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Abstract

In this paper we exhibit a triangular map F of the square with the following properties: (i) F is of type 2> but has
positive topological entropy; we recall that similar example was given by Kolyada in 1992, but our argument is much
simpler. (ii) F is distributionally chaotic in the wider sense, but not distributionally chaotic in the sense introduced by
Schweizer and Smital [Trans. Amer. Math. Soc. 344 (1994) 737]. In other words, there are lower and upper distribution
functions ®,, and @;, generated by F' such that ¢; = 1 and ®,,(0,) < 1, and no distribution functions ®,,, and ¢} such
that @} =1 and &,,(r) = 0 whenever 0 < ¢ < ¢, for some ¢ > 0. We also show that the two notions of distributional
chaos used in the paper, for continuous maps of a compact metric space, are invariants of topological conjugacy.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let / =[0,1] be the unit interval. By a triangular map we mean a continuous map F : /> — [* of the form
F(x,y) = (f(x),g:(y)). The map f is called the base for F, g, is a map from the layer I, = {x} x I to I. Denote by p the
metric on the unit square /> given by p((x1, 1), (x2,12)) = max{|x; — x2|, |y1 — 1|}

Let / be a map from a compact metric space (M,d) into itself. We say that f is of zype 2* if the periods of the
periodic orbits of f* are the numbers 2", for any integer n < 0. For any pair (x, y) of points in M and any positive integer
n, define a distribution function cbg) :R —[0,1] by

1 . ,
(") — - _1- i i
Py () = #MO<i<n— 1 d(/'(x), /') <1}
Obviously, (Dg,) (¢) is a non-decreasing function, Qi;ﬁ) () =0for < 0and (Dg) (t) = 1 for ¢ greater than the diameter of M.
Put
®,,(¢) =liminf &) (r) and &} (1) = limsup &) (7).

n—o n—00

The function @, is called the lower distribution, and &}, the upper distribution of x and y. Obviously, D,,.(1) < <D;y(t) for
any real ¢. If &,,(1) < <D;y(t) for all 7 in an interval, we simply write @,, < (D;y.
If there is a pair of points (x,y) in M such that

@, =1 and @,(1)=0 forsomet>0 (1)
or

(p*

xy

1 and &, <&, (2)
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then we say that f is distributionally chaotic in the strict, resp. wider sense (briefly. DCI, resp. DC2). Recall that DCI was
originally introduced in [5], DC2 is a generalization.

It is known that, for a continuous map of the unit interval, the notions of DCI, DC2 and positive topological
entropy (simply, PTE) are equivalent [5]. We give here an example of a triangular map with PTE which is DC2, but not
DCI. Since there are DCI triangular maps with zero topological entropy [2] we have proved that, in the class of tri-
angular maps, PTE and DCI are independent properties.

2. Construction of the map

Theorem 1. There exists a triangular map F of type 2°° with positive topological entropy such that F is DC2 but is not
DC1.

Proof. STAGE 1. Construction of a triangular map F of type 2. It is inspired by the map from [3], but our argument is
more simple.

Let f(x) = Ax(1 —x), where 4 = 3,569 . . .is such that f is of type 2*. It is well-known that /" has exactly one infinite -
limit set Q which is a perfect set (i.e., non-empty, compact, without isolated points), two fixed points and, forany n > 0, a
unique periodic orbit of period 2. Then there is a sequence {/,}.-, of minimal compact periodic intervals such that

(i) 1, has period 2", for any n =0, 1,...,
(i) N2, Orb(Z,) =0,
(i) N2y L, = {c}, for some c € Q.

Denote by p, the unique periodic point of period 2" belonging to I,. (The existence of the intervals 7, with the above
mentioned properties is well-known, even for a general continuous map of the interval of type 2*, cf., e.g., [6].)
Now, we can proceed to the construction of the layer functions. Let

g =0, g =0 and g, =0 foranyn=0,1,... (3)

Let {n},., be an increasing sequence of positive integers (it will be specified later). Let t be the tent map,
t(x) =1 —]1 — 2x|. Put

1
gxzﬁr forxe ON L, \ L), (4)
and let
2.(0)=0 foranyxel. (5)

Finally, extend F continuously to the whole of /2. Then F is of type 2. Indeed, the projection of a periodic point of a
triangular map to the x-axis is a periodic point of the base map f. Thus, by (3) and (5),

Per(F) = Per(f) x {0}, (6)

hence f/ and F have the same periods of periodic points, i.e., F' is of type 2.

STAGE 2. We show that a particular choice of the sequence {n,} implies positive topological entropy of F. Indeed,
we have h(F) = h(F|q ), where C(F) C (Q x I) U (Per(f) x I) is the centre of F. By (3) and (5), every trajectory in
Per(f) x I is eventually periodic, hence h(F|p,).;) = h(Flp, ) = 0 and consequently, 4(F) = h(F|,,,;). By Bowen
formula [1],

h(f) + sugh(F,[x) > h(F) = max{h(f),sugh(F,[x)}, (7)

where h(F,1,) is topological entropy computed from trajectories starting from the fibre Z,. In our case, however,
h(f) = 0 hence h(F) = sup,., A(F,I.). To compute i(F, 1) we apply the variational principle. For an x € Q and any
positive integer n denote by ¥ (n,x) the number of laps of the map F” restricted to the fibre /(). Then (see [4])

h(F) = h(F|y,,) = sup lim ! log V (n,x). (8)

xeQ "o n

Since, for x € Q, the fibre maps are the tent maps or their multiples by 27%, k > 0, we have obviously ¥ (n,x) <2". To get
the lower estimation note that when the trajectory of x at some time visits 7,, then the next 2" applications of the tent
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map are necessary to recover the diminishing of the layer map caused by the factor 1/2%, cf. (4). Denote by
v(x,i) = ||F ,MH the norm of the layer map of F’ over fi(x). We are interested in the size of the set
Su(x) ={0<i < mv(x,i) <1} since V(n,x)=2""*_ Put p(x) =liminf, . L#S,(x), o(x)=Ilimsup,_  L1#S,(x).
Then, by (8),

h(F|p,) = (log2) igg(l —1n(x)) = (log2) i‘ég(l —a(x)). 9)

Thus to get A(F) > 0 it suffices to make o(x) < 1, for some x € Q. It is easy to compute o(x): the relative density of times
when the trajectory of x visits 7, \ 1,, is 27" — 27", and every such visit is recovered by the next application of the tent
map. If the trajectory visits 7,, \ ,, then two applications of the tent map are necessary to recover the diminishing., etc.
Thus, we have

1 1 1 1 1 1
hence
o) =s—Fo—F -t (10)

So, if the sequence {n,},-, is such that o(x) given by (10) is less than 1 then F has positive topological entropy.
STAGE 3. Now we can show that F is not DC1. For any integer k£ > 0,

1 )
v(x,i) < 5% whenever f'(x) € 1,,,,. (11)
Let Sy, (x) = {0<i < m;v(x,i) < 1/2}, and n,(x) = liminf,_, 1#S;,(x). Since I,,,, is periodic, (11) implies
1
W) > 51> 0 12

Now assume contrary to what we wish to show that there are distinct points u = (x,y), v = (x',)') in I*> such that
@, =1, and @,,(¢c) <1 for some € € (0,1). We may assume without loss of generality that F has the following
additional properties (cf. construction in Stage 1):

(1) g =0 for any ¢ in a neighborhood of p,, for any n.
(ii) ¢ is an endpoint of an interval J complementary to Q.
(ili) ¢ # min Q, ¢ # max Q.
(iv) There is a neighborhood U of ¢ such that g, =0 forr € UNJ.

Then
x & QO implies F"(u) € (I\ Q) x {0})U (O xI) for some n > 0. (13)

This follows by (i) if w,(x) is a periodic orbit, and by (ii)—(iv) otherwise. Similar argument is true for x'.

By @), = 1, w/(x) = ws(x)' =: @. If @ is a periodic orbit then, by (13), the trajectory of either u or v is eventually in
(I'\ Q) x {0}, and since F restricted to (/ \ Q) x {0} is isomorphic to f restricted to / \ O, we have, &, = ®,,. If ® = 0
and x ¢ O then, again by (13) we may replace u by a point in QO x I without changing ®; and &,,. Hence it suffices to
consider the case u,v € Q x I and consequently, x = x’ € Q (since in the case x # x’ we immediately obtain @; #1).

Since  E(u,v,1/26n) = #{0<i < nm; p(F'(u), F'(v)) < 1/2%} = #{0<i < myv(x,i) < 1/2} = S;,,  (12)  implies
@,.(1/2%) = n,(x) > 0, for any k > 0. Consequently, F is not DCI.

Finally, let y € I be such that the points 0 and y generate DC1 for the tent map. Then putting u = (x,0), v = (x,y) we
get @' =1> @, and hence F is DC2, for a suitable choice of x. [

uv

3. DC1 and DC2 are invariants of topological conjugacy
Our main result in this section is the following theorem.

Theorem 2. Let ¢, \ be topologically conjugate continuous maps of a compact metric space (X, p). Then ¢ is DC1 or DC2
if and only if y is DC1 or DC2, respectively.
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Proof. Let # be a homeomorhism of x conjugating ¢ and  such that y = ho ¢ o h~'. By the continuity of 4, for any
€ > 0 there is an arbitrarily small 6 > 0 such that, for any u,v € X.

p(u,v) < ¢ implies p(h(u),h(v)) < e.
Then

p(@" (1), ¢"(v)) < & implies p(ho ¢"(u),ho ¢"(v)) <€
and since ho ¢" =" o h,

p(@" (1), ¢"(v)) < 6 implies p(Y" o h(u), " o h(v)) <.
Consequently

?,,(6) < W;(u)h(u)(f)v (14)
where @* or ¥ are upper distribution functions of ¢ or ¥ respectively. Similarly, by the continuity of #~!, for any
€ > 0 there is an arbitrarily small 6 > 0 such that, for any u,v € X,

p(h(u), h(v)) < o implies p(u,v) < €

and consequently,
P hiwin) (0) < Pun(€). (15)

Now if @ =1 then, by (14), Pywuw = 1 If, on the other hand, @,,(¢) = 0 then, by (15), ¥y (d) = 0 and con-
sequently, if ¢ is DC1 then y is also DC1. Moreover, if @,,(¢) < 1 then, again by (15), ¥y () < 1 and hence, if ¢ is
DC2 then also ¥ is DC2. [
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