th
nearest point of C to any point on the concave side of C. °
Let the curve C be the graph of y* = z*, which is everywhere con-
cave up, and let P = (0, 0). If (o, b) is a point lying above (' and if
a ;—‘ 0, then clearly (a, a*?) is nearer (a, b) than (0, 0) is. If b is an
arbitrary number greater than or equal to 1, then th; point (}, &) is
nearer (0, b) than (0, 0) is. Finally, if b is an arbitrary positive i;uiflber
}ess t.han 1, then the point (b% b*) is nearer (0, b) than (0, 0) is. The
idea is that the origin is a point of infinite curvature (ze,ro radius {
curvature) of C . (Cf. [34], p. 258 (Ex. 16).) °
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920. A subset 4 of the unit square S = [0, 1] X [0, 1] that is
dense in S and such that every vertical or horizontal line that
meets S meets 4 in exactly one point. . .

What we are seeking is a one-to-one correspondence f with dom“:a,m
and range [0, 1] and with a graph dense in.S. We start by defining
f(z) forz € (0,1]n @, in stages. Let the points of B = ((0,11n @) X
((0, 11n Q) be arranged in a sequence: (1, 1), (2, y2?,. ceel
We define f(z:) = w1 for the zero stage. For st-age one we pa:rmtlc')n B
into four disjoint parts by vertical and horizontal bisecting lines,
(0,3 n @) X ((0,3n @), ((0,31n € X ((},1]nQ), - ,and denote
these parts in any order: Bu, B, B, Bu. Denote by (zu, yu_)
the first point of the sequence { (24, Ya)} that belongs to By and is
such that neither zy = 21 nor yu = 4, and let f(zu) = yu . Denote
by (212, 912) the first point of the sequence { (s, ¥.)} that belongs t.o
By and is such that @i, is different from both 2; and zn and yi2 is
different from both 3 and yu, and let f(zi) = . After f(ziw) is
defined similarly to be equal to yi, we denote by (21, yli*) tl.le first
point of {(z., ¥»)} that belongs to Bisand i§ such that zy is different
from @1, @, T, and &, and yu 18 different from w1, yu, Y12,
and ys, and define f(211) = Yus. This completes stage one. Stage two
is similar, with B partitioned into sixteen = 42 parts by further ver-
tical and horizontal bisections, Bax, Ba, - "t By, . ]'3‘0? each 9f
these parts in turn we define f at a rational pomnt 1_10t'yet in its domalp
and bhaving as value a rational point not yet in its range. If this
procedure is indefinitely continued, with B partltlonejd into 4" con-
gruent parts at stage n, a function f having the speclﬁ(.ad properties
for (0, 1]n @ is obtained. Finally, we extend the domain and range
of f to [0, 1] by defining f(z) = =z for z € [0, 11\ ((0, 1} n @).

21. A nonmeasurable plane set having at most two points in
common with any line. ' .
This example, due to W. Sierpinski [44], depends for its construction
on the maximality principle, appearing in the form of the well-
ordering theorem and also in the form of Zorn’s lenflma, (cf. [1.6],
[30], and [46]). We start by listing four statements having to do with
cardinal and ordinal numbers:
@) If a is an infinite cardinal, then a* = a (cf. [16] a'n(.i [46]).
(#i) The cardinality f of the set of closed sets of positive plane
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measure 18 ¢, the cardinal number of ®. (Since the closed sets and
their camplements are in one-to-one correspondence, f = the cardinal
number of the set of all open sets. Since every open set is a countable
union of open disks having rational radii and centers with rational
coordinates, we see that f = ¢. Since the closed disks centered at
the origin constitute a set of cardinality ¢, we see that { = ¢.)

(#iz) Let ¥ denote the first ordinal number corresponding to the
cardinality ¢ (c¢f. Example 10, Chapter 12). Then {a|a < ¥} has
cardinality c.

(i) If E is a linear measurable set of positive linear measure, then
the cardinality of £ is ¢. (£ contains a closed linear set F of positive
linear measure.  is the union of a countable set (possibly empty) and
a (necessarily nonempty) perfect set. (Cf. [20] and [45].))

Let o — F, be a one-to-one mapping of the set {a | & < ¥} onto the
set of all closed sets of positive plane measure. Let & be the family of
all functions p(a) whose domains have the form [1, 8) for some g £ ¥,
whose ranges are subsets of the plane, and are such that

(a) pla) € F, for every a € domain of p(a),

(b) no three points in the range of p(a) are collinear.

Let G be the set of all ranges of the functions in &, and let G be
partially ordered by inclusion. Then by Zorn’s lemma (cf. [16], [30],
and [46]) there exists a maximal set E € @, which is the range of a
function ¢(«) of the set §. If the domain of ¢(a) is [1, 8), we shall now
show that 8 = ¥ by assuming the contrary, 8 < ¥, and obtaining a
contradiction. If b is the cardinal number corresponding to g, then
b =< b2 < ¢ (the strict inequality b < b2 holding iff 1 < b and b is
finite). This means that the cardinality of the set of all directions de-
termined by pairs of points in the range E of q(a) is less than ¢,
and therefore that there exists a direction 6 different from all direc-
tions determined by pairs of points in E. Then some line L in the
direction ¢ must meet the set F5 in a set of positive linear measure
(by the Fubini theorem). Since this latter set has cardinality ¢ there
is a point pg € Fj such that ps is collinear with no pair of points in
the range of ¢(a). We now extend the function ¢(a) so that itsdomain
is[1,8] = [1,8 + 1),and so that ¢(8) = ps. Then this extended fune-

tion g(a) has both properties (a) and (b) and its range is strictly
greater than the maaimal member E of §. This is the desired con-
tradiction, and therefore 8 = ¥, the domain of the function ¢(e)
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consists of all « less than ¥, and the range E of ¢(a) contains a point
e from every closed plane set Fo of positive plane measure.

We now show that the set E is nonmeasurable by assuming the
contrary and obtaining a contradiction. Indeed, if E is measurable,
then so is its complement E’ , and since B’ contains no closed plane
set of positive plane measure, £’ must have measure zero. Oun the other
hand, since every line in the plane meets ¥ in at most two points, E
must also have measure zero (by the Fubini theorem). Therefore the
entire plane, being the union of the two sets £ and E’ of measure zero,
must also be of measure zero, and we have the desired contradiction.

We note too that if S is any set of positive plane measure, then
S n E is nonmeasurable. Otherwise the Fubini theorem implies that
p(Sn E) = 0, whence u(S\ E) > 0.Thus S\ E contains some closed
set F of positive plane measure. Since F n E = @, there is a contradic-
tion of the basic property of E: E meets every closed set of positive
plane measure.

S. Mazurkiewicz [31] constructed a plane set E meeting each line
of the plane in precisely two points. However, such a set £ may be
measurable and indeed is then of measure zero. The reason for this

is the form of the construction which depends only upon the existence -

of a set Fy in the plane such that E; meets every line in a set of car-
dinality ¢. The set E is then formed as a subset of Ei.

However, sets enjoying the property of Ei may have plane measure
zero. For example, let C be the Cantor set on [0, 1] and let

E=(@®@XCu(C X®).

Then clearly each line meets Ei in a set of cardinality ¢ and yet Ei
is a (closed) set of plane measure zero.

In [3] the construction of a “Mazurkiewicz set” is given in answer
to a problem posed in that journal.

F. Galvin has shown the following: If 1 <n = %, where ¥ i8
the cardinality of 97, there is a nonmeasurable set S in the plane such
that the intersection of S with any line consists of precisely n points.

22. A nonnegative function of two variables f(x, y) such that
1 1 1 1
f f flx, y) dx dy = f f flx,y)dy dx =0
b Jo o Jo
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and such that [[sf(x, y) d4, where S = [0, 1] X [0, 1], does
not exist.

We shall give two examples, one in which Riemann integration is
used and one in which Lebesgue integration is used.

First example: Let f be the characteristic function of the set of
Example 20. Then for every y € [0, 1], [} f(z, y) dz = 0, and for
every z € [0, 1], [, f(z, y) dy = 0, the integrals being those of
Riemann. However, the double Riemann integral over S fails to
exist, since for the function f the upper and lower Riemann integrals
are equal to 1 and 0, respectively.

Second example: Let f be the characteristic function of the set of
Example 21. Then the iterated integrals are again both equal to zero,
where the integration is that of either Riemann or Lebesgue, while
the function f is not measurable on S, and hence has no double
Lebesgue integral there.

23. A real-valued function of one real variable whose graph is a
nonmeasurable plane set.
Let f(x) be defined as follows, for z € ®:

@) = {ma{i{y | @) € B} it {y|(y) € B} =0,
0 if {y|(@y €El =90,

where E is the set of Example 21, Let B; = {(z, f(z)) |z € &} n E,

E. = E\ E.. Then either E; or E; (or both) must be nonmeasurable

since their union is E. If F is nonmeasurable, then

F={(@i@)|z caj,

the graph of f, is the union of F; and a subset of the z axis; hence,
since the latter has plane measure zero, F is nonmeasurable. If F,
is nonmeasurable, let g(z) be defined, for z € ®:

jmin{y | @y) € B)} if {y|(xy € E}
g(z) = consists of two distinct points,

0 otherwise.

Then G = {(z, g(x)) |z € ®}, the graph of g, is the union of F,
and a subset of the x axis, and hence nonmeasurable. There must exist,
then, in one way or the other, a function whose graph is a nonmeasur-
able plane set.
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24. A connected set that becomes totally disconnected upon
the removal of a single goir(lii:.t . -
i nly a sketch. For details see .

ﬁi %71‘{)2 zheyCantor set of Example 1, Ch‘atpter 8, let B be the subses
of C consisting of all endpoints of the open intervals that were dele’ce1
from [0, 1] in the construction of C, and let E = C\ B (cf. Ex:m;-)nei
24, Chapter 8). For every z € C let L(x) be the closed segmen joi .
ing the points (z, 0) and (1, 1) in t.he plane. I.f T E B let C(lx?fconmsE
of those points of L(z) whose ordinates are 1rrat1f)na1, and i : € 1
let S(z) consist of those points of L(z) Whos.e ordinates are rational.
Then S = U.cc S(x) is a set having the required properties. ‘ _

The connectedness of S is proved by means of argumepts qulvmg
sets of the first and second categories, and we shgmll omit the dlSGUS.;‘
sion. If S, = S\ {(1, 1)}, then S is tqtally dlz?*conn.ected. For 1f
E c S, if E contains more than one point, and if E is a subset ?1
any S(z), z € C, then E is clearly not .cone(.zted. On the othe; I?n),
if p and ¢ are two points of Sy on two dzs.tm{;t intervals L(z) an f S(y ,
where ¢ and y € C and © < y, there is in the complement o 'Ohi
straight line through (1, 1) that separates p and ¢, namely the straig .
line passing through (1, 1) and any (a, 0) where ¢ < ¢ < y an
a ¢ C.
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Area

Introduction

The concept of area is based on that of the Riemann double in-
tegral. A bounded plane set S is said to have area iff its characteristic
function xs is (Riemann) integrable over a closed rectangle R con-
taining S and such that the sides of R are parallel to the coordinate

axes. If S has area, its area A(S) is equal to the double ntegral of
xs over RB:

A(8) = ffR xs dA.

These definitions are meaningful in the sense that the concepts of
having area and of area are independent of the containing rectangle
R. If R is subdivided into closed subrectangles by means of a net %
of lines parallel to the sides of R, then some of these subrectangles
may be subsets of S, and some may be subsets of the complement
S’ of 8. For any such net %, let a(9%) be the sum of the areas of all
subrectangles that are subsets of S (@(9%) = 0 in case there are no
such- subrectangles), and let A(9) be the sum of the areas of all
subrectangles that are not subsets of 8’ (that is, that intersect S
nonvacuously). The inner area and outer area of S, denoted
A(8) and A(S), respectively, are defined as the supremum of a(N)

and the infimum of A (N), respectively, for all nets N of lines parallel
to the sides of R:

A(S) = sup a(M), A(S) = inf A(R).
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Again, these definitions are independent of E. A bounded set S has
area iff A(S) = A(S), and in case of equality, A(S) = A(S) = A(S).
A necessary and sufficient condition for a bounded set S to have
area is that its frontier F(S) have zero area, or equivalently, that F(S)
have zero outer area. Since for any bounded set S, F(S) is a compact
set (and hence measurable as a plane set), and since for compact sets
outer area and outer plane (Lebesgue) measure are identical, a
bounded set has area iff its frontier has plane measure zero.

The preceding statements concerning area apply in similar fashion
to volume, for sets in three-dimensional Euclidean space. A generaliza-
tion of area and volume that applies 1o Euclidean spaces of any num-
‘ber of dimensions — and, indeed, to much more general spaces — is
Jordan content. (Cf. [36], p. 431.) Lebesgue measure is a generaliza-
tion of Jordan content in the sense that every set that has content is
measurable, and its content and measure are equal. The prinecipal
advantages of Lebesgue measure over Jordan content lie in the broader
applicability of measure to limiting processes. For an elementary

treatment of plane area and volume, including proofs of many of the

preceding statements, cf. [36], pp. 431-465.

Examples 7 and 8 of this chapter concern surface area. For a dis-
cussion of this subject see the references given in connection with
these two examples.

1. A bounded plane set without area.

The set S = (@n 0, 1]) X (@ n [0, 1]) of points in the unit square
both of whose coordinates are rational is without area since its
frontier F(S) does not have zero area. (The set F(S) is the unit square
tself and hence has area equal to 1.) The outer area of S is 1 and its
inner area is 0.

2. A compact plane set without area.

Let A be a Cantor set of positive measure ¢ (Example 4, Chapter
8),and let S = A X [0, 1] . Then F(8) = 8, and the plane measure
of F(8) is equal to the linear measure ¢ of 4. Since F(8) = S isa
compact set its outer area is equal to its measure, and is thus positive.
Therefore S is without area. The outer area of S is equal to ¢ and its
inner area is 0.
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3. A bounded plane region without area.
The region R of Example 15, Chapter 10 is bounded and without
area.

4. A bounded plane Jordan region without area.

Let & be a positive number less than 1, and let A be a simple are
with parametrization f(f), 0 < ¢ £ 1, lying in the unit square
[0, 1] X [0, 1], and of plane measure greater than 1 — e (cf. Ex-
ample 10, Chapter 10). Let C be the simple closed curve formed by
the union of A4 and the three segments {0} X [—3%¢, 0], {1} X [—3¢,0],
and [0, 1] X {—2%¢}, and let R be the bounded region having C as
its frontier. Then E is a Jordan region and its frontier has outer area
greater than 1 — 3¢ > 1 — &> 0.

5. A simple closed curve whose plane measure is greater than
that of the bounded region that it encloses.

If ¢ and R are the curve and region defined in Example 4 and if u
is plane Lebesgue measure, then

pRuC) = pR) + pu(C) =1+ 3.
Therefore, since u(C) > 1 — 3¢, it follows that
p(R) < e.

The measure of R is less than that of ¢ whenever ¢ < 2. Simul-
taneously, the measures of B and C can be made arbitrarily near 0 and
1, respectively.

6. Two functions ¢ and ¢ defined on [0, 1] and such that

(a) ¢(x) < ¥(x) for x € [0, 1],

®) f(l) [W(x) — ¢(x)] dx exists and is equal to 1,

&) S={(x,3)]|0 = x =1, 6(x) <y < y(x)} is without area.

Let ¢(x) be the characteristic function of § n [0, 1] and let ¥(z) =
¢@) 4 1. Then (a) and (b) are clearly satisfied, while F(S) is the
closed reetangle [0, 1] X [0, 2] of positive area, whence S is without
area. The outer area of S is 2 and its inner area is 0.

This example is of interest in connection with Cavalieri’s Prinei-
ple, which states that if every plane II parallel to a given plane Il
intersects two three-dimensional sets Wy and W; in plane sections of
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equal area, then Wi and W, have equal volume (cf. [18]). A two-
dimensional analogue states that if every line L parallel to a given
line L intersects two plane sets S; and S, in segments of equal length,
then S; and S, have equal area. The present example shows that
unless S; and S, are assumed to have area, this statement is false.
(The sets S; and S, can be taken to be the set S of (c) and the closed
square [0, 1] X [3, 4], respectively, with the family of parallel lines
being the family of all vertical lines.) Construction of a three-dimen-
sional counterexample to Cavalieri’s Principle is left as an exercise
for the reader.

7. A means of assigning an arbitrarily large finite or infinite
area to the lateral surface of a right circular eylinder.
Let S be the right circular cylinder

S={@yala2+y =1 0=2z=1

of base radius 1 and altitude 1, and for each positive integer m let the
9m -~ 1 cireles Cin, be defined, for kb = 0, 1, - - -, 2m:

Com=8Sn{la,y 2|z =Fk/2m.

On each of these 2m + 1 circles let the n equally spaced points Py
be defined for each positive integer n and forj = 0, 1, -+, n — 1:

<coszj77r,sin2‘7—7r,ﬁ> if kis even,

n -’ 2m
kg = . <y
'Kcos (2 + D7 , §in (27 + 1)7r, Ji) i kis odd.
n n 2m
For each circle Cin the points Pr.j, j = 0, 1, - -+, n, are the vertices

of a regular polygon of n sides. If 0 < k& = 2m, each side of the
polygon with vertices lying on the circle Cn, lies above a vertex of the
polygon in Cj1,. and thus determines a (plane) triangle in space.
Similarly, if 0 £ k < 2m, each side of the polygon in Ci, lies below
a vertex of the polygon in Crii,» and thus determines a triangle. It
is not difficult to see that there are a total of 4mn congruent space
triangles formed in this way with vertices lying on the given cylinder,
and a little trigonometry shows that the area of each of these triangles
is sin (x/n) [(1/4m?2) + (1 — cos (w/n))%"2. The area of the poly-
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hedron IL., inseribed in S is therefore obtained by multiplying this
quantity by 4mn. The result can be expressed

sin (7/n)

(w/n)

As m and n— 4, the diameters of the triangles approach zero
and thus, presumably, the areas of the inscribed polyhedra should
approach a limit, and it is natural to expect that this limit should be
the number (271)-1 = 2# given by the familiar formula 277k for the
area of the lateral surface of a right circular cylinder, where r is the
base radius and A the altitude. We shall see, however, that the result
will depend on the relative rates at which m and » increase.

We observe first that as n — 4 « the factor preceding the radical
in the formula for A(Il,.,) has the limit 27, and since the radical
itself is at least as great as 1, any limit that A (I1,.,) may have must
be at least 2. We concentrate our attention now on the quantity
within the radical and, in fact, on the function -

2 4 [
T am 2w 2
fom,n) =2m|1 — cos~ ) =T 20 Lmm
n n? 4! nt 6! nb

A(llp,) = 27 1+ 4m2<1 - cos75>2,
n

We shall consider three cases:
(@) If m = n, then

o 2nt
on) =21l —cosZ) =" T o ...
Jin, n) n( 608 n) n  4ln ’
lint, oy f(0, #) = 0, and limy, oy A(IL,) = 27

(72) If m = [an?], where the brackets indicate the bracket function
of Chapter 2, and where 0 < a < + =, then

fanl 1) = 2Aan’] (1 — cos T) = Ml _ 2w
V(3

n? 41 nt

2

i f([om?], 7)) = ar? and limp. o AT {w 5) = 20v/1 - ozt

{(#2) If m = n®, then
3 — 9,8 Ty 2 2t
f(n',n) = 2n <1 co»;ﬁ)—rn m+""
Hmy .o f(0f, n) = + %, and limaiw 4 s ,) = + .
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We conclude that as m and n — + «, any result, finite or infinite,
that is at least equal to 27 can be obtained for the limit of A (ILna).
Although, in general, limum noie A ({mn) does not exist, we can at least
say that the limit inferior exists and that '

li_r_n+ A(,,) = 2m.

The example just described is due to H. A. Schwarz (Gesammelie
Mathematische Abhandlungen, Vol. 2, p. 309 (Berlin, Julius Springer,
1890.)). It serves to demonstrate that the concept of surface area is
far more complicated than that of arc length. For a discussion of
surface area and further references, see [40]. An elementary treatment
of surface area is given in [34], pp. 610-635.

8. For two positive numbers ¢ and M, a surface S in three-
dimensional space such that: .

(a) S is homeomorphic to the surface of a sphere,

(b) The surface area of S exists and is less than ¢,

(¢) The three-dimensional Lebesgue measure of S exists and

is greater than M.

This example is due to A. S. Besicovitch (cf. [7]). The ideas involved
in this construction are somewhat similar to those involved in the
construction of a simple arc of positive plane measure (Example 10,
Chapter 10), but far more complicated and sophisticated. Since an
ample discussion would require a definition of surface area as well as
an intricate description of tubular connections among faces of cubes,
we shall omit the particulars.

The following discussion points up some interesting aspects of
Example 8.

a. There is an analogy between Example 8 and Example 5. In both
cases, there is more in the sides of the container than in the interior
of the container. Flowever, the linear measure (length) of the bounding
curve of Example 5 is infinite whereas the planar measure (surface
area) of the bounding surface of Example 8 18 finite and small,

b. The familiar relations between the volume of a cube and its
surface area: volume = 1-edge-surface area, and between the volume
of a sphere and its surface area: volume = % -radius-surface area,
lead one to feel that a closed surface of small area together with the
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t}.1ree—d.imensional region that it encloses should have small three-
dimensional measure. Example 8 is a counterexample to this feeling,

¢ A right cylindrical “can” of finite height and based on a non-
rectlﬁablc? Jordan curve has finite volume (three-dimensional measure)
a,.nd infinite surface area. (The can can be filled with paint, but its
sides cannot be painted.) This example is a weak dual to Ex.‘zunple 8.

9. A I.)lane set of arbitrarily small plane measure within which
the direction of a line segment of unit length can be reversed
by means of a continuous motion.

This example was given in 1928 by A. S. Besicovitch as a solution

to a problen} posed in 1917 by 8. Kakeya. (Cf. [5], [6], and [23], and
for an expository discussion, [8].) ’
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Chapter 12
Metric and Topological Spaces

Introduction ‘ '
A metric space is an ordered pair (X, d), where X is a nonempty

set and d a real-valued function in X X X such that
(?) d is strictly positive:
z € X =d(,z) =0,
zandy € X,z # y=d@,y) > 0;
(i) the triangle inequality holds:
z,y,and z € X = d(z, 2) = d{y, ) + d(y, 2).

An early consequence of (7) and (47) is
(##7) d is symmetric:
zand y € X = d(z, y) = d(y, ).

The function d is called the metrie for the metric space (X, d), and
the number d(z, y) is called the distance petween the points x and v.
If the metric is clear from context, the single lgtter X may be used
to represent both a metric space and the se_t of its points. v
A topological space is an ordered pair (X, 0), where X is a

nonempty set and 0 is a family of subsets of X such that

(@) @ €vand X €0, o .

(#) © is closed with respect to finite intersections:

01,---,0,,€®=:»01n---n0,‘€@,
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where 7 is an arbitrary positive integer;
(#31) © is closed with respect to arbitrary unions:

MEA=O€c0)=U0, €0,
ACA

where A is an arbitrary nonempty index set.

The family 0 is called the topology of the topological space (X, 0)
and its members are called open sets. The family 0 is also called
a topology for the set X. If the family of open sets is clear from
context, the single letter X may be used to represent both a topological
space and the set of its points. By finite induction, condition (:) is
equivalent to the same for the special case n = 2. A topological space
(Y, 9) is a subspace of a topological space (X, 0) iff ¥ < X and
3= {Y nO|O € 0}; in this case the topology 7 is said to be induced
or inherited from 0.

A set is closed iff its complement is open. An open covering of a
set A is a class of open sets whose union contains A. A set € is com-
pact iff every open covering of C contains a finite subcovering. A
Hausdorff space is a topological space such that whenever 2 and y
are two distinet points of the space there exist two disjoint open sets
of which one contains x and one y. In any Hausdorff space every com-
pact set is closed. A point p is a limit point of a set A iff every open
set containing p contains at least one point of A \ {p}. The closure
A of a set A is the intersection of all closed sets containing 4, and
congists of all points that are either members of A or limit points of
A. The closure of any set A4 is closed. A set A is closed iff it is equal
to its closure: A = A. A locally compact space is a topological
space such that every point is contained in an open set whose closure
is compact.

A base for the topology of a topological space (X, 0) is a subfamily
G of © having the property that every nonempty member of © is the
union of a collection of members of G. A neighborhood system for
a topological space (X, 0) is a collection 9% of ordered pairs (z, N)
such that z € N for every (», N) € 9%, and the collection of all N
such that (z, N) € 91 is a base for ©. An example of a neighborhood
system is the set of all (z, A) such that z € A and A € g, where g
is a base for (X, 0). If ¢ is any nonempty family of subsets of a set
X, then G is a base for some topology 0 for X iff (4) X is the union of
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the members of G and (i) whenever G: and G, are mem.bers of ¢ with
a nonempty intersection, and z € Gin G?, then t'l}ere exists a member
G of g such that € G € Gin Ga. If () and (2) -hold, the topology
O generated by G consists of the sets that are unions of memb.ers of
G. A sequence {z,} in a topological space converges to a point z,
and 2z is a limit of the sequence {,}, iff

V open set O containing z,d m € 9 3
n €I, n>m=x, €O0.

In any Hausdorff space limits of convergent sequences are unique.

If ©, and O, are two topologies for the same §et X , and if 6, C 0,
then 0y is said to be weaker than 0; and O, is said t(') })e stronger
than ©,. The weakest of all topologies on X is 1'ihe t_r1v1al tOPQlogy
0 = {0, X}, and the strongestz',l ofba,llt to;f)o)lfogles is the discrete

= 9% consisting of all subsets of X.
to%‘) l((,.;?,yde)) is a metric space and 1f z € X, then a neighborhood,
or spherical neighborhood, of z is & set of the form

{yly € X,dz,y) <él,

where ¢ > 0 (z is called the center and ¢ .the rad%us of this spherical
neighborhood). A spherical neighborhood is sometimes called an open
ball. The set of all spherical neighborhoods for any metric space
satisfies the two conditions necessary for the generation o.f a topology,
and for this topology, called the topology of the. metmq space, the
set of all ordered pairs (z, N), where N i§ a spherical nelg.hborhoo_d
of z, is a neighborhood system. A topological space‘(X , ©) is metri-
zable iff there exists a metric d for X such that 0 is the topology of
the metric space (X, d). A closed ball in a metric space (X, d)isa
set of the form

fyly € X,d(z, y) = &,

i is called the center
here z € X and ¢ > 0, and is a closed set (z is ca
:nd ¢ the radius). The single unmodified word ball should be con-

strued as synonymous with closed ball. A set in a metric space is

bounded iff it is a subset of some ball. If the space (X, d) is bounded,
then d is called a bounded metric. If the metric spaces (X , d) and
(X, d*) have the same topology, then d and d* are called equivalent
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metrics. If (X, d) is any metric space, then d*, defined

(o) = K% Y)
d (2, y) =1—+ma

is a bounded metric equivalent to d; that is, every metrizable space
can be metrized by o bounded metric. In any finite-dimensional
Euclidean space with the standard Euclidean metric a set is compact
iff it is closed and bounded. A sequence {z,} of points in a metric
space (X, d) is a Cauchy sequence iff

Ve>03 Kew>

mand n € €N,
m > K,andn > K}ﬁd(xm: 1) < &

A metric space is complete iff every Cauchy sequence of points in
the space converges (to a point of the space). A metric space that is
not complete is incomplete. Such concepts as connected set, totally
disconnected set, and perfect set are defined exactly as in Euclidean
spaces (cf. the Introduction, Chapter 10).

A topological space satisfies the second axiom of countability
iff there exists a countable base for its topology. A set in a topological
space is dense iff its closure is equal to the space. A topological space
is separable iff it contains a countable dense set. A metrizable space
satisfies the second axiom of countability iff it is separable.

If (X, 0) and (Y, 3) are topological spaces, and if f is a function
on X into Y, then f is continuous iff B € 3 = f~1 (B) € 0; f is
open iff A € 0 = f(4) € 3; f is closed iff A’ € 0 = (f(4)) € 5.
If f is a mapping of a topological space X onto a topological space Y,
then f is a topological mapping, or a homeomorphism iff f is a
one-to-one correspondence, and both f and f~* are continuous.

Let V be an additive group, with members z, ¥, 2, - - -, and let F
be a field, with members X, , », ---. Then V is a vector space or
linear space over F iff there exists a function \\, z) = Az on F X V
into V such that for all A and pin F and z and y in V:

@) N+ wr =\ + ux,

(@5) Muz) = )z,

() 1z = 2.
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The points of a vector space are also called vectors. If F is either the
6eld ® of real numbers or the field € of complex numbers, V is called
2 normed veetor space OVer F iff there exists a real-valued nerm
|| || with the properties, for all z and ¥ inVandAin F:
W Izl = 0llz] = 0iffz =0,

w) fz+yl S lhell+ 1yl

wid) il = Ix]lhe
Any normed vector space is a metric space with metric d(z, y) =
| z — y . A Banach space is a complete normed vector space.

Tor further information on topological spaces and mappings see
(11}, [17], [20], [24], [27], [45], and [50]. For vector spaces in general,
see [22]. For Banach spaces see [4] and [29].

1. A decreasing sequence of nonempty closed and bounded
sets with empty intersection.

lz — y|
1+ [z —yl’
etF,=1[n +®),n=12-. Then each F, is closed and bounded,
and V% P, = 0.

Since an empty intersection is impossible if the nonempty sets
are compact, this example is. impossible in any finite-dimensional
Fuclidean space with the standard Fuclidean metrie.

Tn the space & with the bounded metric dz, y) =

9. An incomplete metric space with the discrete topology.
The space (N, d) of natural numbers with the metric d(m, n) =
|m — n|/mn has the discrete topology since every one-point set is
open, but the sequence {n} is a nonconvergent Cauchy sequence.
This example demonstrates that completeness is not a topological
property, since the space 3 with the standard metric is both complete
and discrete. In other words, it is possible for two metric spaces to be
homeomorphic even though one is complete and one is not. Another
example of two such spaces consists of the two homeomorphic inter-
vals (— e, + ) and (0, 1) of which only the first is complete in the

standard metric of Q.

3. A decreasing sequence of nonempty closed balls in a com-
plete metriec space with empty intersection.
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In the space (91, d) of natural numbers with the metric

FITIN S
dim,n) = m+n m = n,
LO if m= n,

let

i(})lr n = 1,.2, e Then.{ B,} satisfies the stipulated conditions, and
Coisiiicils complete since every Cauchy sequence is “ultimately
Trivial examples are possible if completeness is omitted — for
ex'ample, {y]11/n) — y| < (1/n)} in the space ® of positive numbers
?v1joh the standard & metric. On the other hand, the present exampl
is 1mpossible if the complete metric space is a Banach space (cf [151]))e
Thzs example (ef. [45] (Sierpinski)) is of interest in connectio;a Wit};
Baire’s category theorem (cf. Example 7, Chapter 8, and [1], [4]
[20], and [27]), which states that every complete metric fspace 8 (;f th:z
second category or, equivalently, that any countable intersection of
dense open se?s in a complete metric space is dense. The proof involves
the (?onstructlon of a decreasing sequence of closed balls, with radii
ten@lng toward zero, and having as a consequence a nonel’npty inter-
section. We see, then, that if the balls get small they must have a

point in common, whereas if they do not get smal
nothing in common! et small they may bave

4. Open and closed balls, O and B, res i
’ ’ ectively, of t
center and radius and such that B # 01.) y, of the same

Let X be any set consisting of ¥ i
g of more than one t
be the metric space with point, and fet (X, d)

N
s ={y i 7Y

Let x be any point of X, and let O and B be th
v ( _ , e open and cl
respectively, with center ¢ and radius 1. Then P closed balls,

0=1{s}, B=X,
and since the topology is discrete, 0 = O = B.
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This example is impossible in any normed vector space. (Proof of
this fact is left as an exercise.)

5. Closed ball.s B, and B:, of radii r; and rz, respectively, such

that B, C B:and 1. > 1.
Let (X, d) be the metric space consisting of all points (z, y) in the
closed disk in the Euclidean plane, defined:

X={ylet+y 29,
with the standard Euclidean metric. Let B, = X, and let
Bi=B:n{(z,9) |z — 2+ y* = 16}.

Then By C By, andr =4 > 12 = 3.
This example is impossible in any normed vector space since the
radius of any ball is half its diameter. (Proof is left as an exercise.)

6. A topological space X and a subset Y such that the limit

points of Y do not form a closed set.
Let X be any set consisting of more than one point, and let the

topology of X be the trivial topology © = {@, X}. If y is an arbitrary
member of X, let ¥ = {y}. Then the limit points of Y are all points =~

of X except for y itself. That is, the set of limit points is X \ Y, and
since Y is not open, X \ Y is not closed.

7. A topological space in which limits of sequences are not -

uniqgue.
First example: Any space with the trivial topology and consisting

of more than one point has this property since in this space every ' k‘

sequence converges to every point.
Second example: Let X be an infinite set, and let © consist of @ and

the complements of finite subsets of X. Then every sequence of i

distinet points of X converges to every member of X.

8. A separable space with a nonseparable subspace.
First example: Let (®, ©) be the space of real numbers with the
topology © generated by the base consisting of sets of the form

{x}u(Qn(x——e,m—l—e)), z € ®, e >0,
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and let (Y, 3) be the subspace of irrational numbers with the discrete
topology (this ¢s a subspace since every one-point set in Y is the
intersection of ¥ and a member of ©). Then § is a countable dense
subset of (®, 9), but (Y, 3) has no countable dense subset.

Second example: Let (X, 0) be the space of all points (z, y) of the
Euclidean plane such that ¥ = 0, and let O be the topology generated
by the base consisting of sets of the following two types:

{@ |l =0+ (y — )T < min O &)},
qE ®, b>0, >0,
(@0 v{@|E@—a+—e*<e}, a€® >0

Then the set {(z, ) |2 € @, ¥y € @ n @} is a countable densesubset
of (X, (‘)),' but the space {(z, ¥) |z € ®, y = 0} with the discrete
topology is a subspace of (X, 0) with no countable dense subset
(Cf. [1], p. 29, 5°.) '

9. A separable space not satisfying the second axiom of
countability. ‘

Fach example under Example 8 satisfies these specifications since
(1) every space satisfying the second axiom of countability is separable
and (2) every subspace of a space satisfying the second axiom of count-
ability also satisfies the second axiom of countability. If either ex-
ample under Example 8 satisfied the second axiom of countability
then the subspace under consideration would be separable. ’

10. For a given set, two distinet topologies that have identical
convergent sequences.

. First example: Let (X, ) be any uncountable space with © con-
sisting of @ and eomplements of countable (possibly empty or finite)
sets. Then the sequence {x,} converges to z iff x, = x for n > some
m € N. In other words, the convergent sequences are precisely those
of (X, 3), where J is the discrete topology. Finally, 0 # 3.

Second example: Let X be the set of all ordinal numbers less than
or equal to ©, where Q@ is the first ordinal that corresponds to an
uncountable set (cf. [20] and [46]). Let © be generated by the intervals

i1, B8 (e, ﬂ,)} (a: Q]:
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where @ and 8 € X. Since every countable set in X\ {Q] has an
upper bound in X \ {©}, no sequence of pointsin X \ {Q} can converge
to @ . Therefore a sequence in X converges to @ iff all but a finite
number of its terms are equal to Q. In other words, the convergent
sequences in X are the same as those in the topology .ob’cained }?y
adjoining to the subspace X \ {©} of X the point © as an isolated point
(that is, with {Q} a one-point open set of the new space X).

Third ezample: (Cf. [4] and [29] for definitions and discussion.) Let
X be the Banach space I; of real (alternatively, complex) sequences
x = {x,} such|that Y a2y |z, | < 4o, withnorm || z || = D] T l.
The strong topology of X is that of the metric space (X, d) with
diz, y) = |z =yl

We now define a second topology for X, called the weak topology,
in terms of the following neighborhood system:

N, E{y = {Yn}

where (Gms) is & bounded p X 4 e matrix, » € X, and.e >. 0. It
can be shown that {N.} satisfies the conditions, specified in the
Introduction, that guarantee the generation of a topological space
(X, 0).

o0

Zamn(yn_xn) <g m=1’2:"'7p},

n=1

To demonstrate that the strong topology of X is indeed stronger

than the weak topology we show that every weak neighbc?rhood of a
point z contains a spherical neighborhood of . This is an easy
consequence of the triangle inequality for real series:

40 +o
Y na(Yn — Tn) §K-ley,.—xnl=K-[|y—xll,
=1 n=

where K is an upper bound of the set of absolute values of the ele-
ments of the matrix (@m,). To prove that the strong topology is
strictly stronger than the weak topology, we shall now show that
every weak neighborhood is unbounded in the metric of the sirong tf)pology
(and hence no weak neighborhood is a subset of any str.ong neighbor-
hood). Accordingly, let (am:) be the p X - matrix for a _Weak
neighborhood N, let (21, 22, - -, 2p41) be a nontrivial (p + 1)-dimen-
sional vector such that

pt1 .
Y mtn =0 for m=12-,p,
]
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and let 2,2 = 2,45 = .-+ = 0. The vector y(a) = z + az =
{y(@)} = {2, -+ az.} belongs to N, for every real number a:
40 +0

Z amn(yn(a) - xn) = Z Qmn 02

n=1 ne=]
Part
=azla'ﬂmzﬂ=07 m:l,z’...’p.
On the other hand, || y(a) — 2 || = | ez || = |a]|-|| 2], and | 2 || #0.

We now turn our attention to sequences of points in X. We already
know that every sequence {z™} of points in X that converges to z
in the strong topology must converge to z in the weak topology. We
shall now show the converse: If limy. i 2™ = 2 in the weak topology,
then 1imp, oiw 2™ = z in the strong topology. It will then follow that
the weak and strong topologies of X determine identical convergent
sequences.

Assume that there exists a sequence converging to z in the weak
topology but not in the strong topology. By the linear character of
the two limit definitions we may assume without loss of generality
that the limit z is the zero vector 0. Furthermore, if the sequence
under consideration does not converge to 0 in the strong topology,
then there must be a subsequence whose norms are bounded from 0.
If this subsequence is denoted {z“™}, then there exists a positive
number ¢ such that

1e™ | = 5e

form = 1,2, ---. Since {«"™} is a subsequence of a sequence con-
verging weakly to 0, {z™} must also converge weakly to 0. If we
represent ™ :

x(m) — ($1(m), .’Bz(m), - xn(m) e ')’
then the sequence {z™} is represented by an infinite matrix M each
row of which corresponds to one of the vectors of the sequence {z‘™}.
The next step is to show that since {™} converges to 0 in the weak
topology, every column of M is a real sequence with limit 0; that is,
the limit asm — + o of the nth coordinate of ™, for any fixed
n=12 - is0:
lim 2, = 0.

m-stoe
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This follows immediately from considering the neighborhood: of 0
given by the matrix (a..) consisting of one row only, with 1 in the
nth place and 0’s elsewhere. . ‘

We can now define by induction two strictly increasing sequences

of positive integers, m; < ms < --- and m < mp < --- such that
forj € 9t: v '
< s )
(a) 2 lm™ | < 2 lm™ <
n=1 n=n;41+1
and consequently
)
® >z | > 3e.
n=n ;-+1
Finally, we define the sequence {a,}:
_ 1 if 1 é n<m y
Or =\sen 2, # n;+1=n =y,
forj = 1,2, --- . If Ny is the neighborhood of the zero vector O,

defined by & and the matrix (am.) consisting of one row only, made up

of the terms of {a.}:
~+c0
Z An Yn < 3},
n=1

No={y = tw)
then no point ™ of the subsequence {7} of {z™)} is a member
of N 0-

TR
= 2 |z

+o0
Z Gn xn(mj)

n=1 n=n;+1
< (mj) pas (mj)
i m
— 2 anz, ™| — > G 2™
=1 n=n;,q1+1

>3 —e—¢e=¢
But this means that {z™} cannot converge to 0. (Contradiction.)
11. A topological space X, a set 4 C X, and a limit point of

A that is not a limit of any sequence in A.

First example: Let X be the space of the first example under 10,
preceding, with A any uncountable proper subset of X. Then any
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point of X'\ A is a limit point of A, but since z cannot be a limit of
a sequence of points of A in the discrete topology, it cannot in the
topology described in that example.

Second example: Let X be the space of the second example under
10, preceding, with 4 = X \ {Q} in the first topology described in
that example. Then Q is a limit point of A but no sequence in 4 can
converge to Q.

Third example: (Cf. [51], where a similar example is constructed.
Also cf. [4], [15], [29], and [30] for definitions and diseussions.) Let X
be real (alternatively, complex) sequential Hilbert space l; consisting
of all sequences z = {x,} of real numbers such that )y 2,2 < +
(352 |#a |2 < + in the complex case), and in which there is
defined an inner produet for any two points z = {z,} and y = {y,}:

L o0 .
(2, 9) = Zl T Yn (Zl Za § in the complex case),
with the properties, for z, y, and z € ; and A € ® (only the real case
will be considered henceforth in this example):
@) @+y,2 = (2 + (¥2),
@) Az, y) = Mz, y),
@) (y, 2) = (z,y),
() (@, x) 2 0,
@ if [[z] = (z, x)% then || | is a norm for which I, is a
Banach space.

The space X = [; is now made into a topological space (X, 0) by
means of a neighborhood system, defined somewhat as in the third
example under Example 10:

sz{y]beB%I(y-—x,b)Re},

where B is any nonempty finite set of points of X,z € X, and £ > 0.
Let A be the set {™}, where ™ is the point whose mth co-
ordinate is v/m and all other coordinates are equal to 0:

x(m) = (07 07 "')0: V;L: 07 )

We shall show first that the zero vector 0 is a limit point of A by
assuming that the neighborhood of 0,

No={ylbeB=|(yb]|<é¢,
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where ¢ > 0 and B consists of the points b® = {b, ™}, , 59 =

{b,"”}, contains no point ™. This means that

VmenIre{l,2 -, p O |vVmb?| = ¢

and hence:
p I®
30 IURNED SR

in contradiction to the assumed convergence of > (0.®)? for
k=12, ---,p.

Finally, we shall show that no sequence of points of A can converge
to the zero vector 0 . It is easy to show that if

x(ml)’ x(mz)’ Sy x(mj)’ e ey 07

then the sequence my, ma, - - - 18 unbounded, and we can therefore
assume without loss of generality that m; < me < --- and

Ry |

D= < +oo.

=1 Mj

We conclude by defining a neighborhood Ng of 0 in terms of ¢ = 1

and the set B consisting of the single vector b whose mth coordinate

is 1/A/m; for j = 1, 2, --- and whose other coordinates are all 0.
Then no point of the sequence {z) can belong to N, since
@™, b) = 1forj=1,2, -
Fourth example: A fourth example is given below (Example 12).
Note that the phenomenon illustrated in the examples of this set
cannot occur in a metric space, and therefore each of the spaces
described above is neither metric nor metrizable.

12. A topological space X whose points are functions, whose
topology corresponds to pointwise convergence, and which is

not metrizable.
Let (X, 0) be the space of all real-valued continuous functions with

domain [0, 1], and let © be generated by the neighborhood system
Ny={glz € F=|g() — flo)| <&},

where F is a finite nonempty subset of [0, 1], f € X, and ¢ > 0.
Clearly, if g, — g, as n — + o, in this topology then g,(z) — g(z),
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as n — -+ «, for each z € [0, 1] since F can be taken to be the one-
point set {z}. On the other hand, if g.(z) — ¢(z), as n — +w, for
each z € [0, 1], then g, — g, as n — + «, since for every ¢ > 0 and
finite subset F of [0, 1], n can be chosen sufficiently large to ensure
[ ga(@) — g(z) | < & for every z € F.

Let A be the set of all functions f in X such that:

(@ z€0,1]=0 <f(x) <1,

) w(iz /&) = 1}) = 4 |
Then 0 is a limit point of 4, but if a sequence {f,} of members of 4
converged to 0 in the topology 0, then {f.(z)} would converge to 0
for every = € [0, 1], and by the Lebesgue dominated convergence
theorem, fo fule) dz — 0 as n — oo, in contradiction to the
mequahty fo fa@)dx =z . By the final remark included with
Example 11, X is not metrizable.

13. A mapping of one topological space onto another that is
continueus but neither open nor closed.

First example: Letb f(z) = e* cos z, with domain and range ®, with
the standard topology. Then f is continuous, but f((— «, 0)) is not
open and f({ —~nx | n € 9}) is not closed.

Second example: Let X be the space ® with the discrete topology,
let ¥ be the space ® with the standard topology, and let the mapping
be the identity mapping.

14. A mapping of one topological space onto another that is
open and closed but not continuous.

First example: Let X be the unit circle {(z, y) | 22 + y* = 1} with
the topology inherited from the standard topology of the plane, let ¥
be the half-open interval [0, 2=) with the topology inherited from the
standard topology of ®, and let the mapping f be (z, y) — 6, where
x =cosf,y = sin §, and 0 < 6 < 2r. Then f is both open and
closed since its inverse is continuous, but f is discontinuous at (1, 0).

Second example: The inverse of the mapping of the second example
under Example 13.

15. A mapping of one topological space onto another that is
closed but neither continuous nor open.

Let X Dbe the unit circle {(z, y) [2? + y* = 1} with the topology
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inherited from the standard topology of the plane, let ¥ be the
half-open interval [0, =) with the topology inherited from the standard
topology of ®, and let the mapping f be defined:

. 0 if 0Z26=m,
(cos(?,slnﬁ)'_’{g__7r if 7 <8< 2.

Then f is not open since the open upper semicircle of X maps onfo
a point, and f is not continuous at (1, 0) (cf. the first example under
Example 14). However f is closed, as we shall now see. Assume that
f is not closed. Then there is a closed set A of X such that B = f(4)
is not closed in Y. Therefore there is a sequence {b,} of points of B
such that b, — b, and b ¢ B. If f(p.) = ba, where p, € A, for
n = 1,2, ---, since A is compact we may assume without loss of
generality that {p.} converges: p, —p € A. Since f(p.) — b #= f(p),
f is discontinuous at p, and p = (1, 0). But this means that there
exists a subsequence of {p,} approaching (1, 0) from either the upper
or the lower semicircle; in the former case b, — 0 € B, and in the
latter case {b,} cannot converge in Y. In either case a contradiction
is obtained, and f is therefore closed.

16. A mapping of one topological space onto another that is

continnous and open but not closed.

Let (X, ©) be the Euclidean plane with the standard topology, let
(Y, 5) be ® with the usual topology, and let the mapping be the
projection P: (z, y) — «. Then P is clearly continuous and open, but
Pz, y) |y = 1/z > 0}) is not closed in (¥, 3).

17. A mapping of one topological space onto another that is
open but neither continuous nor closed.

First example: Let X = Y = ® with the standard topology and
let f be the function defined in Example 27, Chapter 8, whose range
on every nonempty open interval is ®. This function is clearly open
since the image of every nonempty open set is ®, and it is everywhere
discontinuous. To show that f is not closed, let x, be a point between
n and n + 1 such that f(z,) is between 1/(n + 1) and 1/n, for
n = 1,2, ---. Then {,} is closed and {f(x.)} is not.

Second example: Let (X, ©) be the plane with © consisting of @
and complements of countable sets, let (¥, 3) be & with 3 consisting
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of Q apd complements of finite sets, and let the mapping be the
pro,].ectlon P :(z, y) — 2. Then P is open since any nonempty open
set in (X, @) must contain some horizontal line, whose image is ®
On the other hand, P is not closed since the set of points (n O)‘
where n € 9, is closed in (X, 0), but its image is not close:i iI;
(Y, 3), and since the inverse image of any open set in (Y, 3) that is a
proper subset of ¥ cannot be open in (X, ©), P is not continuous.

18. A mapping of one topological space onto another that is
continuous and closed but neot open.

Let X and Y be the closed interval [0, 2] with the usual topology
and let , ’

_fo i 0=es1,
f(x)_{x——l i 1<a

< 2.
Then f is clez.xrly continuous, and hence closed since X and ¥V are
compact metric spaces. On the other hand, f((0, 1)) is not open in 7.

19. A topological space X, and a subspace Y in which there
are two disjoint open sets not obtainable as intersections of ¥
with disjoint open sets of X,

Let X = 9, the open sets being & or complements of finite sets
andlet ¥ = {1,2}. Then {1} = ¥ n (X\ {2}) and {2} = ¥ n (X \ {1}),
$0 that the subspace topology of ¥ is discrete. However, the tWC:
disjoint open sets {1} and {2} of Y are not the intersections of ¥
with disjoint open sets of X since no two nonempty open sets of X
are disjoint.

.20. Two nonhomeomorphic topological spaces each of which
is a continuous one-to-one image of the other.
First example: Let X and Y be subspaces of &, where ® has the
standard topology, defined:
o0

ngo((sn,3n+1)u{3n+2}), Y= (X\{2)u{1}.
Let the mappings S of X onto ¥ and T of ¥ onto X be defined
S(x)E{x if x5 2 iy =1,

1 i z=2 T(y) = %y—llif3<y<4,
y—3 if y=5s.
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Then S and 7 are continuous, one-to-one, and onto mappings. How-
ever, X and Y are not homeomorphic since under any homeomorphism
of Y onto X the point 1 of ¥ can have no correspondent.

DS Dz .D1 Al Az AS A4
" O O O e
X
04 C3 Cz Cl Bl BZ B3
Y
Figure 12

Second example: Let X and Y be subsets of the plane, with the
standard topology, as indicated in Figure 12. The vertical segments
are of length 2 and are open at the top ends, and the circles are of
radius 1. The mapping S of X onto Y is defined as follows: The horizon-
tal line of X is mapped onto the horizontal line of Y, the cirles D, onto
the circles Cpy1, and the segments A..» onto the segments Biii,
n € 9, by a translation downward in Figure 12, and the segment
A, is mapped onto the circle B; by a formula of the type x = sin t,
y = 1 — cos wf, where 0 < ¢ < 2. The segment 4; is mapped by
downward translation onto C;. The mapping T' of ¥ onto X is
defined as follows: The horizontal line of Y is mapped onto the hori-
zontal line of X, the circles C,1 onto the circles D, 2, the segments
B,..1 onto the segments A,, n € 9, and the circle B; onto the circle
D by a translation upward and to the left in Figure 12, and the
segment C; is mapped onto the circle D; by a formula of the type
used above. The mappings S and T have the properties claimed. It is
left as an exercise for the reader to show that the spaces X and Y
are not homeomorphic.

21. A decomposition of a three-dimensional Euclidean ball B
into five disjoint subsets Si, S:, Ss, Si, S5 (where S; consists
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of a single point) and five rigid motions, R;, R, R;, Ri, R;
such that
B =2 Ri(S1) u R(S:) =2 Ry(S3) u Ru(S1) u Rx(Ss)

(where “22"" means ‘““is congruent to”).
(Cf. references given below.)

22. For ¢, M > 0, two Euclidean balls B, and By of radius ¢
and M respectively, a decomposition of B, into a finite number
of disjoint subsets S;, S, -+, S,, and n rigid meotions R,
Ra, - -5 R, such that

BM = Rl(Sl) 8] R2(Sz) u---u R,,(S,,).

The' last two examples are due to the work of Hausdorff, Banach,
Tarski, von Neumann, and R. Robinson. We shall give only a refer-
ence where these are discussed in detail. (Cf. [41].)
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Chapter 13
Function Spaces

Introduction ' .
A function space is a collection of functions having a common

domain D. It is usually assumed that a function space is. endowed
with some sort of algebraic or topological structure. In this chapt?r
we shall focus our attention on the algebraic -structures of certain
spaces of real-valued functions of a real variable whose common
domain is a fixed interval I. o

A function space S of real-valued functions on an interval I is said
to be a vector space or a linear space over & .(the.z real-x.lumber
system) iff S is closed with respect to linear combinations with real
coefficients; that is, iff :

fg€8,,p€ER=>N+p €S,
where the function \f is defined
M) (@) = A(f@)-

Tt is easy to show that a function space of real-valued functions on an
interval is a vector space iff it is closed with resp_ect.to the two
operations of addition, f -+ ¢, and scalar_ mult?'plwat'.wn, M. The
abstract concept of vector space is defined axiomatically in the Intro-
duction to Chapter 12. (For further discussion cf. [2_2].) Many of the
most important classes of functions in analysis are 111.1ea.r spaces over
® (or over €, the field of complex numbers, in which case the co-
efficients N and p are arbitrary complex numbers). Examples of
spaces of real-valued functions that are linear spaces over ®] are:
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1. All (real-valued) functions on an interval 1. 2. All bounded functions
on an interval I. 3. All Riemann-integrable functions on a closed
interval [a, b]. 4. All Lebesque-measurable functions on an interval I.
5. All Lebesgue-integrable functions on an interval I. 6. All Lebesgue-
measurable functions on an interval I the pth power of whose absolute
value is Lebesgue-integrable on I, where p = 1. 7. All continuous
functions on an interval I. 8. All sectionally continuous functions on
a closed interval [a, b] (cf. [34], p. 1381). 9. All sectionally smooth
functions on a closed interval [a, 8] (ef. [34], p. 131). 10. All functions
having kth order derivatives at every point of an interval I for every
k not exceeding some fixed positive integer n. 11. All functions
having a continuous kth order derivative on an interval I for every &
not exceeding some fixed positive integer n. 12. All infinitely differ-
entiable functions on an interval I. 13. All (algebraic) polynomials on
an interval I. 14. All (algebraic) polynomials, on an interval I, of
degree not exceeding some fixed positive integer n. 15. All ¢rigono-
melric polynomials, on an interval I, having the form

1 Z a; €os 1z 4+ §; sin iz,
=0

where n is arbitrary. 16. All trigonometrie polynomials of the form
(1) where 7 is fixed. 17. All step-funciions on a closed interval [a, b].
18. All constant functions on an interval I. 19. All functions satisfying
a given linear homogeneous differential equation, such as
3 2
%x%—l— sinx%—}-ez%—xy = 0,

on an interval I. Nineteen more examples of linear spaces over ® are
provided by permitting the functions of the preceding spaces to be
complex-valued functions.

In spite of the vital role played by linearity in analysis, there are
several important classes of real-valued functions that do not form
linear spaces. Some of these are indicated in the first five examples
below, which can be interpreted as saying that the following spaces
of real-valued functions on a fixed interval are nonlinear: () all
monotonic functions on [a, b], (%) all periodic functions on (— o, 4 )
(¢7) all semicontinuous functions on [a, b], (&) all functions whose
squares are Riemann-integrable on [a, b], (») all functions whose
squares are Lebesgue-integrable on [a, b].
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II. Higher Dimensions

A funection space S of real-valued functions on an interval 7 is
called an algebra over & iff it is closed with respect both to linear
combinations with real coefficients and to products; that is, iff Sis a
linear space over ® and :

feSgeS=fgcS.

(As with linear spaces, the abstract concept of algebra is defined by
means of axioms. Cf. [22], vol. 2, pp. 36, 225.) As a consequence of
the identity

) fg=:Ff+9*—i(f — 92

it follows that a function space that is a linear space is an algebra
iff it is closed with respect to squaring.

A function space S of real-valued functions on an interval I is
called a lattice iff it is closed with respect to the formation of the
two binary operations of join and meet, defined and denoted:

(f v 9)(=) = max (f(z), g(=)),
A g)(@) = min (f(z) , g(z)).

joinof fandg: fv g,

meetof fandg: f A g,

(Again, the abstract concept of lattice is defined axiomatically.

Cf. [9].) For a given real-valued function f, the two nonnegative
functions f+ and f— are defined and related to f and its absolute value
17| as follows:

®) fF=fvo, F=(=Hvo,

#) f=r-5 =75 +7

(5) fr=3r1+3% =35 -3

Thanks to these relationships and the additional ones that follow:
©®  fvg=—l=D A (=9

) Fag=—=l(=Hv (=gl

(8) fvg=30+9+3f—ygl

9) frag=3G+9 —3f-9gl

a function space that is a linear space is a lattice iff it is closed with
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respect to any one of the following five binary or unary operations:
(10) fvgfag
(an mrelr

In the preceding list of linear spaces, those that are also both
algebras and lattices are 1, 2, 3, 4, 7, 8, 17, and 18. Those that are
neither algebras nor lattices are 14 (cf. Example 6, below), 16, and 19.
Those that are algebras and not lattices are 9, 10, 11 (c¢f. Example 7,
below), 12, 13, and 15. Those that are lattices and not algebras are 5
(cf. Example 8, below) and 6.

1. Two monotonic functions whose sum is not monotonic.

sinz <+ 22 and sinx — 22 on[—nr, 7]

2. Two periodic functions whose sum is not periodic.
sin z and sin az, « irrational, on (— o0, -+ ).

1f sin = -+ sin ar were periodie with nonzero period p , then the follow-
ing identities would hold for all real x:

gin (x + p) + sin (ax 4+ ap) = sin z + sin az,

sin (x + p) — sinz = —[sin (ex -+ ap) — sin azxl,
cos (z + 3p) sin (3p) = —cos (ar + }ap) sin (Fap),
cos z sin (3p) = —cos (az) sin (Fap).

If z is set equal to L, the left-hand side of this last equation vanishes,
and hence sin $ap = 0, and ap is a multiple of 27 . If ax is set equal
to 1, the right-hand side vanishes and hence sin 3p = 0, and p is
a multiple of 27 . Since « is irrational this is impossible and the
desired contradiction has been reached. (Cf. [36], p. 550, Note.)

3. Two semicontinuous functions whose sum is not semi-

continuous.
If
1 if >0, 1 if >0,
flx) =42 if z=0, gle) =< —2 if = =0,
-1 if z <6, -1 if z<0,
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then f(z) + g(z) fails to be semicontinuous at 2 = 0, although f(z)
is everywhere upper semicontinuous and g(z) is everywhere lower
semicontinuous.

More dramatic examples are possible if f and ¢ are functions each
of which is semicontinuous everywhere but upper semicontinuous at
some points and lower semicontinuous at other points. In the following
examples the notation p/¢ will indicate a quotient of integers in
lowest terms, with ¢ > 0, the number 0 being represented 0/1. If

_J1 if z = p/q,qodd, _J—1 if z=p/qqeven,
Jw) = {0 otherwise, 9(z) = 0 otherwise,

then

1 if = = p/q, qodd,
f@) + gl@) =4—1 if =z = p/q, qeven,

0 if z is irrational,

and the funetion f(z) + g(z) is semicontinuous iff x is rational, and
hence almost nowhere (that is, f + ¢ fails almost everywhere to be
semicontinuous).

Now consider the three functions defined as follows:

4/g i z = p/q, godd,
F(z) =<—2 — 4/q) if z = p/q, qeven,
—2 if z isirrational,

(—1— (1/9) i == p/g, qodd,
G(x) =<1+ (1/9) if x = p/q, qeven,
—1 if =z isirrational.

3+ (1/9) if x = p/g, qeven,
3 if z1isirrational.

H(x) =

Then F, G, and H are individually semicontinuous everywhere, while
their sum,

-2+ (2/9) i =z =p/g, qodd,
Flz) + Gx) + H@) =42 — (2/9) i =z = p/q, geven,
0 if « is irrational,

is nowhere semicontinuous.
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4. Two functions whose squares are Riemann-integrable and
the square of whose sum is not Riemann-integrable.

If

o) = 1 if =z isirrational,
"~ =1 if g isrational,

and

1 if = is algebraic;
—1 if zis transcendental,

g(x) = {

then

2 if zis algebraic and Irrational,
0 otherwise.

@) + gl@) = {

Then f2 and g¢? are constants and hence integrable on every closed
interval — e.g., on [0, 1] to be specific — while (f 4+ ¢)? is everywhere
discontinuous and thus Riemann-integrable on no interval, and in
particular it is not integrable on [0, 1].

5. Two functions whose squares are Lebesgue-integrable and
the square of whose sum is not Lebesgue-integrable.

Let E: be a nonmeasurable subset of [0, 1] and let E, be a non-
measurable subset of [2, 3] (cf. Example 10, Chapter 8). Then let

1 if z€[0,1]u kK,
fl@) =41 if =€ [2, 3]\ By
0 otherwise,

and
1 if z€ {2, 3]UE1,
0 otherwise.
Then
. 2 if X 6 El U E27
f@) + gl) = {0 otherwise.
Thus since

1 if z€[0,1jul2, 3],
0 otherwise,

P@) = ¢'@) = {
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and

4 if x € Fiu B,
0 otherwise,

(f@) + g@))* = {
the result follows, since E; u E. is nonmeasurable.

6. A function space that is a linear space but neither an algebra
nor a lattice. ,

The polynomials cz + d of degree at most 1 on the closed interval
[0, 1] form a linear space. They do not form an algebra since the
square of the member z is not a member. They do not form a lattice,
since although 22 — 1 is a member, | 2z — 1| is not.

7. A linear function space that is an algebra but not a lattice.

The set of all functions that are continuously differentiable on
[0, 1] form an algebra because of the formula (fg)' = fo + fg.
However, they do not form a lattice. The function

_Jjo if =z =0,
ﬂx)z{m‘”’sinl/x f 0<z=g1

is continuously differentiable on [0, 1], but its absolute value fails’

to be differentiable at the infinitely many points where f(z) = 0.
In fact, | f(z) | is not even sectionally smooth.

8. A linear function space that is a lattice but not an algebra.

The set of all functions that are Lebesgue-integrable on [0, 1] is a
linear space and a lattice. However, this space is not an algebra since
the function

_jo i z =0,
) = {x—llz if 0<z<1,
is a member of the set but its square is not.
9. Two metrics for the space C([0, 1]) of functions continuous
on [0, 1] such that the complement of the unit ball in one is

dense in the unit ball of the other.
Let p and o be two metrics defined as follows: For f, g € C([0, 1),
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let

$.0) = 4/ [ 11w — gte) Fde = 17 = gl

o(f,9) = Sup. | (@) —g@) | =11~ gl

Let P = {f|p(f,0) £ 1}, 2 = {f|o(f, 0) = 1} be the unit balls
in these metrics. Clearly = & P. We shall show that the complement
of £ is dense in P. Indeed, let f € P,0 < e < L.If || fllo > 1,
then f ¢ = and we need look no further. If || f{l. = 1, let g(x) be
defined by:

0 if 0=t~ (9 orif 3 4+(2/9H =221,
g) =43 if x =14,
linear otherwise.

Thenf(z) + ¢@@) ¢ Tand | f— F+9) =l gll: < V9-(&/9) = &.
This last example illustrates an essential distinction between finite-
dimensional and infinite-dimensional normed linear spaces. In either
case the closed unit ball is such that any line through the origin (that
is, all scalar multiples of a fixed nonzero point) meets the unit ball in a
closed segment having the origin as midpoint. In the finite-dimen-
sional case the topology is thereby uniquely determined. The present
example shows that in the infinite-dimensional case this is not true.
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is (is not) an element of

is contained in, contains

implies, only if

if and only if

if and only if

the set consisting of the members
a,b,c - v

the set of all - - - such that . .-

equal by definition

the union of 4 and B

the intersection of 4 and B

the set of points in 4 and not in B

the complement of A

the empty set

ordered pair
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there exist(s)

such that

domain of f, range of f

the funection inverse to f

a functionf 3 Dy = A, R, C B

fylde € S f(z) = y}

composite of fand g ((fog)(z) = f(g(x)))
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(a, b), [a, b)
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(—w, +w)
N(a, e), D(a, €)
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inf (A), inf 4;
sup (4),sup 4
x>z

®

sgn x

Meaning

field

group

positive part of a field
order symbols
absolute value of «

intervals of an ordered system

neighborhood, deleted neighborhood
maximum of z and y

minimum of z and y

infimum of 4

supremum of 4

one-to-one correspondence

the real number system

signum funetion

characteristic function of the set 4
the natural number system

the field of rational numbers

ring

integral domain

the ring of integers

for all

the limit of f(z) at z = @

the derivative of f(z) atz = a
3 Sequence i, ds, - - -

a complex number

the field of complex numbers

a complex number

the field of rational functions
{a + b0/5]a,b € g}

m divides n

union, intersection, of the (countably)

infinite set of sets 41, 42, «--
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lim f(z)
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F_"__
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»=1

(t:5)
f(n)(m)
deg P
o-ring

A

C

x4+ A

B

S
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B
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By B

C

¢

D(4)
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r 4+ A(mod 1]
3
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Z
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frontier, interior, closure of A 20
open covering 21
sup {n|n € N, n £ x} 21
limit superior, inferior, of f(z) atz = a 21
deleted neighborhoods of -4= « 22
limits at 4= ' 22
infinite limits 22
F.gigma 30
limit superior, inferior, of the sequence of

sets 41, 42, --- 51
infinite series 53
matrix 64
nth derivative of f(x) 70
degree of polynomial P 74
sigma-ring 83
class of sets 83
class of compact sets 83
translate of A by z 83
class of Borel (-measurable) sets 83
o-ring 83
p absolutely continuous with respect toe 84
measure space 84
class of Lebesgue-measurable sets 84
measure 84
inner, outer measure 84
the Cantor set 85
cardinality of ® 86
difference set (of 4) 87
G-delta, F-sigma delta, - - - 91
translation (of A by r) modulo 1 92
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fzle=¢""0€90=0<1} 93
3/% , one-to-one preimage of $ in 3 93
measure on J 94
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d(4, B)
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a
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Meaning

the Cantor function
length of the interval I

partial derivatives of f

differential

vector field

Euclidean plane

distance of set A from set B

distance of the point p from
the point ¢

diameter of the set 4

infinite eardinal

cardinality of the set of closed sets in
the plane

first ordinal of cardinality ¢

ares, inner area, outer area of S

net of lines

metric space

metric

distance between the points z and y

family of open sets, topology

topological space

induced topology

neighborhood system

base of a topology

trivial, discrete topologies

equivalent bounded metric

norm

first uncountable ordinal

inner product of z and y

join of fand ¢

meet of f and ¢

FvOo, (=) vo

128,
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(T'he numbers refer to pages.)

Abel, N. H., 70
Abelian group, 7
Absolute value, 8
Absolutely continuous, 84
Addition, 6, 11, 13
Additive identity, 7
Algebra, 174
Algebraic function, 25
Almost everywhere, 42
Alternating series theorem, 56
Arc, 129

simple, 129

space-filling; 133
Archimedean, 15
Area, 147

have, 147

inner, 147

surface, 150, 152

outer, 147
Associative law, 6, 7
Axiom of choice, 85

Baire, R., 90
Baire’s category theorem, 159
Ball, 156
closed, 156
open, 156
Banach, 8., 171
Banach space, 158
Base, 155
Bagis, Hamel, 33
Besicoviteh, A. 8., 152, 153

Bessel’s inequality, 70
Binary expansion, 86
Binary operation, 6
Borel measure, 84
Borel set, 83
Bound,

greatest lower, 10

least upper, 9

lower, 10

upper, 9
Bounded, 156

above, 9

below, 10

interval, 8

metric, 156
Bracket function, 21

Cancellation law, 11
Cantor, G., 85
Cantor function, 97
Cantor set, 85, 86

of positive measure, 89
Cardinal number, 142
Cartesian product, 4
Category,

first, 90

second, 90
Cauchy-complete, 17
Cauchy principal value, 45
Cauchy produet series, 61
Cauchy sequence, 13, 157
Cavalieri’s Principle, 149
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Center of a spherical neighborhood,
156
Characteristic function, 10
Cireuit, plane, 132
Closed ball, 156
Closed curve, 129
Closed disk, 128
Closed interval, 9
Closed mapping, 157
Closed set, 20, 155
Closed under translations, 83
Closure, 20, 155
convex, 130
Commutative group, 7
Commutative law, 6,7
Compact, 21, 155
locally, 155
Compares favorably (series), 63
Complement, 4
of one set relative to another, 4
Complete extension of Borel meas-
ure, 84
Complete measure, 84
Complete metric space, 157
Complete ordered field, 10
Completion of Borel measure, 84
Complex number, 13
Component, 4
first, 4
second, 4
Composite, 17
of two functions, 6
Condensation,
point of, 94
of singularities, 29
Conditionally convergent, 54
Congruent, 171
Connected, 129
locally, 129
simply, 126
Continuous function, 12, 157
Continuous mapping, 157
Converge(s), 156
Convergence, 13, 51, 53, 110, 156
almost everywhere, 110
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dominated, 110

mean, 110

in measure, 110
Convergent sequence, 13

of functions, 76

of sets, 51
Convergent series, 53, 54
Convezx, 130
Convex closure, 130
Convex hull, 130
Coordinate, 4

first, 4

second, 4
Correspondence, one-to-one, 4
Countability, second axiom of, 157
Countable, 21
Countably additive, 84
Cover(s), 21
Covering, open, 21, 155
Curl (of a vector field), 126
Curve, 129

closed, 129

Jordan, 129

de Morgan laws, 91
Decreasing function, 8
Deleted neighborhood, 9

Dense, 16, 128, 157

Dense graph, 105
Derivative, 13, 35

partial, 115
Diameter, 128
Difference of sets, 3
Difference set, 87
Differentiable function, 35
Differentiable, infinitely, 35
Differential, 125

exact, 125

locally exact, 125
Dini’s theorem, 81
Diserete topology, 156
Disk,

closed, 128

minimum closed, 130

open, 129

Distance, 128, 154

between two functions, 44
Distributive law, 7
Divergence of a vector field, 126
Divergent sequence, 13

of sets, 51
Divergent series, 53
Divide(s), 18
Division, 7
Divisor, greatest common, 18
Domain,

of a function, 4

integral, 11

unique factorization, 17
Dominated convergence, 110
Domination of series, 54

Empty set, 4
Equivalence classes, 85

of Cauchy sequences, 17
Equivalence relations, 85
Equivalent, 106
Equivalent metrics, 156, 157
Euclidean plane, 128
Exact differential, 125
Existential quantifier, 4
Extension of a function, 6

Field, 6
Archimedean ordered, 15
complete ordered, 10
non-Archimedean ordered, 15
ordered, 7
solenoidal vector, 126
vector, 126

Finite interval, 8

First category, 90

Frountier, 20

Frontier point, 20

Fourier series, 70

Fourier transform, 72

Function, 4
algebraic, 25
bracket, 21
characteristic, 10
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constant, 4

continuous, 12, 157
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differentiable, 35
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greatest integer, 21
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infinitely differentiable, 35

Lebesgue-integrable, 72
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linear, 33

locally bounded, 22

locally bounded at a point, 22

lower semicontinuous, 22
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nonnegative extended-real-valued,
83

on-into, 4, 5

on-onto, 4, 5

one-to-one, 4

polynomial, 15

rational, 16

real-valued, 10

of a real variable, 10

restriction of a, 6

Riemann-integrable, 42

semicontinuous, 22

signum, 10

space, 172

strictly decreasing, 8

strictly increasing, 8

strictly monotonic, 8

transcendental, 25

uniformly eontinuous, 12

upper semicontinuous, 22

Fundamental Theorem of Caleulus,
43
Fundamental Theorem of Induction,

11

Galvin, F., 94, 144

Generated sigma-ring, 83
Generated topology, 156
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Graph,

dense, 105

nonmeasurable, 145
QGreatest common divisor, 18
Greatest integer function, 21
Group, 7

Abelian, 7

commutative, 7

topological, 94

Half-closed interval, 9
Half-open interval, 9
Hamel basis, 33
Harmonic series, 49
Hausdorff, F., 171
Hausdorff space, 155
Have area, 147
Heine-Borel theorem, 21
Hilbert, D., 34, 133
Hilbert space, 165
Homeomorphic, 95
Homeomorphism, 95, 157
Homogeneous, 121
locally, 121
Hull, convex, 130

Identity,
additive, 7
multiplicative, 7
Incomplete metric space, 157
Increasing function, 8
Index set, 155
Induced topology, 155
Induction, Fundamental Theorem
of, 11
Induetive set, 10
Inequality,
Bessel’s, 70
triangle, 8
Infimum, 10
Infinite interval, 9
Infinite limit(s), 22
Infinite matrix, 64
Inherited topology, 1565
Inner area, 147
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Inner measure, 84
Inner product, 165
Inscribed polygon, 129
Integer, 11
Integral domain, 11
Interior, 20
Interior point, 20
Intermediate value property, 13
Intersection, 3
Interval,
bounded, 8
closed, 9
finite, 8
half-closed, 9
half-open, 9
infinite, 9
open, 9
open and closed, 9
unbounded, 9
Inverse,
additive, 7
multiplicative, 7
Isomorphic, 10

Join, 174
Jordan curve theorem, 129
Jordan region, 129

Kakeya, S., 153
Kolmogorov, A. N., 34, 74

Lattice, 174
Law,
associative, 6, 7
commutative, 6, 7
distributive, 7
of the mean, 19, 39
Laws, de Morgan, 91
Least upper bound, 9
Lebesgue, H., 31
Lebesgue-integrable, 72
Lebesgue-measurable, 173
Lebesgue-Stieltjes integral, 109
Length, 129

Limit, 12, 156
inferior, 21
of sets, 51
point, 12, 155
of a sequence, 48
of a sequence, 13, 156
superior, 21
of sets, 51
Limits,
infinite, 22
subsequential, 48
Linear function, 33
Linear space, 157, 172
Locally bounded, 22
at a point, 22
Locally compact, 155
Locally exact differential, 125
Locally homogeneous, 121
Lower bound, 10
Lower semicontinuous function, 22
Luxembourg, W. A. J., 105

M-test, 22
Maclaurin series, 53
Mapping,
closed, 130
continuous, 157
open, 130
Matrix,
infinite, 64
Toeplitz, 65
Maximality principle, 85
Mazurkiewicz, S., 144
Mean convergence, 110
Measure, 83
absolutely continuous, 84
inner, 84
outer, 84
Measure space, 84
Measure zero, 42
Meet, 174
Member of a set, 3
Mertens’s theorem, 61

Index

Metrie, 154
Metrie space, 154
complete, 157
incomplete, 157
Metrics, equivalent, 156, 157
Metrizable, 156
Minimum closed disk, 130
Monotonic function, 8
Moore-Osgood theorem, 119
Motion, rigid, 171
Multiplication, 6, 11, 13
Multiplicative identity, 7
Multiplicative inverse, 7

Natural number, 10
Negative, 7, 8
Neighborhood, 9, 156

deleted, 9

spherical, 156

system, 155
Non-Archimedean, 15
Nonempty set, 4
Non-Jordan region, 130
Nonmeasurable function, 109
Nonmeasurable graph, 145
Nonmeasurable set, 92
Nonnegative extended-real-valued

function, 83

Nonnegative series, 53
Norm, 158
Normed vector space, 158
Nowhere dense set, 85
Null-set, 84
Number,

cardinal, 142

complex, 13

natural, 10

ordinal, 143

real, 10

One, 7

One-to-one correspondence, 4
One-to-one function, 4

Open ball, 156

Open and closed interval, 9
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Open covering, 21, 155
Open disk, 129
Open interval, 9
Open mapping, 130, 157
Open set, 20, 155
Operation, 6
binary, 6
from a set to a set, 6
on a set to a set, 6
unary, 175 -
Ordered field, 7
Cauchy-complete, 17
Ordinal number, 143
Osgood, W. F., 138
Moore-Osgood theorem, 119
Outer area, 147
Outer measure, 84

Parametrization, 129
Parametrization functions, 129
Partial derivative(s), 115
Pastor, J. R., 98
Peano, G., 133
Perfect set, 85
Periodie, 21

with period p, 21
Plane, 128

circuit, 132

Eueclidean, 128

punctured, 126
Point,

frontier, 20

interior, 20

limit, 12, 155
Point(s), 3

of condensation, 94
Polygon, inscribed, 129
Polynomial function, 15
Positive, 8
Positive series, 53
Potential, vector, 126
Power series, 68
Prime, 17
Primitive, 42
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Product,

Cartesian, 4

inner, 165
Punctured plane, 126

Quantifier,
existential, 4
universal, 12

Radius, 156
Radon-Nikodym theorem, 112
Range of a function, 4
Ratio test, 59
Rational function, 15
Rational number, 11
Real number, 10
Real number system, 10
Real-valued function, 10
Reciprocal, 7
Rectifiable, 129
Region, 115, 129

Jordan, 129

non-Jordan, 130
Relation, 4
Restriction of a function, 6
Riemann derangement theorem, 55
Riemann-integrable, 42
Riemann-integral, 42
Riemann-Stieltjes integral, 42
Rigid motion, 171
Ring, 11
Robinson, R., 171
Rolle’s theorem, 19
Root test, 60

Schwarz, H. A., 152
Second axiom of countability, 157
Second category, 90
Semicontinuous function, 22
Separable, 157
Separated, 129
Sequence, 13

Cauchy, 13

convergent, 13

divergent, 13
Series,
Cauchy product, 61
conditionally convergent, 54
convergent, 53
divergent, 53
domination of, 54
Fourier, 70
harmonic, 54
Maclaurin, 53
nonnegative, 53
positive, 53
power, 68
sum of, 53
trigonometric, 70
Set, 3
closed, 20, 155
compact, 21, 155
countable, 21
empty, 4
index, 155
inductive, 10
member of a, 3
nonempty, 4
nowhere dense, 85
open, 20, 155
“thin” connected, 131
totally disconnected, 129
Sets closed under translations, 83
Sierpinski, W., 55, 75, 142, 159
Sigma-ring, 83
generated, 83
Signum function, 10
Simple arc, 129
Simple closed curve, 129
Simply connected, 126
Space,
Banach, 158
complete metric, 157
function, 172
Hausdorff, 155
Hilbert, 165
incomplete metrie, 157
linear, 157, 172
locally compact, 155
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metrie, 154

normed vector, 158

topological, 154

vector, 157, 172
Space-filling arc, 133
Spherical neighborhood, 156
Stokes’s theorem, 127
Stone-Weierstrass theorem, 74
Strictly decreasing, 8
Strictly increasing, 8
Strictly monotonic, §
Strong topology, 162
Stronger topology, 156
Subsequential limit, 48
Subset, 3
Subtraction, 7
Sum of a convergent series, 53
Supremum, 9
Surface area, 150, 152

Tarski, A., 171
Term of a sequence, 13
Ternary expansions, 86
Test,

ratio, 59

root, 60
Thin, 131
Toeplitz, O., 65
Toeplitz matrix, 64
Topological group, 94
Topological mapping, 98, 157
Topological space, 154
Topology, 155

discrete, 156

generated, 156

induced, 155

inherited, 155

strong, 162

stronger, 156

trivial, 156

weak, 162

weaker, 156
Totally disconnected, 129
Transcendental function, 25
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Transform, 64

Fourier, 72
Translate, 83
Translation-invariant, 84
Translation modulo 1, 92
Triangle inequality, 8
Trigonometric series, 70
Trivial topology, 156

Unary operation, 175

Unbounded interval, 9

Uniform convergence, 76
Uniformly continuous function, 12
Union, 3

Unique factorization domain, 17
Unit, 17

Unity, 7

Universal quantifier, 12

Universe of discourse, 4

Upper bound, 9

Upper semicontinuous function, 22
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Value,

absolute, 8

Cauchy principal, 45
Values of a function, 4
van der Waerden, B. L., 39
Vector field, 126
Vector potential, 126
Vector space, 157, 172

normed, 158
Vector(s), 158
von Neumann, J., 171

Weak topology, 162
Weaker topology, 156
Weierstrass, K. W. T., 39
M-test, 22
Stone-Weierstrass theorem, 74
Well-ordering theorem, 85

Zaanen, A. C., 105
Zero, 7
Zorn’s lemma, 85

Errata

Example 30 on page 105 should be elaborated as follows.

30. A continuous strictly monotonic funtion with a vanishing
derivative almost everywhere

A function with these properties is given by A. C. Zaanen and W. A.
Luxemburg [3]. In mildly modified form it appeared in the original edition
of this book. In the Russian translation of the original there is offered a
footnote to the effect that the example cited is in error. To put the matter
(hopefully) to rest, the following discussion attempts to validate the original
construction.

At root is the Cantor function ¢ of Example 15. For any closed interval
[a,b], its Cantor function, denoted ¥ for simplicity, is created by using the
process employed for ¢, but applied in the closed interval [a, B].

For each n and m in N, the interval [0,1] may be divided into 27
“dyadic” closed subintervals of the form [m2~=, (m+1)27"],0 < m < 2°—1,
generically denoted [ag, br]. 1< k< 2?. HO<z <y < 1, then for some m
and n as described, [az.bg] C (z,y). Hence

. T — dag _
¢<bk—~ak) =0

and, since y > a, ¢ (g‘ﬁ%) >0{=4% (bxk__‘;’;)) Since 4 is a monotone
function, for any p in A,

S x—ap y—a
v (bp - ap) =¥ (bp *ap}
and it follows that f(z) < f(y). The countable set &£ consisting of all g

and by is.a null set. On the set 7 % {10. 1]\ £} (a union of open intervals)
the function f is locally constant, whence f! exists and is zero.

The argument offered in the footnote of the translation is invalid be-
cause the function f is continuous, whence the two superior limits

limsup f(x) and limsup f(z)

T340 z—+1-0

are equal. 195



A CATALOG OF SELECTED
DOVER BOOKS

IN SCIENCE AND MATHEMATICS




CATALOG OF DOVER BOOKS

Astronomy

BURNHAM’S CELESTIAL HANDBOOXK, Robert Burnham, jr. Thorough guide
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by constel-
lation: Andromeda to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and Pavo to
Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp. 6% x 9%,
Vol. I: 0-486-23567-X

Vol. II: 0-486-23568-8

Vol. I1I: 0-486-23673-0

EXPLORING THE MOON THROUGH BINOCULARS AND SMALL TELE-
SCOPES, Ernest H. Cherrington, Jr. Informative, profusely illustrated guide to locat-
ing and identifying craters, rills, seas, mountains, other lunar features. Newly revised
and updated with special section of new photos. Over 100 photos and diagrams.
240pp. 8% x 11. 0-486-24491-1

THE EXTRATERRESTRIAL LIFE DEBATE, 1750-1900, Michael J. Crowe. First
detailed, scholarly study in English of the many ideas that developed from 1750 to
1900 regarding the existence of intelligent extraterrestrial life. Examines ideas of
Kant, Herschel, Voltaire, Percival Lowell, many other scientists and thinkers. 16 illus-
trations. 704pp. 5% x 8%. 0-486-40675-X

THEORIES OF THE WORLD FROM ANTIQUITY TO THE COPERNICAN
REVOLUTION, Michael ]. Crowe. Newly revised edition of an accessible, enlight-
ening book recreates the change from an earth-centered to a sun-centered concep-
tion of the solar system. 242pp. 5% x 8%. 0-486-41444-2

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-balanced, carefully reasoned

study covers such topics as Ptolemaic theory, work of Copernicus, Kepler, Newton,

Eddington’s work on stars, much more. Illustrated. References. 521pp. 5% x 8%.
0-486-65994-1

A COMPLETE MANUAL OF AMATEUR ASTRONOMY: TOOLS AND
TECHNIQUES FOR ASTRONOMICAL OBSERVATIONS, P. Clay Sherrod
with Thomas L. Koed. Concise, highly readable book discusses: selecting, setting up
and maintaining a telescope; amateur studies of the sun; lunar topography and occul-
tations; observations of Mars, Jupiter, Saturn, the minor planets and the stars; an
introduction to photoelectric photometry; more. 1981 ed. 124 figures. 25 halftones.
37 tables. 335pp. 6% x 9% 0-486-40675-X

AMATEUR ASTRONOMER’S HANDBOOXK, J. B. Sidgwick. Timeless, compre-
hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives, microm-
eters, spectroscopes, more. 189 illustrations. 576pp. 5% x 8'%. (Available in U.S. only.)

0-486-24034-7

STARS AND RELATIVITY, Ya. B. Zel'dovich and I. D. Novikov. Vol. 1 of Relativistic
Astrophysics by famed Russian scientists. General relativity, properties of matter under
astrophysical conditions, stars, and stellar systems. Deep physical insights, clear pre-
sentation. 1971 edition. References. 544pp. 5% x 8%. 0-486-69424-0
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Chemistry

THE SCEPTIC{‘XL CHYI’\’/IIST: THE CLASSIC 1661 TEXT, Robert Boyle. Boyle

defines ?he term elem.entl, asserting that all natural phenomena can be explained by

the motion and organization of primary particles. 1911 ed. viii+232pp. 5% x 8%.
0-486-42825-7

RADIOACT.IVE SUBSTANCES, Marie Curie. Here is the celebrated scientist’s
doctoral .thes1s, the prelude to her receipt of the 1903 Nobel Prize. Curie discusses
estal:)hshmg atomic character of radioactivity found in compounds of uranium and
thorium; ‘extraction from pitchblende of polonium and radium; isolation of pure radi-
um .chlonde; determination of atomic weight of radium; plus electric, photographic
luminous, heat, color effects of radioactivity. ii+94pp. 5% x 8%. ,0—486-42550—9’

CHEMIQAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions
much more. Text explains scientific principles and stresses safety precautions,
128pp. 5% x 8%. 0-486-67628—5

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron J. Ihde. Authorita-
tive history .of chemistry from ancient Greek theory to 20th-century innovation.
C.ov‘ers major chemists and their discoveries. 209 illustrations. 14 tables
Bibliographies. Indices. Appendices. 851pp. 5% x 8%. 0-486—64235—6

CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks.
Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous solution
carbonyl- and acyl-group reactions, practical kinetics, more. 864pp. 5% x 8%. ’

0-486-65460-5

ELEMENTS OE CHEMISTRY, Antoine Lavoisier. Monumental classic by founder
of modern chemistry in remarkable reprint of rare 1790 Kerr translation. A must for
every student of chemistry or the history of science. 539pp. 5% x 8%. 0-486-64624-6

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester.
Evolution of ideas, not individual biography. Concentrates on formulation of a coher-
ent set of chemical laws. 260pp. 5% x 8%. 0-486-61053-5

A SHORT' HISTORY OF CHEMISTRY, J. R. Partington. Classic exposition
explores origins of chemistry, alchemy, early medical chemistry, nature of atmos-
phere, theory of valency, laws and structure of atomic theory, much more. 428pp
5% x 8%. (Available in U.S. only.) 0-486-65977-1

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-year
text by Nobel laureate. Atomic and molecular structure, quantum mechanics, statis-
tical mechanics, thermodynamics correlated with descriptive chemistry. Pr(;blems.
992pp. 5% x 8. 0-486-65622-5

FROM ALCHEMY TO CHEMISTRY, John Read. Broad, humanistic treatment

focuses on great figures of chemistry and ideas that revolutionized the sci
illustrations. 240pp. 5% x 8%. Y crontone 0-343%1—‘32%?90‘?2
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DE RE METALLICA, Georgius Agricola. The famous Hoover translation of great-
est treatise on technological chemistry, engineering, geology, mining of early mod-
ern times (1556). All 289 original woodcuts. 638pp. 6% x 11. 0-486-60006-8

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach
developed by U.S. Air Force Academy. Designed as a first course. Problems, exer-
cises. Numerous illustrations. 455pp. 5% x 8'%. 0-486-60061-0

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced stu-
dents of ground water hydrology, soil mechanics and physics, drainage and irrigation

engineering and more. 335 illustrations. Exercises, with answers. 784pp. 6% x 9'%.
0-486-65675-6

THEORY OF VISCOELASTICITY (Second Edition), Richard M. Christensen.
Complete consistent description of the linear theory of the viscoelastic behavior of
materials. Problem-solving techniques discussed. 1982 edition. 29 figures.
xiv+364pp. 6% x 9% 0-486-42880-X

MECHANICS, J. P. Den Hartog. A classic introductory text or refresher. Hundreds
of applications and design problems illuminate fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x 8%. 0-486-60754-2

MECHANICAL VIBRATIONS, J. P. Den Hartog. Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations to a variety of
practical industrial engineering problems. Numerous figures. 233 problems, solu-
tions. Appendix. Index. Preface. 436pp. 5% x 84 0-486-64785-4

STRENGTH OF MATERIALS, J. P. Den Hartog. Full, clear treatment of basic
material (tension, torsion, bending, etc.) plus advanced material on engineering
methods, applications. 350 answered problems. 323pp. 5% x 8k%. 0-486-60755-0

A HISTORY OF MECHANICS, René Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8%. 0-486-65632-2

STABILITY THEORY AND ITS APPLICATIONS TO STRUCTURAL
MECHANICS, Clive L. Dym. Self-contained text focuses on Koiter postbuckling
analyses, with mathematical notions of stability of motion. Basing minimum energy
principles for static stability upon dynamic concepts of stability of motion, it devel-
ops asymptotic buckling and postbuckling analyses from potential energy considera-
tions, with applications to columns, plates, and arches. 1974 ed. 208pp. 5% x 8%.
0-486-42541-X

METAL FATIGUE, N. E. Frost, K. J. Marsh, and L. P. Pook. Definitive, clearly writ-
ten, and well-illustrated volume addresses all aspects of the subject, from the histori-
cal development of understanding metal fatigue to vital concepts of the cyclic stress
that causes a crack to grow. Includes 7 appendixes. 544pp. 5% x 8%. 0-486-40927-9
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ROCKETS, Ro})ert Goddard. Two of the most significant publications in the history
Sf Foc}(etry and jet propulsion: “A Method of Reaching Extreme Altitudes” (1919) and
Liquid Propellant Rocket Development” (1936). 128pp. 5% x 8%. 0-486-42537-1

STATISTICAL MECHANICS: PRINCIPLES AND APPLICATIONS, Terrell L.

HIH: Standard text covers fundamentals of statistical mechanics, applications to fluc-

tuation theory, imperfect gases, distribution functions, more. 448pp. 5% x 84.
0-486-65390-0

ENGINEERING AND TECHNOLOGY 1650-1750: ILLUSTRATIONS AND
TEXTS FROM ORIGINAL SOURCES, Martin Jensen. Highly readable text with
more than 200 contemporary drawings and detailed engravings of engineering pro-
jects dealing with surveying, leveling, materials, hand tools, lifting equipment, trans-
port and erection, piling, bailing, water supply, hydraulic engineering, and more
Among the specific projects outlined-transporting a 50-ton stone to the Louvre erect.
ing an obelisk, building timber locks, and dredging canals. 207pp. 8% x 11%. ’
0-486-42232-1

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lanczos
Graduat.e level coverage of calculus of variations, equations of motion, relativistic'
mechanlcs, more. First inexpensive paperbound edition of classic treatise. Index
Bibliography. 418pp. 5% x 84. 0-486-65067.7

PROTECTION OF ELECTRONIC CIRCUITS FROM OVERVOILTAGES
Ronald B. Standler. Five-part treatment presents practical rules and strategies for cir-
cuits designed to protect electronic systems from damage by transient overvoltages
1989 ed. xxiv-+434pp. 6% x Ok%. 0-486.42550.5

ROTARY WING AERODYNAMICS, W. Z. Stepniewski. Clear, concise text cov-

ers aerodynam_lc phenomena of the rotor and offers guidelines for helicopter perfor-

mance evaluation. Originally prepared for NASA. 537 figures. 640pp. 6% x 9%.
0-486-64647-5

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-
prehensive, classic introduction to space-flight engineering for advanced undergrad-
uate and graduate students. Includes vector algebra, kinematics, transformation of
coordinates. Bibliography. Index. 352pp. 5% x 8. 0-486-65113-4

H_ISTQRY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excellent
hlStO'rlf:al survey of the strength of materials with many references to the theories of
elasticity and structure. 245 figures. 452pp. 5% x 84. 0-486-61187-6

ANALYTICAL FRACTURE MECHANICS, David J- Unger. Self-contained text
suppler}le.nts standard fracture mechanics texts by focusing on analytical methods for
determining crack-tip stress and strain fields. 336pp. 6% x 9% 0-486-41737-9

STATISTICAL MECHANICS OF ELASTICITY, J. H. Weiner. Advanced, self-
contained treatment illustrates general principles and elastic behavior of solids: Part
1, based on classical mechanics, studies thermoelastic behavior of crystalline -and
polymeric solids. Part 2, based on quantum mechanics, focuses on interatomic force
laws, behavior of solids, and thermally activated processes. For students of physics
and chemistry and for polymer physicists. 1983 ed. 96 figures. 496pp: 5% x 8%,
0-486-42260-7
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FUNCTIONAL ANALYSIS (Second Corrected Edition), George Bachman and
Lawrence Narici. Excellent treatment of subject geared toward students with back-
ground in linear algebra, advanced calculus, physics and engineering. Text covers
introduction to inner-product spaces, normed, metric spaces, and topological spaces;
complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and
many other related subjects. 1966 ed. 544pp. 6% x 9% 0-486-40251-7

ASYMPTOTIC EXPANSIONS OF INTEGRALS, Norman Bleistein & Richard A.
Handelsman. Best introduction to important field with applications in a variety of sci-
entific disciplines. New preface. Problems. Diagrams. Tables. Bibliography. Index.
448pp. 5% x 8%, 0-486-65082-0

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A. L Borisenko
and 1. E. Tarapov. Concise introduction. Worked-out problems, solutions, exercises.
257pp. 5% x 8k 0-486-63833-2

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x 8%. 0-486-65942-9

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8%. 0-486-65973-9

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of recur-
rent functions. New preface and appendix. 288pp. 5% x 8%. 0-486-61471-9

ASYMPTOTIC METHODS IN ANALYSIS, N. G. de Bruijn. An inexpensive, com-
prehensive guide to asymptotic methods—the pioneering work that teaches by
explaining worked examples in detail. Index. 224pp. 5% x 8% 0-486-64221-6

APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of
fundamentals of analytic function theory—plus lucid exposition of five important
applications: Potential Theory; Ordinary Differential Equations;.Fourier Transforms;
Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at chapter ends.
512pp. 5% x 8%. 0-486-64670-X

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8%. 0-486-65191-6

RIEMANN’S ZETA FUNCTION, H. M. Edwards. Superb, high-level study of
landmark 1859 publication entitled “On the Number of Primes Less Than a Given
Magnitude” traces developments in mathematical theory that it inspired. xiv+315pp.
5% x 8. 0-486-41740-9
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CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and pro-
motes understanding of specialized books, research papers. Suitable for advanced
undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 8%.
0-486-64856-7

COMPLEX VARIABLES, Francis J. Flanigan. Unusual approach, delaying complex
algebra till harmonic functions have been analyzed from real variable viewpoint.
Includes problems with answers. 364pp. 5% x 8%. 0-486-61388-7

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.

Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approximations, more. References. 279pp. 5% x 8%.
0-486-65499-0

COUNTEREXAMPLES IN ANALYSIS, Bernard R. Gelbaum and John M. H.
Olmsted. These counterexamples deal mostly with the part of analysis known as
“real variables.” The first half covers the real number system, and the second half
encompasses higher dimensions. 1962 edition. xxiv+198pp. 5% x 8%. 0-486-42875-3

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the
work of Poincaré, R. Thom, other mathematicians. Also important applications to
problems in mathematics, physics, chemistry and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii + 666pp. 6% x 9%.
0-486-67539-4

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology, psy-
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8.

0-486-65084-7

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms, poly-
nomial approximation, Fourier approximation, exponential approximation, other
topics. Revised and enlarged 2nd edition. 721pp. 5% x 8%. 0-486-65241-6

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F. B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new problems.
669pp. 5% x 8%. 0-486-65363-3

THREE PEARLS OF NUMBER THEORY, A. Y. Khinchin. Three compelling
puzzles require proof of a basic law governing the world of numbers. Challenges con-
cern van der Waerden’s theorem, the Landan-Schnirelmann hypothesis and Mann’s
theorem, and a solution to Waring’s problem. Solutions included. 64pp. 5% x 8'.
0-486-40026-3

THE PHILOSOPHY OF MATHEMATICS: AN INTRODUCTORY ESSAY,
Stephan Kérner. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning
propositions and theories of applied and pure mathematics. Introduction. Two
appendices. Index. 198pp. 5% x 8%. 0-486-25048-2
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INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S. V. Fomin. Translated
by Richard A. Silverman. Self-contained, evenly paced introduction to real and func-
tional analysis. Some 350 problems. 403pp. 5% x 8%. 0-486-61226-0

APPLIED ANALYSIS, Cornelius Lanczos. Classic work on analysis and design of
finite processes for approximating solution of analytical problems. Algebraic equa-

tions, matrices, harmonic analysis, quadrature methods, much more. 559pp. 5% x 8%.
0-486-65656-X

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. Superb
self-contained text covers “abstract algebra”: sets and numbers, theory of groups, the-

ory of rings, much more. Numerous well-chosen examples, exercises. 247pp. 5% x 8%.
0-486-65940-2

QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V. V. Nemytskii
and V.V. Stepanov. Classic graduate-level text by two prominent Soviet mathemati-
cians covers classical differential equations as well as topological dynamics and
ergodic theory. Bibliographies. 523pp. 5% x 8%. 0-486-65954-2

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, nonsingu-
larity and inverses in connection with the development of canonical matrices under
the relation of equivalence, and without the intervention of determinants. Includes
exercises. 237pp. 5% x 8%. 0-486-66810-X

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, accessi-
ble coverage of set theory, real number system, metric spaces, continuous functions,
Riemann integration, multiple integrals, more. Wide range of problems. Under-
graduate level. Bibliography. 254pp. 5% x 84. 0-486-65038-3

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; covers seven types of equations. “. . . a welcome contribution
to the existing literature....”—Math Reviews. 490pp. 5% x 8%. 0-486-64232-1

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip
Barker. Basic textbook covers theory of matrices and its applications to systems of lin-
ear equations and related topics such as determinants, eigenvalues and differential
equations. Numerous exercises. 432pp. 5% x 8%. 0-486-66014-1

LINEAR ALGEBRA, Georgi E. Shilov. Determinants, linear spaces, matrix alge-
bras, similar topics. For advanced undergraduates, graduates. Silverman translation.
387pp. 5% x 8. 0-486-63518-X

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers funda-
mental concepts, real number system, point sets, functions of a real variable, Fourier
series, much more. Over 500 exercises. 352pp. 5% x 8. 0-486-65385-4

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to unified theory
of mathematical concepts. Set theory and logic seen as tools for conceptual under-
standing of real number system. 496pp. 5% x 8. 0-486-63829-4
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TENSOR CALCULUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 8%. 0-486-63612-7

ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8%. 0-486-64940-7

INTEGRAL EQUATIONS, F. G. Tricomi. Authoritative, well-written treatment of
extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8%. 0-486-64828-1

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition to the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 5% x 8%. 0-486-63317-9

INTRODUCTION TO MATHEMATICAL THINKING, Friedrich Waismann.
Examinations of arithmetic, geometry, and theory of integers; rational and natural
numbers; complete induction; limit and point of accumulation; remarkable curves;
complex and hypercomplex numbers, more. 1959 ed. 27 figures. xii+260pp. 5% x 8%.

0-486-63317-9

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted logi-
cian’s lucid treatment of historical developments, set theory, model theory, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 edi-
tion. ix + 283pp. 5% x 8% 0-486-67632-3

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8%. 0-486-63069-2

THE CONTINUUM: A CRITICAL EXAMINATION OF THE FOUNDATION

OF ANALYSIS, Hermann Weyl. Classic of 20th-century foundational research deals

with the conceptual problem posed by the continuum. 156pp. 5% x 8%.
0-486-67982-9

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A. M. Yaglom and I. M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 5% x 8%. Two-vol. set.

Vol. I: 0-486-65536-9  Vol. IL: 0-486-65537-7

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E. C. Zachmanoglou and Dale W. Thoe. Essentials of partial dif-
ferential equations applied to common problems in engineering and the physical sci-
ences. Problems and answers. 416pp. 5% x 8%. 0-486-65251-3

THE THEORY OF GROUPS, Hans ]. Zassenhaus. Well-written graduate-level text
acquaints reader with group-theoretic methods and demonstrates their usefulness in
mathematics. Axioms, the calculus of complexes, homomorphic mapping, f-group
theory, more. 276pp. 5% x 8%. 0-486-40922-8



CATALOG OF DOVER BOOKS

Math-Decision Theory, Statistics, Probability

ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E.
Moses. Clear introduction to statistics and statistical theory covers data process-
ing, probability and random variables, testing hypotheses, much more. Exercises.
364pp. 5% x 8%. 0-486-65218-1

i i ical collection
STATISTICS MANUAL, Edwin L. Crow et al. Comprehensive, practical '
of classical and modern methods prepared by U.S. Naval Ordnance Test Station.
Stress on use. Basics of statistics assumed. 288pp. 5% x 8%. 0-486-60599-X

SOME THEORY OF SAMPLING, William Edwards Demmg: Arllalys.is of tbe
problems, theory and design of sampling techniques for social scientists, mdustna}
managers and others who find statistics important at work. 61 tables. 90 figures. xvii
+602pp. 5% x 8. 0-486-64684-X

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfmm,
Paul A. Samuelson and Robert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modern welfare ecoé
nomics, Leontief input-output, more. 525pp. 5% x 8%. 0-486-65491-,

PROBABILITY: AN INTRODUCTION, Samuel Goldberg. Ex.celler'lt basic text
covers set theory, probability theory for finite sample spaces, binomia] theorem,
much more. 360 problems. Bibliographies. 322pp. 5% x 8%. 0-486-65252-1

GAMES AND DECISIONS: INTRODUCTION AND CRITICAL SURVEY,
R. Duncan Luce and Howard Raiffa. Superb nontechnical introduction to game the-
ory, primarily applied to social sciences. Utility theory, zero-sum games, n-person
gazlnez, decisi}(,)n—making, much more. Bibliography. 509pp. 5% x 8%. 0-486-65943-7

INTRODUCTION TO THE THEORY OF GAMES, J. C. C. McKinsey. This com-
prehensive overview of the mathematical theory of games il'lustratt.es apph.c.atlons to
situations involving conflicts of interest, including economic, social, political, and
military contexts. Appropriate for advanced undergraduate and graduate courses;
advanced calculus a prerequisite. 1952 ed. x+372pp. 5% x 8%. 0-486-42811-7

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate elementary
and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8%. 65355-2

PROBABILITY THEORY: A CONCISE COURSE, Y. A. Rozanov. Highly read-
able, self-contained introduction covers combination of events, dependent events,
Bernoulli trials, etc. 148pp. 5% x 8. 0-486-63544-9

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulatiog of variables, uses of
statistical control to achieve quality conirol in industry, agriculture, other areas.
192pp. 5% x 8%. 0-486-65232-7
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Math-Geometry and Topology

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff, Elegant, intuitive
approach to topology from set-theoretic topology to Betti groups; how concepts of
topology are useful in math and physics. 25 figures. 57pp. 5% x 8%, 0-486-60747-X

COMBINATORIAL TOPOLOGY, P. S. Alexandrov. Clearly written, well-orga-
nized, three-part text begins by dealing with certain classic problems without using
the formal techniques of homology theory and advances to the central concept, the
Betti groups. Numerous detailed examples. 654pp. 5% x 8% 0-486-40179-0

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of one
of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map
coloring, problem of the Koenigsberg bridges, much more, described with clarity and
wit. 43 figures. 210pp. 5% x 8%. 0-486-25933-1

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’s own diagrams, togeth-
er with definitive Smith-Latham translation. 244pp. 5% x 84. 0-486-60068-8

EUCLIDEAN GEOMETRY AND TRANSFORMATIONS, Clayton W. Dodge.
This introduction to Euclidean geometry emphasizes transformations, particularly
isometries and similarities. Suitable for undergraduate courses, it includes numerous
examples, many with detailed answers. 1972 ed. viii+296pp. 6% x 9%. 0-486-43476-1

PRACTICAL CONIC SECTIONS: THE GEOMETRIC PROPERTIES OF
ELLIPSES, PARABOLAS AND HYPERBOLAS, J. W. Downs. This text shows how
to create ellipses, parabolas, and hyperbolas. It also presents historical background on
their ancient origins and describes the reflective properties and roles of curves in
design applications. 1993 ed. 98 figures. xii+100pp. 6'% x 9%. 0-486-42876-1

THE THIRTEEN BOOKS OF EUCLID’S ELEMENTS, translated with introduc-
tion and commentary by Sir Thomas L. Heath. Definitive edition. Textual and lin-
guistic notes, mathematical analysis. 2,500 years of critical commentary. Unabridged.
1,414pp. 5% x 8%. Three-vol. set.

Vol. I: 0-486-60088-2  Vol. IT: 0-486-60089-0  Vol. III: 0-486-60090-4

SPACE AND GEOMETRY: IN THE LIGHT OF PHYSIOLOGICAL,
PSYCHOLOGICAL AND PHYSICAL IN QUIRY, Ernst Mach. Three essays by
an eminent philosopher and scientist explore the nature, origin, and development of
our concepts of space, with a distinctness and precision suitable for undergraduate
students and other readers. 1906 ed. vi+148pp. 5% x 8%. 0-486-43909-7

GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdtfeger. Illuminating,
widely praised book on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 5% x 8% 0-486-63830-8

DIFFERENTIAL GEOMETRY, Heinrich W, Guggenheimer. Local differential geom-
efry as an application of advanced calculus and linear algebra. Curvature, transforma-
tion groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8%. 0-486-63433-7
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History of Math

THE WORKS OF ARCHIMEDES, Archimedes (T. L. Heath, ed:). quics include
the famous problems of the ratio of the areas of a cylinder a,I.ld an mscr}bed sphere;
the measurement of a circle; the properties of conoids, spheroids, and spirals; and the

N . . 3
quadrature of the parabola. Informative introduction. clxxxv1+326pp.o i,ég)éj é() "

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. unse
Ball. One of clearest, most authoritative surveys from the Egyptlans and Phoem.(:l.ans
through 19th-century figures such as Grassman, Galois, Riemann. Fourth edition.
522pp. 5% x 8%. 0-486-20630-0

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-
MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of Newton,
Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8%. 0-486-60509-4

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas N. H.
Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpmmngs of n}Ofigrn
arithr’netic, algebra, geometry and number systems derived from ancient civiliza-
tions. 320pp. 5% x 8%. 0-486-25563-8

A HISTORY OF MATHEMATICAL NOTATIONS, Florian Cajor‘i. .This classic
study notes the first appearance of a mathematical §ymbol and its origin, the com-
petition it encountered, its spread among writers in d{ffferent countries, its rise to pop-
ularity, its eventual decline or ultimate survival. Original 1929 two-volume ed1t1602
presented here in one volume. xxviii+820pp. 5% x 8'%. 0-486-67766-

GAMES, GODS & GAMBLING: A HISTORY OF PROBABILITY AND
STATISTICAL IDEAS, F. N. David. Episodes from the lives of Galileo, Fern.lat,
Pascal, and others illustrate this fascinating account of the roots of mathematics.
Features thought-provoking references to classics, archaeology, biography, poetry.
1962 edition. 304pp. 5% x 8%. (Available in U.S. only.) 0-486-40023-9

OF MEN AND NUMBERS: THE STORY OF THE GREAT
MATHEMATICIANS, Jane Muir. Fascinating accounts of the lives and accom-
plishments of history’s greatest mathematical minds—Pythagpras, Desce.u*t(.es, Euler,
Pascal, Cantor, many more. Anecdotal, illuminating. 30 diagrams. Bibliography.
256pp. 5% x 8% 0-486-28973-7

HISTORY OF MATHEMATICS, David E. Smith. Nontechpica.l survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,

i try, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
;Zgg%c;j.n%wg—vcol. set. & Vol. I: 0-486-20429-4 Vol. I1: 0-486-20430-8

A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief his-
tory of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8'%. 0-486-60255-9
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Physics

OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J. H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum optical res-
onance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x 8%. 0-486-65533-4

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of qualitative and imaginative concepts, followed
by specific applications worked out in mathematical detajl, Preface. Index. 655pp.
5% x 8%. 0-486-65969-0

ATOMIC PHYSICS (8th EDITION), Max Born. Nobel laureate’s lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 8%, 0-486-65984-4

A SOPHISTICATE’S PRIMER OF RELATIVITY, P. W. Bridgman. Geared
toward readers already acquainted with special relativity, this book transcends the
view of theory as a working tool to answer natural questions: What is a frame of ref-
erence? What is a “law of nature”? What is the role of the “observer”? Extensive
treatment, written in terms accessible to those without a scientific background. 1983
ed. xlviii+172pp. 5% x 8%. 0-486-42549-5

AN INTRODUCTION TO HAMILTONIAN OPT ICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv + 360pp. 5% x 8%. 0-486-67597-1

PRIMER OF QUANTUM MECHANICS, Marvin Chester. Introductory text
examines the classical quantum bead on a track: its state and representations; opera-
tor eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and
bead in a spherical shell. Other topics include spin, matrices, and the structure of
quantum mechanics; the simplest atom; indistinguishable particles; and stationary-
state perturbation theory. 1992 ed. xiv+314pp. 6% x 9%. 0-486-42878-8

LECTURES ON QUANTUM MECHANICS, Paul A. M. Dirac. Four concise, bril-
liant lectures on mathematical methods in quantum mechanics from Nobel Prize-
winning quantum pioneer build on idea of visualizing quantum theory through the
use of classical mechanics. 96pp. 5% x 8%. 0-486-41713-1

THIRTY YEARS THAT SHOOK PHYSICS: THE STORY OF QUANTUM
THEORY, George Gamow. Lucid, accessible introduction to influential theory of
energy and matier. Careful explanations of Dirac’s anti-particles, Bohr’s model of the
atom, much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 0-486-24895-X

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: THE
PHYSICS OF THE CHEMICAL BOND, Walter A. Harrison. Innovative text
offers basic understanding of the electronic structure of covalent and ionic solids,
simple metals, transition metals and their compounds. Problems. 1980 edition.
582pp. 6% x 9U. 0-486-66021-4
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HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8. 0-486-64071-X

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%. 0-486-60304-0

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation, more.
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8%.  0-486-64926-1

GRAVITY, George Gamow. Distinguished physicist and teacher takes reader-
friendly look at three scientists whose work unlocked many of the mysteries behind
the laws of physics: Galileo, Newton, and Einstein. Most of the book focuses on
Newton’s ideas, with a concluding chapter on post-Einsteinian speculations concern-
ing the relationship between gravity and other physical phenomena. 160pp. 5% x 8%.

0-486-42563-0

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg.
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8%. 0-486-60113-7

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
best introductions;. especially for specialist in other fields. Treatment is physical
rather than mathematical. 80 illustrations. 257pp. 5% x 8%. 0-486-60115-3

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L.

Hill. Excellent basic text offers wide-ranging coverage of quantum statistical mechan-

ics, systems of interacting molecules, quantum statistics, more. 523pp. 5% x 8%,
0-486-65242-4

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. First paperback edition. xxiii + 885pp.
5% x 8%. 0-486-65227-0

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems,
detailed solutions in coverage of quantum mechanics, wave mechanics, angular
momentum, molecular spectroscopy, more. 280 problems plus 139 supplementary
exercises. 430pp. 6% x 9%. 0-486-65236-X

THEORETICAL SOLID STATE PHYSICS, Vol. 1: Perfect Lattices in Equilibrium;
Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H. March.
Monumental reference work covers fundamental theory of equilibrium properties of
perfect crystalline solids, non-equilibrium properties, defects and disordered systems.
Appendices. Problems. Preface. Diagrams. Index. Bibliography. Total of 1,301pp. 5%
x 8%. Two volumes. Vol. I: 0-486-65015-4 Vol. II: 0-486-65016-2

WHAT IS RELATIVITY? L. D. Landau and G. B. Rumer. Written by a Nobel Prize
physicist and his distinguished colleague, this compelling book explains the special
theory of relativity to readers with no scientific background, using such familiar
objects as trains, rulers, and clocks. 1960 ed. vi+72pp. 5% x 8%. 0-486-42806-0
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A TREATISE ON ELECTRICITY AND MAG
Important foundation work of modern physics. B
ry of electromagnetism and rigorously derives hi
1,084pp. 5% x 8%. Two-vol. set. Vol. I: 0-4,

NETISM, James Clerk Maxwell.
rings to final form Maxwell’s theo-
S general equations of field theory.
86-60636-8 Vol II: 0-486-60637-6

QUANTUM MECHANICS: PRINCIPLES AND
Graduate student-oriented volume develops subject
ing with review of origins of Schrodinger’s equation
main principles of quantum mechanics and their
cludes with final generalizations covering alternativ
1972 ed. 15 figures. xi+155pp. 5% x 8%.

FORMALISM, Roy McWeeny.
as fundamental discipline, open-
s and vector spaces. Focusing on
mmediate consequences, it con-
€ “languages” or representations.
0-486-42829-X

INTRODUCTION TO QUANTUM MECHANICS Wi icati

Cl}emistry, Linus Pauling & E. Bright Wilson, Jr. Classic unde?g]i;}:iuﬁtglt)i;ctal?;&sobteci
Prize winner applies quantum mechanics to chemical and physical problems
Numerous tables and figures enhance the text. Chapter bibliographies. A, ’ endices.
Index. 468pp. 5% x 8%, D 486648710

METHQDS OF THERMODYNAMICS, Howard Reiss. Outstanding text focuses
on p}}ys1.cal technique of thermodynamics, typical problem areas of understanding,
and significance and use of thermodynamic potential. 1965 edition. 238pp. 5% x 8%.

0-486-69445-3

THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
grafiuate text covers basics of electric and magnetic fields, builds up to electromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.

5% x 8. 0-486-65660-8

GREAT EXPERIMENTS IN PHYSICS: FIRSTHAND ACCOUNTS FROM
GALILEO TO EINSTEIN, Morris H. Shamos (ed.). 25 crucial discoveries: Newton’s
laws of motion, Chadwick’s study of the neutron, Hertz on electromagnetic waves,
more. Original accounts clearly annotated. 370pp. 5% x 84. 0-486-25346-5

EINSTEIN’S LEGACY, Julian Schwinger. A Nobel Laureate relates fascinating
story of Einstein and development of relativity theory in well-illustrated, nontechni-
cal volume. Subjects include meaning of time, paradoxes of space travel, gravity and
its effect on light, non-Euclidean geometry and curving of space-time, impact of radio
astronomy and space-age discoveries, and more. 189 b/w illustrations. xiv+250pp.
8% x 9%. 0-486-41974-6

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermody-
namics, statistical mechanics and kinetic theory in one unified presentation of thermal
physics. Problems with solutions. Bibliography. 532pp. 5% x 8%. 0-486-65401-X
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