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To our colleague and friend Abe Sklar on the occasion of his 65th birthday

Abstract. Let / : [0, 1] —» [0, 1] be continuous. For x,y e [0, 1], the

upper and lower (distance) distribution functions, F*y and Fxy , are defined

for any t > 0 as the lim sup and lim inf as n —► oo of the average number

of times that the distance \f(x) — f'(y)\ between the trajectories of x and y
is less than t during the first n iterations. The spectrum of / is the system

1(f) of lower distribution functions which is characterized by the following

properties: (1) The elements of 1(f) are mutually incomparable; (2) for any

F 6 1(f), there is a perfect set Pf / 0 such that Fm = F and F*v = 1

for any distinct u, v £ Pp ', (3) if S is a scrambled set for /, then there are

F, G in 1(f) and a decomposition S = Sp u Sq (Sg may be empty) such

that Fuv > F if u, v £ Sf and Fuv > G if u, v £ Sq . Our principal

results are: ( 1 ) If / has positive topological entropy, then 1(f) is nonempty

and finite, and any F £ 1(f) is zero on an interval [0, e], where e > 0 (and

hence any Pp is a scrambled set in the sense of Li and Yorke). (2) If / has

zero topological entropy, then 1(f) = {F} where F = 1.

It follows that the spectrum of / provides a measure of the degree of chaos

of f. In addition, a useful numerical measure is the largest of the numbers

Jx(l-F(t))dt, where F £ 1(f).

1. Introduction

Let I denote the unit interval [0,1] and C(7, 7) the space of continuous

functions from 7 into 7, endowed with the uniform metric. For any / in

C(7, 7) and any integer z > 0, let f' denote the z'th iterate of /. For any jc

in 7, the sequence of iterates {f'(x)}^Z0 > where f°(x) = x, is the trajectory
of x ; and the set coj(x) of limit points of this trajectory is the co-limit set of

x. A subset J of I is periodic with period zz if f(J) = J and f'(J) # J
for 1 < i < n ; and Orb(/) = / U /(/) U • • ■ U fn~x(J) is the orbit of J. A
point x in 7 is periodic if the set {x} is periodic. For any x, y in 7 and any

i > 0, let Sxy(i) denote the distance \f'(x) - f'(y)\ between the z'th iterates
of x and y. Lastly, for e > 0, a subset S of 7 is an ^-scrambled set (or,

briefly, a scrambled set) for / if, for distinct x, y in S,

(1) lim sup f5xy(z) > e   and    lim inf ¿^(z) = 0.
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738 B. SCHWEIZER AND J. SMÍTAL

Various notions of chaos are based on the behavior of sequences of distances

{Sxy(i)}™o between trajectories of distinct points x, y in 7. Thus a function

/ is chaotic in the sense of Li and Yorke if there are two points x, y in 7 such

that (1) is true for some e > 0 [9 and 7]. As shown in [19], this is equivalent to

the condition that, for some s > 0, f has a nonempty, perfect e-scrambled set.

(Note: We omit the requirement from [9] or [19] that limsup,_00r5Xp(z') > 0

for any periodic point p of f and any x in the scrambled set since it is not
essential, cf. [4].) Another notion of chaos is based on the topological entropy

h(f) of f, which is an asymptotic estimate of the size of maximal sets Az such

that sup,f5X),(z) > e for any distinct x, y in Ac (cf. [2]). In this context, a

function / in C(7, 7) is considered to be chaotic if h(f) > 0. Every function

with h(f) > 0 is chaotic in the sense of Li and Yorke. The converse is false

(see [11 and 19] for details).
The sequences of distances {ôxy(i)}°l0 have also been studied in the theory

of probabilistic metric spaces [18]. But there the focus has been, not on these

distances themselves, but rather on the limiting behavior as zz —> oo of the

distribution of their averages over the first n iterations. Specifically, for any /
in C(7, 7), any x, y in 7, any real t, and any positive integer zz, let

n-\

è(x,y,t,n)=YiX(o,t)(\fl(x)-fi(y)\)

= #{z ; 0 < i < n - 1 and ôxy(i) < t} ;

let

(3) F^t) = lim sup-Ç(x, y, t,n),
n—>oc     n

and let

(4) Fxy(t) = liminf-c¡(x, y, t,n).
n—»oo   n

Both F*y and Fxy are nondecreasing functions and may be viewed as cu-

mulative probability distribution functions satisfying F*y(t) = Fxy(t) = 0 for

t < 0 and F*y(t) — Fxy(t) = 1 for t > 1 . Any two such functions that coincide

everywhere except at a countable set of points (of discontinuity) are identified;

accordingly, the space of these functions will be equipped with the topology in-

duced by the Lx metric or, equivalently (since 7 is bounded), with the topology

of weak convergence of distribution functions. In general we will follow the con-

vention adopted in [18] and choose F* and Fxy to be left-continuous. These

functions are, respectively, the upper and lower (distance) distribution functions

of x and y . As discussed in [18, Chapter 11], where further references to the

literature may be found, the lower distribution functions always determine a

probabilistic pseudometric on 7. Furthermore, if / has an invariant proba-

bility measure //, then for almost all pairs (x, y) in 72, Fxy = F*y ; and if,

in addition, / is mixing with respect to ß, then Fxy is almost everywhere
independent of the initial points x, y .

The study of the distribution functions Fxy and F*y determined by a given

/ in C(7, 7) is the central topic of our paper. However, in our situation, while

the central idea is of paramount importance, neither the above-mentioned re-

sults nor the techniques used to obtain them are applicable.   The principal
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CHAOS AND SPECTRAL DECOMPOSITION 739

reason for this is that, typically, i.e., except for a set of the first Baire category

in C(7, 7), the functions we consider have only singular invariant measures

supported by sets of zero Lebesgue measure. In such cases, the results based on

the existence of invariant measures say nothing about the behavior of trajecto-

ries starting from sets of full Lebesgue measure. Consequently, we will adopt

a direct approach and deal explicitly with the upper and lower distributions

generated by a given /. It will follow from our results that the set of these
distributions can be used as a measure of chaos.

To illustrate our ideas with a simple example, consider the standard "tent"

map g: I —» 7 which is given by g(x) — 1 - |2x - 1|. This map has positive

topological entropy and there is exactly one maximal <y-lim.it set, namely 7

itself. In this case we find that there exist points u, v for which Fuv < F*v

and which are such that

fuv S Pxy S: t'xy S fuv = 1 '

for all pairs of points x, y in 7. Thus Fuv and F*v are extremal distributions

for g. As indicated, F*v is identically equal to 1. The lower distribution Fuv

can also be explicitly determined: we find that Fuv is the discrete distribution

given by Fuv(0) = 0 and

(5) Fuv(x) = 1 - -   for x £ (a„_,, a„],

where a0 = 0 and a„ = 27(2" + 1) for zz = 1, 2, ... . Note that a„ is
the largest periodic point of period zz of g. Moreover, since the tent map
is mixing with respect to Lebesgue measure on 7, the limiting distribution
function Fxy = F*y — F exists and is independent of x, y, for almost all

pairs of points (x, y) in 72 (as already mentioned): it is given explicitly by

F(t) = 2t-t2 for t £ [0, 1] [18, Chapter 11].
In keeping with the philosophy that distribution functions are "the numbers

of future" [18], we can look upon the lower distribution Fuv as a measure of

the chaos generated by g. We can also employ various common numerical
quantities associated with this distribution. But for us the truly meaningful

numerical measure is the area between the graphs of the distributions F*v and

Fuv , namely the quantity

(6) ß(g) = \\F¿V - Fuv\\ = [ (F*v - Fuv)dt =1- f Fuvdt
Jo Jo

which, in this case, is equal to 0.7861936.... This measure is particularly apt,

since we shall show (see Theorems 2.1 and 2.2 below) that when / is a map of

zero topological entropy, then F*y = Fxy for all x, y in 7, whereas when /

has positive topological entropy, then there are always pairs of points x, y in

7 for which Fxy < F*y .

The behavior of the tent map is particularly simple, but nevertheless illus-

trative. An arbitrary continuous map /": 7 —► 7 may have a countably infi-
nite system of maximal «-limit sets, each supporting positive topological en-
tropy. However, the corresponding collection of minimal, mutually incompara-

ble, lower distributions Fuv is, surprisingly, always finite. And this result leads
to a finite "spectral decomposition" of the map /:   the "subspaces" are the
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740 B. SCHWEIZER AND J. SMITAL

maximal «-limit sets; the "eigenvalues" are the corresponding minimal distri-

butions Fuv for which F*v = 1. As a measure of chaos, we may use either

these eigenvalues or the largest of the numbers determined by them via (6).

Note further that if, for some given / in C(7, 7) and some x, y in 7,
there is an e > 0 such that Fxy(e) < 1, then the first relation in (1) holds; and

similarly, if F*y = 1, then the second inequality in (1) holds. The converse

implications are false. Thus, the conditions Fxy < F*y = 1 are refinements of

the corresponding conditions in (1).

The remainder of this paper is organized as follows: The main results, along

with some basic notions, several additional examples, and some remarks, are
presented in §2; the most important of these is Theorem 2.4. Section 3 contains

preliminary results on «-limit sets which extend some of Sharkovsky's results

[16] (see Theorem 3.7). Section 5 is devoted to technical preliminaries on dis-
tance distribution functions on «-limit sets: here the basic results are Lemmas
5.2 and 5.5. Proofs of the main results are given in §4 and §6.

Throughout the paper, the term "topological entropy" is used only as a syn-
onym for the existence of periodic points of certain periods: a map / in
C(7, 7) has zero topological entropy if and only if each of its periodic points has
period 2" for some nonnegative integer zz [10]. Other notions and terminology

are introduced as needed in the text or may be found in the cited references, in

particular [1].

2. Main results

For a given / in C(7, 7), consider the system {coj(x) ; x € 7} of «-limit

sets of /, partially ordered by inclusion. Following Sharkovsky, a maximal

co-limit set of / is of the second kind if it contains a periodic point and is

infinite; otherwise it is a maximal co-limit set of / of the first kind. The system

of maximal «-limit sets of the second kind is always countable [15] (for more
details see §3).

The dynamics is very complicated on maximal «-limit sets of the second

kind. On the other hand, our initial result shows that it is very regular on sets

of the first kind.

2.1 Theorem. Let f £ C(I, I) and suppose that, for some u, v in I, each

of the sets coj(u) and C0f(v) is contained in a maximal co-limit set of the first

kind. Then

W   fuv = fuv >

(ii) if in addition, liminf,--^ <*„„(/) = 0, then Fuv = X(o,oo), i.e., Fuv(t) = 1

for all t>0.

We say that an «-limit set « of a map in C(7, 7) has a periodic decompo-

sition of period k if there is a compact periodic interval J c I of period k
such that Orb(/) D CO, and such that for, 0 < i < k , the convex hulls conv(«,)

of the set «, = f'(J) n « are nonoverlapping, i.e., have at most endpoints in

common. Any such set «, is called a periodic portion of «. (For more details

see Lemma 3.2 and Theorem 3.7.)

The proof of Theorem 2.1, which is given in §4, is based on the fact (Theo-

rem 3.6) that every infinite maximal «-limit set of the first kind has periodic
decompositions of arbitrarily high periods. As an immediate consequence of

Theorem 2.1 we have
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CHAOS AND SPECTRAL DECOMPOSITION 741

2.2 Theorem. Let f in C(I, I) have zero topological entropy. Then Fuv = F*v

for all u,v in I. If, in addition, liminf,_00f5u„(z) — 0 then Fuv = ^(o,oo) •

Proof. If / has zero topological entropy, then every maximal «-limit set is of
the first kind ([15]; cf. also [4]), whence the result follows from Theorem 2.1.

Alternatively, one may note that for a map of zero topological entropy every

infinite «-limit set has periodic decompositions of period 2" for every zz (cf.,
e.g. [19] or [4]) and apply Proposition 4.3.   D

This result shows that for a chaotic map of zero topological entropy, the

distances between any two trajectories starting from a scrambled set are very

small most of the time. This corresponds to the main result of [5].

Before stating the next result, which concerns the dynamics on maximal co-

limit sets of the second kind, we recall that any such set « has a maximal peri-
odic decomposition, i.e., a periodic decomposition of maximal possible period,
or equivalently, a decomposition such that the corresponding periodic portions
are minimal, i.e., indecomposable (see §3 for more details).

2.3 Theorem. Let f £ C(I, I) and let co — co/(x) be a maximal co-limit

set of the second kind. Then there exists a nonempty perfect set P c « and a

probability distribution function F such that F(t) — 0 for t < e, where e is a
positive constant, and such that

(i) F = FUV < F*v = ¿(o.oo) for any distinct u,v in P;

(ii) if S is a scrambled set for f (or, more generally, z/liminf,_00áuí)(z) = 0

for any u, v in S) such that «/(zz) C « for any u £ S, then there are sets

So, Sx such that S = 5bUS, and Fuv > F whenever u, v £ So, or u, v £ Sx;

(iii) if the minimal periodic portions of co are pairwise disjoint, then Fuv > F

for any u,v in S, i.e., Sx = 0.

Note that, in the terminology of the theory of probabilistic metric spaces, the
condition Fuv = F may be interpreted as saying that, as measured by the lower

distribution function Fuv , the points iz and v are almost certainly discernible,

whereas, in contrast, the condition F*v = ;f(o,<x>) says that, as measured by F*v ,

they are almost certainly indiscernible (see [18, §12.10]).
A combination of Theorems 2.1 and 2.3 yields our main result on the spectral

decomposition of dynamical systems. The following terminology will simplify

its formulation: We say that two points u, v in I are synchronous (with respect

to a function / in C(7, 7)) if both «/(zz) and «/(zz) are contained in the
same maximal «-limit set co, and if, for any periodic interval J such that

Orb(7) d co, there is a /' > 0 such that f(u), f(v) £ J. The spectrum of

/, denoted by 1(f), is the set of minimal elements of the set D(f) = {Fuv ; u

and v are synchronous}. And the weak spectrum lw(f) of / is the set of

minimal elements of the set Dw(f) = {Fuv ; liminf,_00f5m)(z) = 0} . Any two

elements of 1(f) (resp., lw(f)) are incomparable; however, Z(/)Ulw(/)

may contain comparable elements (see Remark 2.5). Nothing can be said about

1(f) n lw(f) ; but we will show (see Remark 2.6) that 1(f) c Dw(f).

2.4 Theorem. Let feC(I,I).
(A) If the topological entropy of fis zero, then 1(f) = lw(f) - {#(0,00)} •
(B) If the topological entropy of f is positive, then the following hold:

(Bl) Both the spectrum 1(f) and the weak spectrum lw(f) are finite

(and nonempty).   Specifically,  1(f) - {Fx, ... , Fm) for some m > I, and
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742 B. SCHWEIZER AND J. SMITAL

lw(f)\l(f) — {Fm+X, ... , Fn} where n> m. Furthermore, for each i there is

an e, > 0 such that 7}(e,) = 0.
For any positive integer k < n, let nk be the system of sets P such that

#P > 2 and, for any distinct u,v in P, Fk - Fuv < F*v = X(o,oo) •

(B2) If k < m, then nk contains a nonempty perfect set Pk .
(B3) If, on the other hand, m < k < n, then nk is nonempty and any P

in nk is a two-point set.

(B4) If S is a scrambled set for f (or, more generally, z/liminf,-_>00<5„u(z)

= 0 for any u, v in S), then there are integers i, j < m and a corresponding

decomposition S — S¡U Sj such that Fuv > F¡ if u,v £ S¡ and Fuv > Fj if
U,V £ Sj .

The proofs of Theorems 2.3 and 2.4 are given in §6.

2.5 Remark. For the tent map g, we have 1(g) = lw(g) — {F}, where

F is given by (5). More generally, consider the family of those trapezoids
gx — min(g, X) which have positive topological entropy, i.e., for which X £

(0.8249080..., 1) [11]. Each such g^ has a unique infinite maximal «-limit
set, which is nowhere dense in 7, and there is a distribution function F¿ such
that l(g¿) = lw(gx) = {Fa}- It therefore follows from (B2) that there is a

perfect set P¿ such that, for any distinct u, v in P^we have Fk — Fuv <

F*v — ;t(o,oo) • Lastly, it can be shown that as X / 1, Fk \ F .

To exhibit an example illustrating (B3), we can consider the map / in

C(7, 7) which satisfies f(0) = \, f(\) == 1, /(f) = 0 and f(l) = \, and
which is linear on the intermediate intervals. Clearly, / is topologically tran-

sitive and hence has the unique maximal «-limit set co — I. This set has a

decomposition into two periodic portions (of period 2), namely «o = [0, \]

and «i = [j, 1]. These have the fixed point \ in common and are inter-

changed by /. It is easy to verify that / and the tent map g have the same
minimal lower distribution, namely the function F given by (5), and that F
cannot be generated by synchronous points u, v belonging only to one of the

sets «o, «,. Thus, lw(f) = {T7} and F g 1(f). Now it is readily seen

that 1(f) — {T7,} where Fx(t) = F(2t) for any t. Thus, using the terminol-

ogy of Theorem 2.4, we have m = 1 and zz = 2. Similar ideas can be used

to construct examples for any m > 1 and any n > m. Moreover, if / has

only k different maximal «-limit sets of the second kind then, by Theorems

2.3 and 2.4, m = #l(f) < k ; and similarly (see the proof of Theorem 2.4),
n-m = #(lw(f)\l(f)) <k.ln particular, if / is topologically transitive then

#l(f) = 1 and #lw(f) = l-

2.6 Remark. Conditions (Bl) and (B2) of Theorem 2.4 lead to the following
notion: An infinite set S c 7 is said to be a strongly scrambled set for / e
C(7, 7) if there is a distribution F in 1(f) such that

(7) Fxy = F   and   F*y = #(0>oo),

for any distinct points x, y in S. Accordingly we say that / is strongly chaotic
or exhibits strong chaos. Clearly any strongly scrambled set is a scrambled set.

However, since a map of zero topological entropy can have a scrambled set [19],
Theorem 2.2, shows that the converse is false.

By definition, 1(f) is generated by pairs of synchronous points. It follows

from Theorem 3.7 and Lemmas 5.2 and 5.3 that any F in 1(f) may also be

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CHAOS AND SPECTRAL DECOMPOSITION 743

generated by a pair of synchronous points u, v satisfying lim inf,-_oo ôuv(i) — 0

or even F*v = #(o,oo) (see also the proof of Theorem 2.4 in §6). This implies

that the restriction F*v — #(oi00) is inessential, and further that 1(f) c Dw(f).

2.7 Remark. In the theory of dynamical systems the term "spectral decom-

position" usually refers to a decomposition of the set of «-limit points into a

(generally infinite) collection of maximal «-limit sets or, e.g., to a similar de-

composition of the set of nonwandering points (see, e.g., [12] or [14]). For us,

such a decomposition is only a basis for determining the corresponding minimal
lower distributions. By omitting those «-limit sets which lead to distributions
that are "negligible" in the sense that they are comparable with a minimal one,

we arrive at a finite collection of distribution functions—our spectrum.

2.8 Remark. Although the details remain to be worked out, it is virtually cer-

tain that strong chaos is stable in the following sense: If / has a strongly

scrambled set P with corresponding lower distribution function F, and if g

is (uniformly) sufficiently close to /, then g has a strongly scrambled set and

a corresponding minimal lower distribution G such that the difference between

G and min(F, G) is small. However, the difference between F and G may be

large, with F > G. For example, we may take / to be topologically transitive

in a small interval / c 7, let f(x) = x in 7\7, and let g be a perturbation

of / that is topologically transitive in I. In other words, the distribution G

satisfies a lower semicontinuity condition. Note that, contrary to this, chaos in

the sense of Li and Yorke is not stable [13].
There are interesting connections between points of discontinuity of the min-

imal distributions in l(f)lllw(f) and the periodic orbit structure of / which

remain to be explored. For example, it appears that if t is a point of disconti-

nuity of such a distribution, then there are periodic points p and q in 7 such

that \p-q\ = t.

3. Basic properties of maximal «-limit sets

Our main aim in this section is to prove Theorems 3.6 and 3.7. We begin

with the following description of «-limit sets which is due to Sharkovsky [15].

3.1 Theorem. Let f £ C(I, I) and let x, y £ I. Then
(i) if a £ cOf(x) n cOf(y) is a limit point from the left (resp., from the right)

of both cOf(x) and «/(v), then «/(x) U coj(y) is an co-limit set of f ;
(ii) the system A2(f) of maximal co-limit sets of the second kind is countable;

(iii) if co £ A2(f), then co is perfect;
(iv) if co £ A2(f) and if «/(x) c «, then f'(x) £ co for all sufficiently large

i;

(v) if co £ A2(f) and if «/(x) c co, then the set {v £ co; «/(zz) = C0f(x)}
is dense in co.

The next result must be known but we are not able to give a reference.

3.2 Lemma. Let f £ C(I, I), and let co — «/(x) be an infinite co-limit set
which has a proper periodic portion, i.e., assume that there is a compact periodic

interval J of period m such that co\J ^ 0 ^ co n int(/). Then co has a
periodic decomposition of period n, for some n with 1 < zz < m.

Proof. Let K be a minimal interval of the form K = fW(J) n • • • n f^s)(J),

for some s > 1, such that « n int(K) # 0. Then fm(K) c K. Let n > 0 be
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the minimal integer such that f"(K) c K. Since « n int(K) ^ 0, f'(x) £ K,

for some i (and hence, « c Orb(K)). Let g = f" , and let co¡ — cog(f'+j(x)),
for 0 < j < n . We claim that the sets «; form a periodic decomposition of

«.

It is easy to see that «o U • •• U «„_, = « and that f(coj) — «7+i(mo<i n) > f°r

any j. We have «o c K . If cok nint(K) ^ 0 for some 0 < k < n , then we get

easily cok c K, and «0 = fn~k(cok) c fnW+n-k(J) n • • ■ n /»(*)+»-*(/) = L.

But AT is minimal, hence L D K. On the other hand, fk(L) c Ä\ hence

/^(Är) c K which is impossible since zz > zc is minimal. Thus cokp[int(K) = 0

and similarly we can show that cok n int(/;(A^)) = 0 for any 7 ^ k (mod zz).

To complete the proof note that zz > 1, since otherwise co c K c J, and that

K contains a compact subinterval #0 with «0 c K0 = f(Ko), and hence,

cOjCf(Ko) for any ;'.   D

3.3 Lemma. Let f £ C(I, I), let co be an co-limit set with no proper periodic

portions, and let U = f(U) be the minimal compact invariant interval contain-

ing co. If J, K are compact intervals such that K c int(U) and J n « is

uncountable then f'(J) D K for all sufficiently large i.

Proof. We may assume that J <z U. Recall that any interval G such that

Gr\ojf(y) is infinite for some y contains a periodic point [6]; see also [19]. It
follows that / contains periodic points p < q such that [p, q] n « is infinite.
Consequently, if m > 0 is a common multiple of the periods of p and q,
then fm([p ,q])D\p,q], and L = (J~, fm([p, q]) is a periodic interval with

fm(L) = L. Moreover, L n « is infinite and hence co c L, where L is the

closure of L, since « has no proper periodic portions. Then « c fl/li /'(•£) =
M, and Af D f(M) D «, whence U c M because of the minimality of U.
Lastly, it is easy to see that f([p, q]) D K for sufficiently large j.   D

3.4 Lemma. Let f £ C(I, I) and let u,v be in I. Let {t/,}g, and {*/}£,
be compact intervals with lim;_oo U¡ = u and lim,_00 V¡ = v, and such that

for any i and j there are positive integers u(i,j) and v(i, j) such that

fud,7)(zj.) D Vj and fv(i'i](Vi) D Uj. Then {u,v} c cof(y), for some y
in I.

Proof. Define a decreasing sequence {Ji}flx of compact intervals and an in-

creasing sequence {«(z)}^, of positive integers as follows: /, = Ux and

zz(l) = «(1,2). Then fn^(Jx) D V2 ; choose J2 C /, such that f"^(J2) = V2.
Take zz(2) = n(l) + v(2, 3). Then fn{-2)(J2) = /t,(2'3)(F2) D U3 and there is

a Jt, C J2 such that f"m(J3) = C/3. Then there are /4 and zz(3) such that

/"(3)(^») = V4, etc. Let y £ f)^, ^¡ • Since the trajectory of y visits every

neighborhood of u and every neighborhood of v , the result follows.   D

3.5 Lemma. Let f £ C(I, I) and let co - co/(x) be a maximal co-limit

set with no proper periodic portions. If J is an interval such that J n co is

uncountable then J f)co contains a periodic point.

Proof. Let U be as in Lemma 3.3. We may assume that J = [a, b] c int(i7).

By Lemma 3.3, J c fk(J), for some k > 0, hence J contains a periodic

point p = fk(p). One of the sets [a, p] n «, [p, b] n «, say [a, p] n «, is

uncountable. Again by Lemma 3.3, we have [a, p] c int(fks([a, p]) for some

5 > 0. Hence there is a point q such that fks(q) < a < q < p . Let fks(q) = «1
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and q - u2. Then fks([u2, p]) D [ux, p], and since fks is continuous, there

is a sequence ux < u2 < ■■■ < p such that fks(uj+x) - u¡, for any ;'. Let

u = limy-,00 Uj, and Uj ■- [Uj, u].

Let v £ con Ux be such that co/(v) is infinite and Gnco is uncountable for
any neighborhood G of v . Note that such a v always exists, since if « is a

maximal «-limit set of the first kind then any cof(z) with z £ co is infinite
(otherwise coj(z) would be a periodic orbit) and if « is of the second kind,

then by (v) of Theorem 3.1, there is even a v such that co/(v) = co.

Let {^}z=i De neighborhoods of v with lim^oo V,■■ = v . By Lemmas 3.3

and 3.4, there is a y such that {u, v} c C0f(y). Since v e «/(x), we have

cOf(v) c cof(x) n C0f(y), and since C0f(v) is infinite, by (i) of Theorem 3.1,
«/(x)U«/(y) is an «-limit set. But «/(x) is maximal, hence co/(y) c «/(x),

and hence, u £ «/(x). Note that u = fks(u) £ J .   D

The next result is basic for the proof of Theorem 2.1.

3.6 Theorem. Let f £ C(I, I) and let co = «/(x) be an infinite maximal
co-limit set of f. Then co is of the first kind if and only if co has periodic
decompositions of arbitrarily high periods.

Proof. One implication is immediate. For if « has periodic decompositions of

arbitrarily high periods then clearly « contains no periodic points. To prove the
reverse implication assume that « is a maximal «-limit set and that «i is its

minimal periodic portion, of maximal possible period zzz > 1. Let g = fm . It

is easy to see that «, is a maximal «-limit set of g (we have «, = cog(f'(x))

for some i < m) and that «, is indecomposable. But then «, contains a

periodic point. To see this apply Lemma 3.5 if «, is uncountable, and use
the fact that any countable «-limit set contains a periodic point [17] otherwise.

(Actually, the infinite maximal «-limit sets are always uncountable.) Thus, «
is of the second kind.   D

The following theorem summarizes the above results.

3.7 Theorem. Let f £ C(I, I) and let Ax(f),A2(f) be the classes of infinite
maximal co-limit sets of f of the first and second kind, respectively. Let «/(x)
be an infinite co-limit set.

(i) If cof(x) has no minimal periodic portions, then «/(x) has periodic de-

compositions of arbitrarily high periods.

(ii) If co f(x) has a minimal periodic portion (of period m>l), then «/(x) c
co, for some co e A2(f).

(iii) If «, e Ax(f) and «, ^ « for some co £ Ax(f)\JA2(f), then «, n« =
0. 7zz particular, two distinct periodic portions of sets in Ai(f) with the same

period have no common points.

(iv) The intersection of any two distinct sets in A2(f) is finite and, if nonempty,

is the orbit of a periodic point. More precisely, if «, and co2 are distinct minimal
periodic portions of any two sets in A2(f), and if U = conv(«,) and V —
conv(«2), then U f)V = 0, or U and V have just one point in common, or

Ucint(V), or Fcint(fy).
(v) If co £ A2(f) then the set co n Per(/), where Per(f) is the set of periodic

points of f, is dense in co.
(vi) Let co £ A2(f). Then there is a minimal compact periodic interval U

(of period m > 1) such that Orb(L7) d co.   Moreover, if J, K are compact
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intervals such that J n co is infinite and K c int(U), then f'+jm(J) D K for

some i and any sufficiently large j. We will describe this situation by saying

that f\co is strongly transitive in U.

Proof, (i), (ii), (v) and (vi) are easy consequences of Lemma 3.2, Theorem 3.6,

Lemma 3.5, and Lemma 3.3 and Theorem 3.6, respectively.
(iii) Assume that P = «,n«^0. If P is finite, then P contains a

periodic point since f(P) c P, and this is impossible. If P is infinite, then (i)
of Theorem 3.1 implies that «, = «.

(iv) It is easy to see that «,, co2 £ A2(fm), for some m, hence we may

assume that m = 1. Thus if U n V = J is an interval and neither U c V nor
V c U, then J n «, and J n co2 are uncountable (Theorem 3.1). Let u £ cox

and v £ co2 be points interior to / such that «/(«) = «, and ojf(v) = co2
(Theorem 3.1). By Lemmas 3.3 and 3.4, u,v £ cof(z), for some z, and since

«,, «2 are maximal, we have «, = co2—a contradiction.

It remains to show that U and V cannot have a common endpoint if U c
V, but this follows by (i) and (iii) of Theorem 3.1.   D

4. Proof of Theorem 2.1

4.1 Lemma. Let f e C(7, 7). Then, for any t,X in (0, 1) there is an integer

n(t, X) with the following property : If A is a periodic set of period m > n(t, X),

and if the convex hulls of the sets fs(A) »for s < m, are nonoverlapping, then

for any u, v in A, Fuv(t)>X.

Proof. Fix t and X. Let n(t,X) be such that (n(t,X) - l/t)/n(t,X) > X.
Since there are at most 1/7 distinct sets fs(A) with diamfs(A) > t, we have

Fuv(t) > ±#{s <m;diamfs(A) < t} > (m - l/t)/m> X.   U

4.2 Lemma. Let f e C(7, 7), and let «/(x) have periodic portions of arbi-
trarily high periods. Then for any e > 0 there is a periodic point p such that

Fxp(t) > 1 - e for t>e.

Proof. Let J be a compact periodic interval of period m > n(e, 1 - e) (cf.
Lemma 4.1) with Orb(/) D «/(x). Clearly f'(x) £ J for some z, and since

fm(J) = J, there is a periodic point q in J. Let p £ Orb(<7) be such that

f'(p) = Q ■ Now apply Lemma 4.1.   G

4.3 Proposition. Let f £ C(I, I), and suppose that each of coj(u), coj(v) is

either finite or decomposable into an arbitrarily high number of periodic portions.

Then Fuv = F*v .

Proof. Let e > 0, and let p, q be periodic points such that Fup(t) > 1 — e and
Fvq(t) > 1 - e if t > e . Such a p exists trivially if cof(u) is finite (and hence

a cycle), and otherwise it exists by Lemma 4.2; and similarly for q. Then

#{z < k; Sup(i) > e} < ek and #{z < k; Svq(i) > e} < ek whenever k is

sufficiently large. For any such zc,

jt¡(p ,q,k,t-2e)-2e< ^(u, v , k, t) < ^(p ,q,t + 2e) + 2e

(£ is defined by (2)), and for k —» oo,

FM(t - 2e) - 2e < Fm(t) < F*v(t) < Fpq(t + 2e) + 2e ;
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and a simple calculation gives \\F*V - Fuv\\ < 8e. Equivalently, we have

L(FUv , F*v) < L(FUV ,Fpq) + L(Fpq, F*v) < 2e + 2e = 4e where L is the Levy
metric [18]. Since e is arbitrary, the result follows.   D

4.4 Proof of Theorem 2.1. The first part follows by Theorem 3.6 and Proposi-

tion 4.3. So let liminf1_,00 Suv(i) — 0. Then the maximal «-limit sets «„,«„,

containing co/(u) and coj(v), respectively, have a nonempty intersection. If «„

is finite, i.e., if it is the orbit of a periodic point, then trivially cou = cov and

lim;_oo¿uuO) = 0, which implies (ii). So assume that cou, cov are infinite.

Then by (iii) of Theorem 3.7, cou — cov = co. Let J be a compact periodic

interval with Orb(/) D co. Clearly f'(u), f'(v) are in J, for some i, and

hence f'+j(u), f'+j(v) £ fJ(J), for any j. Since the period of J can be
arbitrarily high, Lemma 4.1 implies the result.   D

5. Probability distribution functions on maximal «-limit sets

Our main results in this section are Lemmas 5.2 and 5.5.

5.1 Lemma. Let f £ C(I, I) and let both F*y and Fxy be continuous at t.

Then, for any e > 0, there are positive integers k, q, arbitrarily large, and

ö > 0 such that

^¿;(u,v,k, t)<Fxy(t) + e

and

-¿¡(u,v,q, t) >F*y(t)-e
H

whenever \u — x\<3 and \v - y\ < 5. (Here Ç is the function defined in (2).)

Proof. Choose e, > 0 suchthat Fxy(t + 2ex) < Fxy(t) + e/2 and F*y(t-2ex) >

F*y(t)-e/2. Then choose k suchthat \£,(x, y, k, t+2ex) < Fxy(t+2ex)+e/2.

The first inequality follows from the fact that Ç(u, v , k, t) < Ç(x, y, k, t+2ex)

whenever S > 0 is sufficiently small. The argument for the second inequality

is similar.   D

5.2 Lemma. Let f £ C(I, I), and let «, and co2 be maximal co-limit sets of

the second kind. Assume that there are periodic intervals U, V and a countable

set Q c I2 of pairs (u,v) such that

(8) /|«, is strongly transitive in int(U) and f\co2 in int(K)

and, furthermore, that

(9) u £ cox n int(U) and v £ co2 n int(V)   if(u,v)£Q.

Then there are points x £ «, n U and y £ co2 n V such that, for any t > 0,

(10) Fxy(t) < inf{Fuv(t);(u,v)£Q}

and

(11) F;y(t)>sup{F;v(t);(u,v)£Q}.

Proof. Let T be a countable set, dense in I, and such that, for any (u, v) £ Q

and any t £ T, both Fuv and F*v are continuous at t. Let {tj}jZx and

{u(j), v(j)}yî, be sequences of points from T and Q, respectively, such that
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for any t £ T and any (u, v) £ Q, t = t¡, u = u(j) and v = v(j) for

infinitely many j.

Next, using induction, we define positive integers

zc(l) < q(l) < k(2) < q(2) <■■■< k(i) < q(i) <    ■

and decreasing sequences {£7,}°^ and {^}g, of compact intervals with

lim diam(t/,) = lim diam(I^) = 0,
1—»oo /'—»oo

and such that for any u £ Un and v £ Vn and any j < n ,

(12) k(j)^U ' V ' k^ ' í;) - Fu^v^^ + 7

and

(13) qJf)^U ' V ' qU) ' tj) - f»(*W(!/) " J'

To do this, we take Ux = U, Vx — V, k(l) = 1, q(l) - 2, and assume
that U„, Vn, k(n) and q(n) have been defined such that fj(U„)ncox and

fJ(Vn)f]co2 are infinite whenever j is sufficiently large. Since U and V are

periodic, by (8) and (9) there is some 5 > q(n) such that u(n +1) £ fs(U„) and

v(n + 1) G fs(Vn). Let a £ Un and b £ Vn be such that fs(a) = zz(zz + 1) and

fs(b) = v(n+l). Then clearly Fab = Fuin+XM„+X) and F*b = F*{n+l)v{n+i). Now

the existence of Un+X c Un , Vn+X c V„ , k(n + 1) and q(n + 1) follows easily

by Lemma 5.1. (We take as U„+x and Vn+X compact neighborhoods of a and

b, respectively, with diam({7„) > 2diam(C/„+,) and diam(F„) > 2diam(Fn+,).
It is easy to see (cf. (iii) of Theorem 3.1) that a, b, Un+X and Vn+X can be

chosen such that both fs(Un+x)ncox and fs(Vn+x)nco2 are infinite.)

Take x e f|J=i Uj and y e fl^i vj ■ For any t £ T and any (u,v) in Q,
take y such that t = tj, u = u(j) and v = v(j). Since x € Uj and y e F,,

(12) applies with u — x and îz = y . Since ;' can be arbitrarily large we have

7^(0 < Fuv(t). This implies (10) for any t £ T, and since T is dense in 7,
for any /. The argument for (11) is similar.

We already have x e U = Ux and y £ V. It remains to show that x can
be chosen in «, and y in co2. Let w £ «, n U be such that coj(w) = cox,

and let {W^}^, be a decreasing sequence of compact neighborhoods of w with

lim^oo W¡ = w . Now apply Lemma 3.4 with u replaced by x, v by w and

Vj by Wj. Since «, is maximal, we obtain «/(x) c «,. Similarly, we have

that «/(y) c «2 . Now by (iv) of Theorem 3.1, f(x) £ cox and f"(y) £ co2 ,

for some zz. It is easy to see that zz can be chosen such that f(x) £ U and

f(y) £ V. Replace x by fn(x) and y by f"(y). Clearly (10) and (11)
remain valid.   D

5.3   Lemma. Let f £ C(I, I), let «,, «2 be maximal co-limit sets of f of
the second kind, and let U and V be minimal compact periodic intervals with

Orb(C7) d «1 and Orb(F) d «2 . Then for any u £ U D «, and v e V n «2
there are u* £ int(?7) n «, and v* £ int(F) n «2 such that Fuv = Fu.v..

Proof. First we show that Fuv — T^oj^o) where zz(0) G «, n U and v(0) £

co2 n V are suitable nonperiodic points. To do this take u(0) = « if zz is not
periodic; otherwise by (v) of Theorem 3.1 there is a nonperiodic point zz(0) in
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U n «, such that co/(u) = coj(u(0)), and one can easily verify that w(0) can

even be chosen such that lim,_oo SU(o)U(i) = 0. Then clearly Fuv = FU(q)v . The

point v(0) is defined similarly.
Now let m > 0 be a multiple of the periods of U and V. Since

/w(L7n«,) = <7n«,, there is a sequence {u(i)}^0 of points in t/n«, suchthat
fm(u(i+l)) — u(i) for any z>0. Choose {v(i)}^0 in V(~\co2 similarly. Now

the points zz(z'), v(i) are not periodic, hence for some /', u(j) £ int(t/) n «,
and v(j) £ int(F) n «2 . Take u* = u(j) and v* = v(j).   O

In the proof of our basic Lemma 5.5 we use methods of symbolic dynamics

as developed, e.g., in [3] (cf. also [19]). Denote by X the space {0, 1}^ of
sequences of zeros and ones, equipped with the metric of pointwise convergence

(e.g., p({a(i)} , {ß(i)}) = ES, WO - ß(i)\2-') . The following result will
simplify our argument.

5.4 Lemma. Let {A7,}?^ be a decomposition of the set N of positive integers

into infinite subsets. Then there is an uncountable Borel set B c X such that,

for any distinct a = {a(z')}g, and ß = {/?(z)}~, m B and any zz,

(14) {;' G Nn ; a(j) ¿ ß(j)} is infinite.

Proof. Let £ be an irrational number. Define y/: [0, 1] —► X as follows:

V(t) = {tj}%i where U = 0 if E(t + ií) 6 [0, \), and t¡ = 1 otherwise. Here

E(x) £[0, I) denotes the fractional part of x. Since, for any i, E(t + iÇ) has

at most two points of discontinuity in [0, 1], the function

(15) if/ is continuous in [0, 1]\7), where D is a countable set.

It is well known that the sequence [E(ià,)}°^x is dense in [0, 1]. It follows that

if y/(s) = {*<}g, and y/(t) = {/,}£, then

(16) tj ^ Sj for infinitely many i if t ^ s.

Now, for any n, let a„i < an2 < ■■■ be the elements of Nn. Define a map

nn: X -► X such that nn(a) = {a(ani)}fli for any a = {a(')}~i in X. It

is easy to see that n„ is a continuous map onto X. Let ^ = ^([0, 1]\7)).
By (15) and (16), A is an uncountable Borel set, hence the same is true for

Bn = rc^U^). f°r anY « • Put B = (X?=i Bn ■ Clearly B is a Borel set, and
since nn(B) = nn(B„) = A , B is uncountable (note that the sets N¡ are pairwise
disjoint). Condition (14) now follows from (16).   D

5.5 Lemma. Let f £ C(I, I), and let co — cof(z) be a maximal co-limit

set of the second kind. Let U be a minimal compact periodic interval with
Orb(U) D co, and let xq , x, be in Unco. Then there is a nonempty perfect set

P Ceo such that, for any distinct u, v in P,

(17) Fuv<FXoX¡    and   F*v>F^Xx.

Proof. We use ideas from Lemma 5.2, combined with methods of symbolic

dynamics. Let T be a countable subset of 7, dense in 7 and such that both

T^jc, and F*oXt are continuous at each t £ T, and let {fyj^, be a sequence

of points from T that contains every t from T infinitely many times. Let

Xn = {0, l}n, for zz = 1,2,..., and define a system of compact intervals

{Ia ; a£ Xj}JLx and positive integers

k(\) < q(\) < k(2) < 9(2) < ••• < k(j) < q(j) <■■■
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such that, for every a = a(l)a(2) ■ ■ ■ a(n) and ß = ß(\)ß(2) ■ ■ ■ ß(n) in Xn,

the following is true:

(18) fj(Ia) n « is infinite if ; > k(n + 1) ;

(19) if a ¿ß then Ia nlß = 0;

(20) if y is in Xk for some k then Iay c Ia C int(U) ;

for any u £ Ia and v £ Iß , and any j < n ,

(21 ) jr~y£(tt , w, *tf). 0) < ¿Xo>*/>0) (0) + J

and

(22) ^(«.«.«ü),^^^,^^)-}-

To do this, let 7o and 7, be disjoint compact subintervals of int(U), such that
both 70 n « and 7, n « are infinite. Put k(l) = 1 and q(l) = 2 and assume

by induction that {Ia; a £ Xn}, k(n) and q(n) have been defined. Assume

that fj(Ia)r\co is infinite whenever j > r and a £ X„ . Let zn be the period

of U. By Lemma 5.3 we may assume that xo, x, G int(í/) and since f\co is

strongly transitive in int(U) (Theorem 3.7), there is an 5 > max{r, q(n)} such

that Xo, x, G int(/m-'(7Q)) whenever a £ X„ and j > s. Since « is perfect

(Theorem 3.1), it is easy to see that, for i = 0, 1 and any a £ X„, there is

a point a(a, i) £ int(7„) such that fms(a(a, i)) = x, and such that for any

neighborhood V of a(a, i), fms(V)nco is infinite.

Applying Lemma 5.1 we can find q(n + I) > k(n + 1) > ms and pairwise

disjoint compact neighborhoods Iß of the points a(a, i) for all ß £ Xn+X,

where ß = ai (we use ai for the concatenation of a and i) such that (18)-

(22) are satisfied when zz is replaced by zz + 1.

Let A - fl^l, U{7a ; a £ X„) . Define a map, code: A -* X, by code(x) —
a(l)a(2) • • • a(zz) ■ • • if x G 7Q(,)Q(2)...a(n) > f°r any zz. Clearly code is a contin-

uous map of A onto X. Moreover, code is constant on each connected com-

ponent J(a) = f]~ , 7a(i)...a(n) of A ; we have code(x) = a for any x G J(a) .

Thus if A* c A is a set that contains just one point from any connected com-

ponent of A , then A* is a Borel set and code is a continuous one-to-one map

from A* onto X. For t £ T, let N, = {i £ N; z, = t). Apply Lemma 5.4
to the decomposition {Nt}teT of A; let B be the corresponding set. Then

code-1 (B) nA* is an uncountable Borel set, hence it contains a nonempty per-

fect subset Q (cf., e.g., [8]).
Let u, v £ Q, u # v , let code(zz) = {a(z')}g, and let code(v) = {ß(i)}°Zx.

By Lemma 5.4 there is an arbitrarily large j such that a(j) ^ ß(j) and t = tj.

Hence (21) gives Fuv(t) < FXQXl(t), and since t is arbitrary in T, Fuv < FXoXi .

The argument for the second inequality in (17) is similar. And similarly, as

in the proof of Lemma 5.2 (cf. the last paragraph of its proof), we see that

cof(u) c co for any u £ Q. Since Q = [J/= i f~'(<»>) n Q (cf. (iv) of Theorem
3.1) there isan zz suchthat f~"(co)nQ is uncountable (and compact), and since

/ is one-to-one on Q, there is a nonempty perfect subset P of f(Q) D «. It

is easy to verify that P has all the required properties,   o
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6. Proof of Theorems 2.3 and 2.4

6.1 Lemma. Let f £ C(I, I) and let {«z}^, be a sequence of distinct min-

imal periodic portions of maximal co-limit sets of f of the second kind. If the
periods of «, are bounded then lim,.^ diam«, = 0.

Proof. Let K¡ be the convex hull of «,, and let m > 0 be a common multiple

of the periods of all the «,. Assume that the lemma is not true. Clearly, by

replacing / by fm if necessary, we may assume that m = 1 and that, for

any i, diam«¡ > e , where e is positive. By (iv) of Theorem 3.7 it suffices to

consider the case when Kx, K2, ... is a strictly decreasing sequence.

Let (5 > 0 be such that diam f (A) < e for any set A with diam .4 < 6.
Let K¡ = [a¡, b¡]. Then a, < ai+x and bi+x < b¡, for any i (Theorem 3.7).

Let «° = [ax, a2] n «, and «' = [b2, bx] n «,. Since «, = «° U «' is
indecomposable, one of the sets [ax, a2],[b2,bx], say [a,, a2], is mapped by

/ over [a2, b2]. Thus \a2-ax\> ô and diam «2 < diam «, - S . By induction

we get diam«/+, < diam«, - id, for any z, which is impossible.   D

6.2 Lemma. Let f £ C(1, 7) and let {«/}g, be the minimal periodic portions

of maximal co-limit sets of f of the second kind. For any i, j, set G¡j =

inf{Fuv ; u £ co i and v £ coj} . Then

(i) Each Gij is zero on an interval [0, e(i, j)], where e(i, j) is a positive

number.

(ii) The set {G,7 ; «, n co} : / 0} has a finite number of minimal elements.

(iii) The set {C7„}°2, has a finite number of minimal elements.

Proof, (i) By (v) of Theorem 3.7, there are distinct periodic points p in «,

and q in (Oj. Since minsôpq(s) = e > 0, we have Fpq(t) = 0, and hence,

Gij(t) = 0, for t <e, since Fpq > G¡j. Take e(z, j) = e.
(ii) We may assume that «, ^ coj , for any i ^ j. Let K¡ be the convex

hull of «,. Let e = e(l, 1) (cf. part (i)). We say that an «, is extremal, if
diam «, > e/2 and if K¡ is properly contained in no Kj. By (iv) of Theorem

3.7 there are finitely many extremal «, 's. We may assume that «,,..., «„(,)

are the extremal sets of /; note that «( 1) > 1 since / has positive topological
entropy and hence at least one maximal «-limit set of the second kind (cf., e.g.,

[4]).
Let m > 0 be an integer. We say that a set «, is significant if diam «, > e/2

and the period of «, is less than m. By Lemma 6.1, there are finitely many

significant «, 's. Thus we may assume without loss of generality that there are

integers zi(3) > zz(2) > zz(l) > 0 such that {«,, ... , «„(2)} is the minimal

system invariant under / and containing all extremal and all significant sets,
and that {«n(2)+,, ... , ««(3)} is the system of all portions that have a point in

common with some of «,, i < n(2) (cf. Theorem 3.7).

Note that zz(2) and zz(3), but not zz(l), depend on the parameter m. We

show that the minimal elements of {G¡j ; co¡ C\cOj ̂  0} are in the set M =

{Gij; i, j < n(3)} whenever m is sufficiently large, depending on zz(l).

Assume that z > zz(3) and that «, n «7 ^ 0 . Then coj cannot be significant,

hence j > n(2). Let u £ co¡ and v £ coj . It suffices to show that Fuv > G for

some G in M. If diam/i(«, U «;) < e for any 5 then Fuv(t) =1 for t > e,

and hence, Fuv > Gx,.
So it suffices to consider the case when diam/J(«, U coj) > e for some s.
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Since the set {«,, ... , «„(2)} is invariant, we may assume without loss of

generality that diam(«, u «_,■) > e and that

(23) diam fs(co¡ U «,) < diam(«, U coj)   for any s.

Since one of the sets «,, «;, say «,, has diameter > e/2, there is an extremal

cor with «, c int(Kr) (note that «, cannot be extremal since i > n(l)), and

consequently, with «, u «7 c int(Kr), since «, ncoj ^ 0 (cf. Theorem 3.7).
By (v) of Theorem 3.7 and (iii) of Theorem 3.1, there are periodic points a < b

in cor with the property: If / is an interval such that

(24) J n cor is finite, diam J > s, and J c Kr

then J c (a, b). (It suffices to choose a, b near the endpoints of KT.)

Now .K, n «r is finite, since f\cor is strongly transitive in int(Kr) (cf. The-

orem 3.7), and K¡ n «r infinite would imply, that the minimal compact peri-

odic interval containing «, must contain Kr, and hence, by Lemma 3.4, that

«, = «r, which is impossible. Similarly Kj n «r is finite. Since J — K¡o Kj

satisfies (24), we have «; U coj c (a, b). Take to such that diam(«, U «7) <

to < b-a . Let 77afr(?o) = ¿r • Clearly Xr < 1. Let e(r, r) be as in (i). We have

Grr(t) = 0 < Fm(t) for t<e(r,r), and by (23), G>r(0 < 1 = Fuv(t) for t > t0.
And if e(r, r) < to then, by Lemma 4.1, Grr(t) < Fa¡,(t) <Xr< Fuv(t) whenever

e(r, r) < t < t0 and m > n(e(r, r), Xr). Thus Grr < Fuv if m > n(e(r, r), Xr).

It follows that when the parameter m = max{zz(e(r, r), Xr) ; 1 < r < «(1)}

then {Gjj ; i, j < n(3)} contains the minimal elements of {G¡j ; «,n«; ^ 0} .

(iii) It suffices to show that the minimal elements of {C7„}¿f1 are contained

in {Ga ;  i < n(2)} . But this follows from the above argument.   D

6.3   Proof of Theorem 2.4. (A) follows by Theorem 2.2.
To prove (B), let {«i}°^, be the minimal periodic portions of all maximal

«-limit sets of the second kind. (This system is nonempty since / has pos-
itive topological entropy [16] and countable by Theorems 3.1 and 3.7.) For

simplicity, denote by cou the maximal «-limit set containing cof(u).

(Bl) Let D = {Fuv ; u and v are synchronous} and E = {Fuv ; ", v £ «,

for some z'} . Clearly D D E. Conversely, let Fuv £ D. If cou (= cov) is of the

first kind then clearly

(25) liminff5^(zz) = 0
n—»oo

and Theorem 2.1 implies Fuv = X(o, oo) G E. If cou is of the second kind

then by (iv) of Theorem 3.1 there is a k such that fk(u), fk(v) are in «„,

and hence, in some «,. Thus D = E and Lemma 6.2 gives the result on the

spectrum 1(f).
Now let Dw = {Fuv ; u, v satisfy (25)} and Ew = {Fuv ; u G co,■, v £ coj

and co j n «;- ^ 0 , for some z and j} , and let Fuv g Dw . Similarly, as before,

one can easily verify that either Fuv - X(o,<x>) or there are i, j, k such that

fk(u) £ «, and fk(v) £ co¡, and (25) implies «, n co¡ ̂  0. Thus Fuv G Ew

and Dw c Ew .
Conversely, let Fuv £ Ew . Let u £ co¡, v £ coj and let w £ co,■ C\ co¡. Take

Q = {(u, v), (w , w)} and apply Lemma 5.2 to get x, y such that Fxy < Fuv

and F*y = X(o,oo)- Hence liminf„^0Of5xy(zz) = 0 which implies Fxy £ Dw .

Thus we have proved that Dw c Ew  and that Ew  has the lower bounds in
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Dw . Consequently, Ew and Dw must have the same system lw(f) of minimal

elements and Lemma 6.2 gives the result. This proves (Bl).

(B2) For any k < m there are x, y £ co¡ for some i such that Fxy = Fk

(see the proof of (Bl)). Existence of Pk now follows by Lemma 5.2 with

Q = {(x ,y),(x, x)} and Lemmas 5.3 and 5.5.
(B4) Let any u, v in a set S satisfy (25). If for some u £ S, œu is of the

first kind then similarly as in the proof of (Bl) we get Fuv — ̂ (0>oo) for any

u, v £ S and S — Sq U 0 is the corresponding decomposition.

Thus we may assume that «u is of the second kind, for any u in S. Let

Tx: = {u G S; fjr"W(u) £ coi, for some j} where m(i) is the period of «,. By

(iv) of Theorem 3.1, S - (J^, T¡. We show that all but at most two of the sets

T are empty. Assume that Tjii), 7}(2)> ̂)(3) are nonempty. Let d > 0 be a

multiple of the periods of «J(fc), and let u(k) be in 7}(fc), for zc = 1,2,3.
Since clearly liminfj^ooôu^^id) = 0 whenever s ± k, any two sets coj^

must have a point in common. Hence by (iv) of Theorem 3.7, two of the sets,

say ojjçl) and cojq) must coincide.

We have proved that S = 7}(,) U 7)(2), for some j(l) and 7(2). For any

u, v in 7}(i), Fuv > Gj(i)j(i) > Fj, for some j < m, and similarly for 7)(2).

Thus Tj(i) U Tj(2) is the decomposition of S described in (B4). Moreover, it

is easy to see that if Fuv — Fj for any distinct u, v in S, and if j > m,

then 7}(,) and Tj^) must be distinct and nonempty, and that each of the sets

Tjii), 7}(2) contains exactly one point.This proves (B3).   D

6.4 Proof of Theorem 2.3. This is a particular case of Theorem 2.4: For (i) see

the proof of (B2), and for (ii) and (iii), the proofs of (B3) and (B4). Details
are left to the reader.   D
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