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1. INTRODUCTION 

In this paper we shall deal with properties of solutions of the difference 
equation 

X n + I =fkh 

where f: Z + Z is a continuous function and Z a compact-real interval. This 
equation is connected, e.g., with various biological phenomena (cf. [3. 5-71, 
among others). By a solution of (1) we mean a sequence 

M-(x), f*(X),..., 

where x E Z and f’ denotes the ith iterate off: If for some p E Z and some 
integer n > 2, f”(p) = p, and fk(p) #p whenever 1 < k < n, then the points 
p, f(p),..., f”-‘(p) form a cycle of order n. The behaviour of sequence (2) 
depends essentially on the existence of cycles 0f.f. A possible approach in 
investigating such behaviour is based on results due to Sarkovskii [ 8, 9 1. For 
each x E Z there are the following three possible types of behaviour: 

(i) Sequence (2) is convergent. 

(ii) There is a point p of a cycle of some order such that lim,,, 
If”C~) -f”(Pl = 0. w e say that x is asymptotically periodic. In this case 
sequence (2) has a finite number of cluster points and the cluster points form 
a cycle generated by p. 

(iii) Sequence (2) has an infinite number of cluster points-it is 
chaotic. 

It is known (cf. [9]) that for each x E Z (2) is convergent iff f has no 
cycles. Further, for each x E Z either (i) or (ii) holds iff has cycles of finite 
number of orders (which are necessarily of the form 2”. cf. [8]). This 
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represents a highly desirable form of behaviour df is nonchaotic). And 
finally, iff has a cycle of order which is not a power of 2, then the set of x 
for which (iii) holds has the power of the continuum df is chaotic). The 
situation is complicated when f has cycles of infinitely many orders which 
are all of the form 2”. Such functions can be chaotic or nonchaotic (cf. [9]). 
Concerning the notion of chaos, see [5] for a more precise definition. 

Kloeden [4] has recently shown that the chaotic functions are dense in the 
space Q(I) of continuous functions I +I with the max-norm. A simple 
modification of Kloeden’s argument gives a somewhat stronger result: The 
nonchaotic functions form a nowhere-dense subset of Q(I). This means that 
the nonchaotic equations (1) are structurally unstable, and the question 
arises as to whether such equations are suitable for describing real situations. 
The main aim of the present paper is to show that the situation is not so 
hopeless. Namely, iff is a function whose fixed points form a nowhere-dense 
set, if f has only cycles of finitely many different orders, and if g is a 
continuous function with I] f- g )] sufficiently small then lim sup,, 
]]f” -g”j( < E, where E > 0 is a given number (Theorem 3). This means that 
for g near to f the sequence x, g(x), g’(x)..., behaves nonchaotically up to 
small perturbations. It is also shown that the condition concerning fixed 
points off cannot be omited (Theorem 1). For a stochastic approach to this 
problem see [I]. Note also that in [2, Theorem 21 the structural stability of 
chaotic functions is indicated. 

The results are given in Section 2. Since the proof of the main theorem is 
rather complicated, we shall first present some lemmas in Section 3, then in 
Section 4 some preliminary constructions along with some additional 
lemmas, and finally in Section 5 a proof of the main theorem. 

Concerning notation, I will always be a compact-real interval, and all 
functions will be continuous functions from I to I. For any function rp, and 
any positive integer n, o” denotes the nth iterate of p. It is always 
understood that a cycle of v, means a cycle of order at least 2. The norm 1) . I] 
of functions is always the max-norm. 

2. MAIN RESULTS 

THEOREM 1. Let f be a continuous function I + I, and let f (i) = x for 
xE[a,b]cZ, where a<b. Then for each 6 > 0 there is a continuous 
function g: Z + I such that 1) f - g (( < 6 and 

lim sup gk(a) - lim inf gk(a) = b - a. 

Proof: Let n be a positive integer. Denote xk = a + (k/n)(b -a), for 
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k = 0, l,..., n, and yk = b - ((2k - 1)/2n)(b -a), for k = 1, 2 ,..., n. Define g, 
as follows: 

gnkk) = xk + I for k = 0, l,..., n - 1, g,(x,) =Y, , 

g,bk) =yk+, for k= 1,2 ,..., n- 1, gn(.).n)=x,. 

Moreover. let g, be linear on each of the intervals [a,.~~], [J,, x, 1, 
[x,,yn-,I,..., [y,,b]. Clearly, Ig,(x)-f(x)l=lg,(x)--xl~(lln)(b-a)for 
x E [a, b]. Now extend g, continuously to the whole I such that 
]I g, -fl] < (l/n)(b -a). It is easy to verify that for suffkiently large n. 
g = g, has the desired properties. m 

The main result is the following: 

THEOREM 2. Let f be a continuous function I + I. Assume that f has no 
cycles and that the set of fixed points off is nowhere dense in I. Then for 
each E > 0 there is some 6 > 0 such that for each continuous g: I + Z with 
Ilf-g/1 < 6, andfor each xEI, 

lim sup g”(x) - lim inf g”(x) < E. 
n-cc n+cc (3) 

Remark. The set A of fixed points off is closed, hence A is nowhere 
dense iff A contains no interval. Theorem 1 thus shows that the nowhere 
density of A is essential in Theorem 2. 

As a consequence of Theorem 2 we obtain a more general 

THEOREM 3. Let f: I+ I be a continuous function. Assume that f has 
only cycles of order <2”. Moreover, assume that both the set offixed points 
off and the set of cyclic points off are nowhere-dense sets. Then for each 
E > 0 there is a 6 > 0 such that for each continuous g: I + I with (( f - gl( < 6, 

lim sup /I fn - g” II < .s 
n-co 

ProoJ First we show that for each positive integer m the mapping 
@,: 9 -+ 9” is a continuous operator on the space g(I) of continuous 
functions I + I. Assume by induction that @,,, is continuous. Then 

Ilf m+l -~m+‘IIacJfm-f~gmII+Ilf~gm-PgmII 

~~Alf”-s”II + Ilf-gll, 
(4) 

where w, is the modulus of continuity off. Now when f -+ g, then f m + g” by 
hypothesis, and the right-hand side of (4) tends to 0. 
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Now f has only cycles whose orders are divisors of 2” (cf. [8]), hence, 
9 =f *” satisfies the hypothesis of Theorem 2. Eachf”’ can be represented as 
f k o 9’, where 0 < k < 2”, and similarly gm = gk o 9’, where 9 = g’“. Hence, 
for a fixed k = 0, l,..., 2” - 1 we have 

lim sup II fk o 9’ - gk o 9’ II 
s+co 

and hence, Theorem 2 and the continuity of Qk imply that lim a,(g) = 0 
whenever g -+J Consequently, lim sup ]]f” - g” ]] < E. 1 

3. PRELIMINARY LEMMAS 

We recall that 9 is always a continuous function Z-r I. In what follows we 
do not distinguish between a function or a relation and its graph. 

LEMMA 1. Let (p-’ be the inverse relation of a function q@-’ need not 
be a function). For each XC Z denote 

x,=(pn(xxz), x;l=~--‘n(xxz). 

If 9 contains no cycle and if X is a closed set which contains no fixed point 
of 9, then 

dist(X,, Xi’) > 0. 

Proof. It is easy to see that X, and X; ’ are compact sets. If 
dist(X,, X; ‘) = 0 for some X, then X0 and X; ’ have a common point 
z = (x, y). Since z E X,, we have 9(x) = y, and since z E X; ‘, 9(v) = x. 
Since x E X, x # 9(x), hence, x t-+y I-+X is a 2-cycle of 9, which is 
impossible. 

For each nonnegative 1 define 

A,(~)={xEZ;I9(x)-xl<A}. 

Clearly, each A,@) is a closed set. 1 

LEMMA 2. Let 0 < A, < A,. Then there is a finite number of connected 
components (intervals) M, ,..., Mm of the set mm@,) such that for each i, 
Mi \A,(1321 + 0. 

ProoJ Assume that M,, M2,..., is an infinite sequence of such 
components which are pairwise disjoint. Let a be a cluster point of this 
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sequence. Then each neighborhood O(a) of u contains an interval M,, and 
hence, points x, y E M, such that p(x) = A,, p(y) > A,. Consequently rp is 
discontinuous at a, which is a contradiction. 1 

The following lemma is implicitly contained, e.g., in [9], but for 
completeness we present its proof. 

LEMMA 3. Assume that there are x, y E I, x < y such that p(x) > y and 
q(u) < x. Then v, contains a 2-cycle. 

Proof: If rp(x) = y and cp( y) = x, then cp has a 2-cycle. So assume that 
rp( y) < x. Since q(x) > x and cp( y) < y, there is a fixed point of rp between x 
and y; denote it by z. Since [z, y] t ~[x, z], there is some y, E [x;z) with 
cp( y,) =y. Denote by a the left-hand endpoint of I. Then p2(a) > a, 
q’( y,) ( x Q y,, hence, there is a greatest fixed point u of rp* in (a, y,). It 
suffices to assume that q(u) = v since otherwise v, has a cycle. So [u, z 1 c 
~P[u, y,], hence for some z, E (v, y,), cp(z,) = z. Then rp*(z,) = z > y, > z, and 
(P*(J’,) < y,. Thus V* has a fixed point between z, and y,, which is 
impossible. # 

4. PRELIMINARY CONSTRUCTIONS 

Fix some E > 0 and a functionf satisfying the assumptions of Theorem 2. 
Choose 6, > 0 such that A,(6,) contains no interval of the length &z/6 

(see Lemma 2). Such a 6, exists since A,(O) is nowhere dense. Then there are 
connected components I, ,..., Z, of the set &t,(S,) such that the set 

r\(I, u *. * WI,) contains no interval of the length a&/3. (5) 

Denote by 6, the length of the smallest interval Ii. Choose 6, such that 

0<6,<min(6,,6,,e/4} (6) 

and let J r,...,J,,, be all of the connected components of the set r\p,(S,/3) 
which are not contained in A,(26,/3) ( see Lemma 2). Clearly, m > k and 
each Ii is contained in some Jj. Denote J = J, U . . . U J, . Then the set J has 
the following property: 

LEMMA 4. Let Ilf- gj( < 6,/3, and assume that for some x E I, 
( g(x) - x( > ~14, or that between x and g(x) there lies an interval Ii. Then 
x E J. 

Proof of the lemma. In both cases 1 g(x) - XI > 6,) hence 1 f(x) - x I 2 
/ g(x) - xl - If(x) -g(x)] > 6, - 6,/3, i.e., x E &4,(26,/3) c J. I 
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Now choose a 6, such that 

0 < 6, < 6,/3 (7) 

and such that the closed 8,-neighbourhood S of J is disjoint with A,(O). Then 
f-‘(S) n A,(O) = 0. Denote 

s,=min{lf(x)-xl;xEf-‘(S)}. 

Since f-‘(S) and A,(O) are disjoint compact sets we have 6, > 0. Let 6, be 
the length of the smallest interval Ji. Choose 6, such that 

0 < 6, < min{b,, 6,, 6,) (8) 

and let K i,..., K, be the connected components of u,(S,/3) which are not 
contained in A,(26,/3) (see Lemma 2). Clearly, each Ji is contained in some 
Kj. Denote K= K, U em* U K,. The set K has the following property: 

LEMMA 5. Let 11 f - gl( < 6,/3. Assume that for some x, g(x) E J, or that 
between x and g(x) there lies some interval Ji. Then x E K. 

Proof of the lemma. If g(x) E J, then f (x) E S, so x E f -l(S) c QXSs) 
c&4,(26,/3) c K. If some Ji lies between x and g(x), then 1 g(x) - XI > 
6, > 6,) hence 1 f(x) - XI > 1 g(x) - x I - ( f(x) - g(x)/ > 26,/3, and again 
xEK. I 

Denote by Li (i = l,..., s) the connected component of wXS,/4) which 
contains Ki, and let L be the closure of L, U . a. U L,. Clearly, 

LxKIJII,U... UI,. (9) 

Let 
6, = dist(L,, L; ‘) (10) 

(see Lemma 1). Finally choose 6 such that 

0 < 6 < min (6,/2, 6,/3 ) (11) 

and fix some g such that I( f --g/l < 6. Since 6 < 26,/3 and since 
L c &4,(S,/4), we have 

g(x) + x for xE L. (12) 

Now we show that (3) holds for each x E I. First we introduce the 
following auxiliary function h: Define 

h(x) =.0x) for x E I\L, 

h(x)= g(x) for xE K, 
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and extend h continuously onto the whole I such that 

llh -fll < 6 and llh-gll ~6. (13) 

Such an extension is possible since the set L\K consists of at most 2s 
intervals. We show that h has no cycle. Assume the contrary. Then h has a 
2-cycle x,!--+xZk-+x,, x, fx, (cf. [8]). At least one xi, say x, must belong to 
L since f(x) = h(x) for x @ L and f has no cycles. But in this case 
dist(L,, L;‘) = 0 since z = (x,, x2> E L, n L;’ (see Lemma 1). Therefore 
dist(z, L,) < 6, dist(z, Lj ‘) < 6, and hence dist (L,, Lj ‘) < 6 + 6 < 6,, 
which is a contradiction (see (10) and (11)). Hence we have proved the 
following: 

LEMMA 6. There is a continuous function h which has no cycles and 
such that [If-- h(l < 6, (I g - hlj < 6, and h(x) = g(x) for x E K. 

~.PROOF OF THEOREM 2 

Assume that (3) does not hold for some x E I. Denote 

g”(x) =x,, lim inf x, = a, 
n+m 

lim sup x, = 6. 
n +cx 

So we have b -a > E. From (5) it follows that for some i, Ii n (a, b) # 0. 
Consider the following two possible cases: 

Case (a). 

There is a j < k such that the closure < of Zi is contained in the interval 
(a, b). 

Case (b). 

Case (a) does not hold. 

First we consider Case (a). By (12) and (9), g(t) - t does not change the 
sign for t E Zj. By symmetry we may assume that 

g(t) < t for tE&. (14) 

Consider the following three subcases (al)-(a3) of Case (a). 

Subcase (al). There is some integer n = n( 1) with x,, ,, E Ii. Let 
n(2) > n(l) be the least number with the property 

X n(2) < Xtl(Z) + I and ‘j c (x II(Z)3 -x,(2) + I )* 
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The existence of such n(2) follows from the fact that a, b are cluster points 
and that <c (a, b). Let n(3) be the greatest index <n(2) with x,(,) > x,,(*). 
Clearly, n(3) 2 n(1) and, therefore (see also (14) and the definition of n(2)), 

-%z, + I > A(3) > X”(2) a X,(3) + 1. (15) 

BY Lmma 4, xncz, belongs to some Ji and from (12) we have g(f) > I for 
t E J,, hence x,,(~) $ J,, and hence by Lemma 5, x,(~) E K. Now from (15) 
and from the fact that h(x,,& = g(x,,(*,) and h(xno,) = g(x,o,) it follows by 
Lemma 3 that h has a cycle, which contradicts Lemma 6. 

In the Cases (a2) and (a3) I/ contains no point x,. Define sets X, Y by 

x, E x iff x,<x,+, and ~~(x,,x,+~), 

x, E Y iff x,+i <x, and 4 c (x,, , , x,). 

Both the sets X, Y are infinite since a, b are cluster points. Let x,(,,, x,(~), 
X noj,..., be the enumeration of all members of X such that n(1) < n(3) < 
n(5) < ‘** and let X,(2) 9 Xn(4), x&j),*** be the enumeration of all members of 
Y with n(2) < n(4) < n(6) < ..s . Since no x, belongs to Ii, {n(i))j”, , must be 
an increasing sequence. 

Subcuse (a2). There is some p > 1 such that 

xn(zp+ 1) < X”(2P) + 1 (16) 

or 

-%2p-I)+1 < X”(2Lo. (17) 

Because of symmetry it suffices to consider (16). Let n be the greatest 
number < n(2p + 1) with the property x, > x,,(~~+ i). Such an n clearly exists 
since we have n > n(2p) + 1 and x, lies to the left of 5. Then x,+ , < 
X,(2p+ 1). But Xn(2p+ 1) must belong to some interval J, (Lemma 4) with the 
property g(f) > t for f E J1 (see (12)), and g(x,) ( x,, hence x, 6 J,. If 
X n+,EJ,, then x,EK (Lemma5). If xn+,6?Ji then Jic(x,+,, x,,)? and 
hence again by .Lemma 5, x, E K. Consequently, x,, x,(~,,+ ,) E K, 

x, > x,(~~+~), by Lemma6 W,)<X~(~~+~~~ WQ~,+,,) > x,, and by 

Lemma 3, h has a 2-cycle which is impossible. 

Subcase (a3). For each i, 

xn(21+ 1) 2 xn(2i)+ I (18) 

and 

Xn(2i) ,< Xn(2i-l)+ I’ (19) 
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Assume that for some p > 1, 

or 

X ntzp+ lb+ 12 X”(ZPJ 

X n(2p)tl GX”(ZP-I)’ 

(20) 

(211 

Then by Lemma 3, h has a cycle: Indeed, when (20) holds, then 

X nt2pj 3 X”(ZPf 1) E K x,,(zp) > xn(2p+1)7 0 nt2p+ LJ) ~Xrt(ZPJ, 

and by (18) h(xno,,) < xntzp+ I)’ When (21) holds the argument is similar. 
It remains to check the case when for each i inequalities (18), (19) are 

satisfied along with 

and 

X n(2i+ I)+ I < xn(2i) (22) 

X n(2i)+l > xn(2i-l)~ (23) 

Then we have, by (18), (23), (19), (22) 

X.(Z)+~ Gxnt3) <x,(4J+I Gxnc5) < .a- < a <B 

< **- <x n(4) ~XnOJ+I <X”(2) <x”(I)+ I 

where a, /I are the endpoints of Zj. Denote 

lim x n(2i t I) = G 
i-00 

lim x,(~~) = d. 
i-m 

Clearly, c < d and by the continuity of g, g(c) = d and g(d) = c. Since Zj c 
(c, d), by Lemma 4, c, d E .Zc K. Hence by Lemma 6, h has a 2-cycle, 
h(c) = d, h(d) = c, which is impossible. 

Case (b) 

Since (a) does not hold, by (5) there must be a j < k such that Ij n (a, b) 
is an interval of the length at least a/3, and such that a E < or b E &. 
Without loss of generality we may assume that b E 5. We show that in this 
case a G q. It is easy to see that g(a), g_(b) are cluster points of {x,}F= , , 
hence g(a) > a and g(b) Q b. Since b E_‘i c L, (12) implies that g(b) < b, 
hence g(t) < t for t E 5, and hence a e Z,. Denote the left-hand endpoint of 
Zj by C. Let V be the set of those x,, for which x, < c and x, + , > c + s/4. 
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Clearly, V is an infinite set. This follows from the fact that c + e/4 < 6, b is 
a cluster point, and 

g(t) < t for t E [c, b]. (24) 

Now let x,(,), -+),..., be the enumeration of V such that n(l), n(2),..., is an 
increasing sequence. Consider Subcases (bl) and (b2). 

Subcase (bl). For some p, x,,~+ ,) < x,,(~). 

Let n be the greatest number < n(p + 1) with x, > x,(~) (such n clearly 
exists and n > n(p) + 1). Then x,+, < xnu,, and by (24) x, < x,,(~, + r . Since 
X nb)tl - xno,) > s/4, by Lemma 4 xnu,) E J, and hence, by Lemma 5, x, E K. 
Now similarly as in the preceding cases x,(~) < x,, h(x,,& > xnr 
4%) G -%I(,) 9 and hence, by Lemma 3, h has a 2-cycle. 

Subcase (b2). We have 

d = lim x,,[,. 
ida0 

(25) 

Then by the continuity of g, g(d) - d > a/4, hence by Lemma 4, d E J. 
If g2(d) ( d, then again by Lemma 4, g(d) E J and similarly as in the 

preceeding case, h has, by Lemma 3, a 2-cycle. Otherwise, d < g2(d) < g(d). 
Then (25) implies that for some suffkiently large u we have 

X n(a)(X”(“+l,~d<Xnccl,+z <xnw)+I~ 

Now let n be the greatest number <n(v + 1) such that x, > d (clearly, 
n 2 n(u) + 2). Then x,, , < d, d, x,+ 1 E K, and Lemma 3 implies that h has 
a 2-cycle, which is a contradiction. This completes the proof of Theorem 2. 
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